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Abstract Many real-world problems in engineering can be
represented and solved as a data-driven classification prob-
lem, where the goal is to build a classifier that maps a given
set of input parameters onto a corresponding class or label.
In some cases, the collection of data samples can be com-
putationally expensive. It is therefore crucial to solve the
problem using as little data as possible. To this end, a novel
sequential sampling algorithm is proposed that begins with
a very small training set and supplements it in each iteration
by a small batch of additional (expensive) data points. The
outcome is a representative set of data samples that focuses
the sampling on those locations in the input space where the
class labels are changing more rapidly, while making sure
that no class regions are missed.

Keywords Adaptive sampling · Surrogate models ·
Simulations · Expensive data

1 Introduction

Nowadays, the use of Machine learning techniques is
becoming more widespread in engineering. Many problems
deal with identifying a group, a category or a class to
which a given input pattern belongs. Examples in literature
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include constrained optimization problems (Basudhar et al.
2012; Handoko et al. 2008), finding quasi-optimal regions
(QoRs) (Singh et al. 2013b), determining food quality
(Cen and He 2007), measuring analog circuit performance
(De Bernardinis et al. 2003), detecting faults in aircraft
engines (Rausch et al. 2004) and others. Such problems can
be solved by fitting a classifier to a set of data that consists
of a number of instances or data points. Each data point has
a number of attribute values or features and a corresponding
class label. The classifier can then be used to predict class
labels for new, previously unseen, examples.

The data can be taken from databases of precomputed or
recorded data. However, in engineering, data typically origi-
nates from computer experiments such as simulations which
are generated on demand. A potential difficulty is that com-
puter simulations are often computationally expensive. For
example, Ford Motor Company reports that the computa-
tional cost to perform a single simulation for an automotive
crashworthiness test takes on average 98 h to complete. This
scale of computational expense would imply a total dura-
tion of 12 years to complete the entire analysis (Shan and
GaryWang 2010). In order to alleviate such a computational
burden, there is a need to train classification models using
as few training instances as possible. Therefore, this paper
presents a sequential sampling strategy to collect determin-
istic data samples that can be used to build classifiers. It
starts with an initial small set of training data, and iteratively
adds more training points at well-chosen locations in the
input space. The sampling algorithm picks additional points
in a sequential way based on previously computed data
and stops when a predefined stopping criterion is reached
(e.g., number of allowed simulations, maximum simulation
time,...).

In a post-processing step, the resulting data set can be
used to build a classifier that allows an engineer to analyze
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e.g. functional dependencies between input variables, per-
form what-if analyses, perform optimization, study uncer-
tainty quantification, etc.

The paper is organised as follows. Section 2 intro-
duces the concept of adaptive classification, while Section 3
describes the related work and state-of-the-art. Section 4
explains the proposed sequential sampling algorithm. The
algorithm is demonstrated on analytical examples in
Section 5. Section 6 concludes the paper.

2 Adaptive classification

In the context of this work, the term adaptive classifica-
tion is defined as classifier construction using training data
obtained sequentially from an adaptive sampling algorithm.
Consider a training set S in some input space X ⊆ R

d

spanning d attributes, and some output space Y . The output
space is Y = {0, 1} for a binary classification problem and
Y = {1..K} for a K-class classification problem. The train-
ing set is denoted as S = (X, Y ) ∈ X ×Y where X consists
of n data points represented as vectors {x1...xn} and Y con-
sists of class labels {y1...yn}. The classifier h : X → Y
predicts the class label of a given input pattern x̂ as ŷ =
h(x̂). For details of the classifier training process, the reader
is referred to Bousquet et al. (2004).

The flowchart of the adaptive classification process is
shown in Fig. 1. The initial training set S is obtained by

Fig. 1 Adaptive classification flowchart

generating a set X of b points in the input space using a tra-
ditional design scheme (e.g., Latin Hypercube Sampling).
Then,X is evaluated using the expensive simulator to obtain
the corresponding class labels Y .

Assuming that the total number of allowed function eval-
uations is n, the sequential sampling algorithm selects a new
batch of informative samples Xδ of size δ at well-chosen
locations in the input space. The simulator evaluates Xδ

resulting in class labels Y δ . The training set S is updated
as:

Y δ := f (Xδ), (1)

S := S ∪ (Xδ, Y δ). (2)

This sampling process is iterated over �n−b
δ

� times until
the number of allowed simulations is exceeded, or one of the
stopping criteria (if specified) has been reached. Stopping
criteria may include exceeding allowed sampling budget, or
time duration, etc. The classifier is then constructed using
the final training set S.

The focus of this work is only on the sequential sam-
pling process (the outlined box in Fig. 1), with the aim
of obtaining an accurate model. The model is assumed
not to contribute to the sequential sampling process, while
the sampling algorithm aims to sample all the (a priori
unknown) class boundaries of the problem at hand.

3 Related work on data sampling

Adaptive sampling is closely related to the field of active
learning (Cohn et al. 1996; Settles 2012). However, there
are subtle differences. Active learning is largely semi-
supervised and traditionally assumes a fixed unlabeled
dataset U, from which the learning algorithm must sub-
sample data points to learn from. The learner can only
select unlabelled data points xi ∈ U. Often, an active learn-
ing algorithm provides a ranking of possible data points
(Ailon 2011). The doctoral dissertation of Kevin Jamieson
(2014) is an excellent reference for a mathematical treat-
ment thereof. Active learning is also used in reinforcement
learning (e.g. optimal learning for multi-armed bandits
(Carpentier and Valko 2015)). The focus of this paper is on
data sampling in a supervised learning context, where data
samples are not taken from a database U, but instead they
are queried from an oracle (e.g. a simulator) that provides a
class label given a data point xi .

Adaptive sampling algorithms can be input-based,
output-based, model-based, or a combination of the three
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Table 1 Types of adaptive sampling algorithms: a combination of the three types is also possible

Input-based Output-based Model-based

Random Neighborhood-Voronoi (Classification)
(Singh et al. 2013b)

Probability of Feasibility (Forrester and
Keane 2009)

Low discrepancy sequences (Hickernell
1998; Jin et al. 2005; Niederreiter 1978)

Model error sampling (Hendrickx and
Dhaene 2005)

Latin Hypercube Sampling (Van Dam
et al. 2007; Husslage et al. 2006; Qian
2009)

EDSD (Basudhar et al. 2012; Basudhar
and Missoum 2008; 2010; Basudhar et al.
2008)

Monte-carlo/Optimization-based
(Crombecq et al. 2009)

VSVM (Song 2013)

Voronoi-based (Crombecq et al. 2011a)

depending on the information utilised in the sampling pro-
cess. Table 1 lists the different type of sampling algorithms.

Input-based sampling algorithms like Latin Hypercube
Sampling and Voronoi-based sampling aim at selecting
points in a space-filling manner, so as to cover as much
of the design (input) space as possible. Similarly, Low dis-
crepancy sequences and Monte-carlo techniques distribute
points as uniformly as possible.

Model-based sampling algorithms make use of interme-
diate models to guide the sample selection process. Typi-
cally, criteria such as Probability of Feasibility, model error,
classifier boundary characteristics, etc. are used to guide
sample selection. Support Vector Machine (SVM) classi-
fiers have been used in literature to solve constrained opti-
mization problems and failure domain identification using
sequential sampling (e.g., Explicit Design Space Decom-
position (EDSD) algorithm) (Basudhar et al. 2008, 2012;
Basudhar and Missoum 2008, 2010).

EDSD uses SVMs to construct an explicit decision
function that models a given constraint (for example). The
algorithmworks formulti and single-response problemswith
possible discontinuities. The classification approach
enables better handling of discontinuities and potential non-
smoothness in the problem. A convergence criterion, or sam-
pling budget controls the number of iterations of the algorithm.

Although the EDSD algorithm is very effective for
quickly and accurately refining the constraint function, it
does not account for statistical distribution of the variables.
New samples are selected along the decision boundary by
maximizing the minimum distance from existing samples.
Since the joint distribution of the variables is not accounted
for, samples may be selected in regions of low probabilistic
content (Lacaze and Missoum 2014). This poses a problem
for applications dealing with expensive-to-evaluate objec-
tive functions. The generalized max-min sampling scheme

(Lacaze and Missoum 2014) is a popular algorithm for
solution of Reliability Based Design Optimization (RBDO)
problems that takes the distribution of variables into con-
sideration. This is crucial for problems where the design
variables are not uniformly distributed.

Virtual SVMs (VSVM) (Song 2013) have been used to
improve the accuracy of SVM classifiers for RBDO prob-
lems. A VSVM (Schölkopf et al. 1996) constructs a decision
function by sampling near the class boundary. The sam-
pling algorithm selects additional virtual samples in order to
incorporate invariances (e.g., for image classification prob-
lems, transformations such as translation are often used) in
the problem. The hope is that the enlarged training set incor-
porating virtual samples will lead to gains in accuracy over
the original training set.

A detailed discussion on input and model-based sampling
algorithms is out of scope of this work, and the interested
reader can refer to Crombecq et al. (2011a, b), van der
Herten et al. (2015), Forrester and Keane (2009), Hendrickx
and Dhaene (2005).

In this paper, an input-output-based algorithm is pro-
posed that uses the class labels of previously computed data
points to narrow down the selection of new samples to inter-
esting regions. The algorithms identifies local changes in
the class labels and focuses the selection of samples in those
areas. This kind of exploitation is merged with a space-
filling exploration component to make sure that no regions
are missed.

A key advantage of this method is that no intermedi-
ate classifiers (like SVM’s) need to be built, which can
lead to substantial savings in terms of computation time.
While model-based methods entail the potential of exploit-
ing model-specific information to better select new samples,
they also run the risk of being misled by the model. For
instance, in the initial stages of the sampling process, the
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model might be inaccurate and might drive the search
towards non-optimal regions. This can result in interesting
regions not being covered by the algorithm. Input or output-
based methods are independent of the model, and therefore
are less prone to such pitfalls.

4 Neighborhood-Voronoi sequential sampling
algorithm

In this section, a new approach for sequential sampling in
a classification context is proposed. The term sequential
implies that the sampling algorithm is dynamic. The goal is
to collect as much information as possible about the differ-
ent class regions present, while using as few data samples as
possible. The algorithm presented in this work is solely data
driven. The data are collected, analysed, and new data points
are chosen in a sequential manner. No intermediate (classi-
fication) models are required during the sampling process.
Intermediate classifiers can be constructed if the user desires
(to test accuracy as stopping criterion, for example) but is
not required by the algorithm. Thus, the proposed algorithm
is independent of any particular classifier.

The Neighborhood-Voronoi algorithm is based on the
LOLA-Voronoi algorithm proposed by Crombecq et al.
(2011a), with modifications made to handle classification
problems instead of regression. The algorithm aims to bal-
ance exploration of the input space and exploitation to
identify separating boundaries of the different class labels.
In the following subsections, the Neighborhood-Voronoi
sampling algorithm is explained by separately discussing
the Neighborhood (exploitation) and Voronoi (exploration)
components.

4.1 Exploitation

The exploitation component makes sure that samples are
chosen more densely in the interesting regions, i.e., regions
where a transition of class labels is present. A local neigh-
borhood N of size m is computed for each instance xi , ∀i ∈
1, ..., n as:

N(xi ) = {xi1, xi2, ..., xim} ⊂ Xr = {xij }mj=1, (3)

where Xr = X \ {xi}, with \ being the set difference oper-
ator. To ensure that all directions around the instance xi are
covered uniformly, N is chosen according to optimal adhe-
sion and cohesion. The terms adhesion and cohesion used in
this work are defined below, and are unrelated in meaning

to the use of the terms in biology, chemistry and materials
science.

– Cohesion makes sure that the neighbors are as close to
xi as possible. It is defined as the average minimum dis-
tance of neighboring points from xi . The cohesion of a
neighborhood N with respect to the fixed instance xi is
defined as:

C(N(xi )) = 1

m

m∑

j=1

‖xij − xi‖2. (4)

– Adhesion ensures that the neighbors are as far away
from each other as possible. It is defined as the average
minimum distance of neighbors from each other. The
adhesion of a neighborhood N with respect to the fixed
instance xi is defined as:

A(N(xi )) = 1

m

m∑

j=1

min
l �=j

‖xij − xil‖2. (5)

Ideally, a neighborhood N should have a low value of
cohesion C(N(xi )) and a high value of adhesion A(N(xi )).
Finding such a neighborhood becomes a multi-objective
optimization problem involving minimising C(N(xi )) and
maximising A(N(xi )) simultaneously, given a discrete
set of candidate neighborhoods. In order to solve the
multi-objective optimization problem efficiently, a simple
approach is to combine the different objectives into a sin-
gle aggregate objective function. The pre-requisite for such
a solution would be to know the scale of both objectives, so
that they can be combined into a formula with each objec-
tive having equal weight. The following text explains the
method proposed to combine adhesion and cohesion into a
single quantity S(N(xi )).

In an ideal scenario, the neighbors of the reference
point xi would be chosen such that they have equal cohe-
sion contribution and form a m−sided regular polygon.
The problem is extended to placing m points in an ideal
configuration on a d-dimensional hyper-sphere such that
the adhesion value A(N(xi )) of the reference point xi

is maximized. This is an open problem in mathematics
(Croft et al. 1991).

Since there is no optimal solution to the problem of plac-
ing m points on a d-dimensional hypersphere (Saff and
Kuijlaars 1997), a subproblem with a known solution is
considered. This concerns the special case when m = 2d.
Intuitively, for a one-dimensional case, m = 2 and the con-
figuration will involve placing one point on either side of
the reference point x. In the two-dimensional case, m = 4
and the points will form a square around the reference point.
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For d−dimensions, the optimal configuration is a d-cross-
polytope (Cohn and Kumar 2007) which contains all points
obtained by permuting the d coordinates:

(±1, 0, 0, ..., 0)

(0, ±1, 0, ..., 0)
...

(0, 0, 0, ..., ±1).

The cross-polytope configuration maximizes adhesion
(Cohn and Kumar 2007).

The cross-polytope ratio Having established that for
points lying on a hyper-sphere, the cross-polytope is the
optimal configuration which maximizes adhesion, it can
be inferred that any given neighborhood with cohesion
C(N(xi )) must always have an adhesion value A(N(xi ))

lower than that of the cross-polytope with radius C(N(xi )).
For a cross-polytope, the distance between points is

√
2

times the distance from the origin (the reference point) for
any dimension higher than 1. This implies that

√
2C(N(xi ))

is the absolute upper bound for adhesion value of any neigh-
borhood with cohesion C(N(xi )). Therefore, the following
measure R(N(xi )) can be used to gauge how closely a
neighborhood resembles a cross-polytope:

R(N(xi )) =
{

A(N(xi ))√
2C(N(xi ))

, d > 1

1 − |xi1+xi2||xi1|+|xi2|+|xi1−xi2| , d = 1.
(6)

The exception for the one-dimensional case is due to the
fact that the distance of the two points from each other is
twice the distance from the reference point (Crombecq et al.
2011a).

A neighborhood score that combines adhesion and cohe-
sion can be used to assign scores to neighborhoods:

S(N(xi )) = R(N(xi ))

C(N(xi ))
. (7)

This measure will prefer neighborhoods that lie close to the
reference point xi and resemble a cross-polytope. S can be
used as a criterion to choose N for all instances. The neigh-
borhood score thus is a single quantity which captures the
desired balance of adhesion and cohesion mentioned above.

After such a neighborhood is constructed, the class dis-
agreement χ corresponding to the sample xi belonging to
the neighborhood N is calculated according to the formula:

χ(xi ) =
{
1, α > 1,
0, α = 1.

(8)

where (1 ≤ α ≤ K) is the number of unique class labels in
N . An observation with a higher value of χ is surrounded

by samples having differing class labels, and needs to be
sampled more intensely as it is located along the class
boundaries.

Algorithm 1 Pseudocode for the exploitation component of
the Neighborhood-Voronoi sequential sampling algorithm.

consists of all points processed by the algorithm previ-
ously. is the set of points selected by the algorithm in
the previous iteration which are yet to be processed. is the
number of new samples to be selected by the algorithm.

for all x do
for all x do

Evaluate membership of x for neighborhood
x of x

Evaluate membership of x for neighborhood
x

Update class disagreement information for x and
x

end for
x

end for
for all x do

Calculate class disagreement score for x
end for
Identify neighborhoods corresponding to highest ranked
samples in
Select new samples in these neighborhoods

Algorithm 1 describes the pseudocode of the exploita-
tion component of the Neighborhood-Voronoi algorithm.
The algorithm begins by updating the state of the samples
selected by the algorithm in the previous iteration. Each new
sample xδ is considered as a candidate neighbor for each
processed sample x and vice-versa. The class disagreement
scores for these samples are then updated according to Eq.
8. After processing all previously unprocessed samples, the
metric χ is calculated for each sample in X which reflects
the exploitation score of the sample in question. Finally,
each of the neighborhoods corresponding to the top δ sam-
ples ranked according to χ are chosen to generate a new
sample.

4.2 Exploration

The exploration component identifies regions in the
input space that are prone to under-sampling, or under-
representation. Such regions have a low density of points
and a mechanism to identify these regions is required.
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A Voronoi tessellation is a well-known way to partition
a space based on density (Aurenhammer 1991). Assuming
that our training set X ⊂ X in Euclidean space, the Voronoi
cell Ci ⊂ X of the point xi contains all points in X which
lie closer to xi than any other point in X. The Voronoi tes-
sellation corresponding to X consists of all Voronoi cells
{C1, C2, ..., Cn} which tessellate the complete space X .
To define Voronoi cells formally, the notion of dominance
(Aurenhammer 1991; Crombecq et al. 2011a) is used.

Dominance Given two distinct instances xi , xj ∈ X , the
dominance of the instance xi over the instance xj is defined
as the subset of the plane being at least as close to xi as it is
to xj (Crombecq et al. 2011a):

dom(xi , xj ) = {x ∈ X | ‖x − xi‖2 ≤ ‖x − xj‖2}. (9)

The plane dom(xi , xj ) is half-closed, bounded by the per-
pendicular bisector of xi and xj . The bisector is called the
separator of xi and xj which separates all points inX closer
to xi as opposed to xj . The Voronoi cell Ci corresponding
to the instance xi is the part of the design space X with is
dominated by xi over all other instances in X:

Ci =
⋂

xj ∈X\{xi }
dom(xi , xj ). (10)

Figure 2 shows the Voronoi tessellation of a set {xi}10i=1 of
randomly generated instances. The test instance p is closer
to x4, and so are all points in X in the Voronoi cell corre-
sponding to x4. It is also apparent from Fig. 2 that larger
Voronoi cells correspond to regions in the design space that
are sampled more sparsely. To fully explore the design space
X , new samples should be chosen in Voronoi cells with a
large volume. For example, generating a new sample point
or instance in the Voronoi cell corresponding to x3 will be
more beneficial in terms of space-fillingness as compared to

sampling the Voronoi cell corresponding to the instance x8.
Therefore, a way to compute the hypervolume of Voronoi
cells is required in order to compare them.

Voronoi tessellations are geometric duals of Delaunay tri-
angulations. The Voronoi tessellation of a set of points X

can be obtained from the Delaunay triangulation of X in
O(n) time (Aurenhammer 1991). Computing the volume of
Voronoi cells is harder, since the Voronoi cells near the bor-
der of X are unbounded. These Voronoi cells will therefore
have infinite volume. Hence, the border-lying Voronoi cells
must first be bounded before their volume can be computed.

Algorithm 2 Pseudocode for the exploration component of
the Neighborhood-Voronoi sequential sampling algorithm.

consists of all points that have to be ranked by the
algorithm according to their respective Voronoi cell size.

random points
0, 0, ..., 0

for all t do

for all x do
if x t then

x x
x t

end if
end for

x x 1

end for

As this is complex, the volume of Voronoi cells is
approximated using a Monte Carlo approach described in
Algorithm 2, since only the relative differences in volume
of the Voronoi cells are important, and computing the exact
volume is computationally very expensive. Additionally,
exact computation of Voronoi volumes becomes infeasible

Fig. 2 The bounded Voronoi
tessellation of a set of points
{xi}10i=1. The test point p lying in
the Voronoi cell corresponding
to x4 lies closer to x4 than any
other point
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above 6 dimensions (Crombecq et al. 2009). A large number
of random uniformly distributed test samples T = {tl}Ll=1
are generated in X . The minimum distance between each
test point tl and existing instance xi is calculated. The test
point is then assigned to the instance closest to it. By hav-
ing enough test points, it is possible to estimate the volume
of each Voronoi cell. The reader is referred to Crombecq
et al. (2011a) for details of the algorithm to approximate
the hypervolume of each Voronoi cell. Although distance
computation will be adversely affected by the effect of dis-
tance concentration in high-dimensions, the Neighborhood-
Voronoi algorithm is limited to 5–6 dimensional problems
where these affects are not as strong (Beyer et al. 1999;
Kabán 2012).

The exploration metric ψ of an instance xi is defined as
the ratio of the estimated volume of Voronoi cell Ci contain-
ing xi with respect to the combined volume of all Voronoi
cells in the design space X :

ψ(xi ) = Vol(Ci)

Vol(C1) + Vol(C2) + ... + Vol(Cn)
. (11)

A higher value of ψ(xi ) implies that the corresponding
Voronoi cell Ci is large, whereas a smaller value of ψ(xi )

implies that Ci is smaller. The sampling algorithm should
focus on cells with a higher value of ψ since they might be
under-sampled.

4.3 Combining exploitation and exploration score

Algorithm 3 Pseudocode for the Neighborhood-Voronoi
sequential sampling algorithm. is the number of new
samples to be selected by the algorithm

for all x do
Compute x
Compute x
Compute final ranking x x x

end for
Sort according to
for 1 to do

x generate a sample near x farthest from other
samples

x
end for

After obtaining the two metrics χ and ψ for exploitation
and exploration respectively, the algorithm (Algorithm 3)
assigns a combined score � for each existing sample x ∈ X

as:

�(x) = χ(x) + ψ(x). (12)

The algorithm ranks all samples inX in order of howwell
each sample ranks in exploitation and exploration according

to the criterion �. The top δ samples in X are then selected
and a new point is generated near each of these samples such
that the generated point is as far away from other existing
samples as possible (maximizing the minimum distance to
other existing samples).

Although the combination scheme described above
assigns equal weights to exploration and exploitation, it is
possible to vary the contribution of each depending upon the
characteristics of the problem at hand. Possible balancing
schemes that can be used are ε−greedy and ε−decreasing

as proposed in Singh et al. (2013a).
In the ε-greedy scheme, a user-specified tuning parame-

ter ε ∈ [0, 1] decides the proportion of purely exploration-
based sampling iterations. The remaining proportion of 1−ε

sampling iterations is purely exploitation-based. In each
iteration, a random number α is generated according to a
uniform distribution. If α < ε, then the current sampling
iteration consists of pure exploration. If α ≥ ε, then the
current sampling iteration consists of pure exploitation.

The ε-decreasing variant is similar to ε-greedy strategy,
but for the choice of the parameter ε. The initial value of ε

can be user defined (or a default of 1), and decreases over
proceeding sampling iterations. Therefore, it is possible to
start with only exploration, which progressively decreases
and makes way for increasing exploitation. This is intuitive
since it is desirable to perform more exploration up-front
when little is known about the design space. With time, as
more information is obtained, performing more exploitation
may be beneficial.

5 Examples

5.1 Example: non-linearly separable classification
problem

A Gaussian function centered at (x′
1, x

′
2) = (0, 0) having a

standard deviation σ = √
5 is defined as:

f (x) = exp
−

(
(x1−x′

1)2+(x2−x′
2)2

σ2

)

,

dom(f (x)) = {x1, x2 ∈ [−5, 5]},
where x = {x1, x2}. The problem involves finding the
region in the input space which corresponds to function
values within 50 % of the highest possible function value
(fmax = 1). The classification problem is defined as:

yi =
{
1, f (xi ) ∈ [0.5, ∞),

0, f (xi ) ∈ (−∞, 0.5).

A classifier is trained over instances obtained according
to a Latin Hypercube design of b = 15 points (including
the corner points of the design space). The Neighborhood-
Voronoi sequential sampling algorithm is used to select
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Fig. 3 Non-Linearly Separable
Classification Problem: The
sampling performed by the
Neighborhood-Voronoi
algorithm for the Gaussian
function. The black circle is the
true class boundary. The learned
positive class is represented by
the white region, while the
learned negative class is
represented by the grey region.
The dots are the instances in the
training set for that particular
iteration

(a) (b)

(c) (d)

additional samples iteratively in batches of δ = 10 each. The
total number of function evaluations allowed is n = 205.
For the sake of visualization, a Support Vector Machine
(SVM) classifier is built based on the outcome of the
proposed sampling strategy. All experiments have been per-
formed using the SUrrogate MOdeling (SUMO) toolbox
(Gorissen et al. 2010) for MATLAB, running on a MacBook
Pro machine with 16 GB RAM and a 2.4 GHz Intel Core
i5 processor. The operating system is OS X El Capitan. The
SUMO toolbox is freely available for personal academic use
at http://www.sumo.intec.ugent.be.

The well-known LIBSVM implementation (Chang and
Lin 2011) is used for all experiments in this paper. The
radial basis function (RBF) kernel is chosen for its over-
all performance and the hyperparameter are optimized
using the DIRECT (DIviding RECTangles) (Jones 2001)
algorithm.

The results of applying the Neighborhood-Voronoi algo-
rithm can be seen in Fig. 3. There is a large discrepancy
between true and learned class boundaries in the initial
iterations. In subsequent iterations, the classifier bound-
ary is refined by selecting samples near the boundary. The
accuracy of the classifier over 200 randomly generated
test points was 98 % with Precision and Recall being 1
and 0.98 respectively. The evolution of classifier accuracy

with increasing number of training instances over a static
set of test instances can be seen in Fig. 4. The accuracy
rises rapidly between 35 and 65 training samples, after
which it begins to stabilise. Figure 4 also shows a com-
parison with random sampling. It is observed that random

Number of training instances
0 50 100 150 200 250

A
cc
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y 
(%

)

91

92

93

94

95

96

97

98

99

100

Accuracy for Neighborhood-Voronoi sampling
Accuracy for Random sampling

Fig. 4 Non-Linearly Separable Classification Problem: The evolution
of classifier accuracy with respect to number of training instances.
The results are averaged over 50 separate runs. The bars correspond to
confidence intervals with each bar being 2 ∗ stdev(accuracy) long

http://www.sumo.intec.ugent.be
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Fig. 5 Non-Linearly Separable
Classification Problem with
noise: The sampling performed
by the Neighborhood-Voronoi
algorithm for the Gaussian
function with added noise. The
black circle is the true class
boundary. The learned positive
class is represented by the white
region, while the learned
negative class is represented by
the grey region. The dots are the
instances in the training set for
that particular iteration

(c) (d)

(b)(a)

sampling climbs in accuracy quickly, but the balanced sam-
pling properties of the Neighborhood-Voronoi algorithm
make sure it outperforms random sampling consistently.
The initial lethargy can be attributed to too few samples
being near the actual boundary in the initial iterations.
As sampling progresses, the uncertainty near the boundary
decreases and accuracy of trained classifier improves. This
is reflected in tighter confidence intervals corresponding to
the Neighborhood-Voronoi algorithm in Fig. 4 towards the
end. The expected accuracy of the classifier trained using
the Neighborhood-Voronoi algorithm is higher, and the vari-
ance of the accuracy over several runs is smaller than that
corresponding values associated with random sampling.

5.2 Effect of noise

In case of stochastic computer experiments, the effect of
noise must be taken into consideration. In order to study
how noise affects the algorithm, random Gaussian noise
with zero-mean and standard deviation of 0.2 is added to the
previous example. It can be seen in Fig. 5 that the nature
of the sampling is unaffected and robust, although the noise
will inevitably lead to accuracy loss when the data is used

to build a classifier. The accuracy of the resulting classi-
fier over 200 randomly generated test points was 94.35 %
with Precision and Recall being 0.9522 and 0.9891 respec-
tively. From the sampling behavior depicted in Fig. 5 it can
be inferred that the dip in accuracy, Precision and Recall is
due to the noise in the data rather than inefficacy of the sam-
pling algorithm. The algorithm avoids zooming in on noisy
areas, as it causes corresponding Voronoi cells to become

Fig. 6 The Nowacki Beam Problem
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Table 2 Nowacki Beam Problem: Problem Definition

Min
b,h

A, σB s.t. δ ≤ 5mm

σB ≤ σY

for 20 mm < h < 250 mm τ ≤ σY /2

10 mm < b < 50 mm h/b ≤ 10

FCRIT ≥ f × F

increasingly smaller, leading to lower ψ(x) and χ(x) scores
in Eqs. 11 and 12.

5.3 Example: Nowacki beam problem

A constrained multi-objective optimization problem
described by Nowacki (1980) is now considered. The aim is
to design a tip-loaded encastre cantilever beam (Fig. 6) min-
imizing the cross-sectional area and bending stress subject
to certain constraints. In order to achieve the goal, the prob-
lem of finding regions of feasibility must be solved first.
The rectangular beam has length l = 0.5 m and is subjected
to a tip-load F = 5 kN. The design variables are the height
h and breadth b of the beam. The optimization problem can
be formulated as described in Table 2, with A = b×h being
the cross-sectional area of the beam, σB = 6F l/(bh2) the
bending stress, δ = F l3/(3EIY ) the maximum tip deflec-
tion, σY the yield stress of the material, τ = 3F/(2bh)

the maximum allowable shear stress, h/b the height-to-
breadth ratio, and FCRIT = (4/l2)

√
GIT EIZ/(1 − ν2)

the failure force of buckling. Here, IT = (b3h + bh3)/12,
IZ = b3h/12, IY = bh3/12, and f is a safety factor of two.
The material under consideration is mild steel with yield
stress σY = 240 MPa, Young’s modulus E = 216.62 GPa,
ν = 0.27 and shear modulus G = 86.65 GPa.

Instead of finding the optima, the problem of finding the
region of feasibility in the design space meeting all con-
straints is considered. This can be also seen as an inverse
problem of finding a region (quasi-optimal region) in the
design space corresponding to desired (known) output. For
complex problems, a practitioner might find it useful to
find a small region in the design space containing possi-
ble solutions first, and concentrating future efforts in only
that region. This kind of domain reduction can be very
useful (Spaans and Luus 1992) while solving expensive con-
strained optimization problems. Finding the feasible region
efficiently will save the practitioner a lot of time and effort.

The problem of finding the feasible region is solved using
adaptive classification. The problem can be cast as a classi-
fication problem with the class label yi assigned to instance
xi = (b, h) as:

yi =
⎧
⎨

⎩

1, δ ≤ 5mm; σB ≤ σY ; τ ≤ σY /2;
h/b ≤ 10; FCRIT ≥ f × F,

0, otherwise.

An Artificial Neural Network (ANN) classifier available
from the WEKA data mining software (Hall et al. 2009),
and a SVM classifier were used to model the constrained
problem. The initial design was a Latin Hypercube of 20
instances. The Neighborhood-Voronoi sequential sampling
algorithm was used to select 10 new samples in each iter-
ation and the total number of allowed function evaluations
was 200.

The result can be seen in Fig. 7a. It is observed that
samples have been selected densely along the edge of
the feasible region, which is desirable (Schoenauer and
Michalewicz 1996). Also, the algorithm spreads exploita-
tion samples evenly across the boundary, which is prudent
since nothing can be assumed about how well the model is

(a) (b)

Fig. 7 Nowacki Beam Problem: The comparison of sampling performed by the Neighborhood-Voronoi and EDSD algorithms. The sampling
budget is set to 200 points
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Table 3 Nowacki beam problem: Classifier test performance

Run Algorithm Classifier # samples Precision Recall Accuracy (%) Time

Test Set 5-fold CV

1 Neighborhood-Voronoi ANN 200 0.9859 0.9861 98.65 98.6 120.02

2 Neighborhood-Voronoi SVM 200 0.9962 0.9954 99.60 98 361.15

3 EDSD SVM 200 0.9993 0.9994 99.93 84 2515.82

approximating the boundary. In the ideal scenario, the algo-
rithm should assign more samples to regions where the class
labels are changing more rapidly, i.e., the leftmost tip of the
gray shaded region in Fig. 7a. The final classifier built using
200 samples has an accuracy of 99.6 %, precision of 0.9962
and recall of 0.9954.

As a comparison, the state-of-the-art EDSD algorithm is
also applied to obtain the feasible region of the Nowacki
beam problem. The implementation used is from the
CODES toolbox1 (Lacaze and Missoum 2015). The ini-
tial design was a Centroidal Voronoi Tessellation (CVT)
of 20 points matching the size of LHD used in case of
the Neighborhood-Voronoi algorithm. The sampling budget
was also set to 200 points to match the experimental settings
described above. All other parameters of the algorithm were
left at their default values.

Table 3 compares the results obtained using the
Neighborhood-Voronoi algorithm and the EDSD algorithm
on a separate test set of 4900 samples in addition to 5-fold
cross-validation. The cross-validation accuracy of EDSD is
lower than Neighborhood-Voronoi owing to the distribution
of selected samples. A vast majority of samples are selected
very near (or at) the decision boundary, where the classifier
is more prone to misclassify test samples. Using cross-
validation runs the risk of the estimated accuracy being
prone to the distribution of samples. The excellent perfor-
mance of EDSD on a separate validation set (uniformly
distributed) reaffirms this notion and demonstrates the good
global performance of the model.

It can be seen that both EDSD and Neighborhood-
Voronoi algorithms lead to models with comparable vali-
dation accuracy. The Neighborhood-Voronoi algorithm pro-
vides faster sampling, but marginally less accurate models.
The difference in accuracy can be attributed in part to the
presence of the purpose-designed exploration component
in the sampling process, while the EDSD algorithm relies
predominantly on the initial design for exploration. EDSD
exhibits very aggressive exploitation (Fig. 7b) that leads to
a very accurate characterization of the decision boundary.
Since a part of the sampling budget of Neighborhood-
Voronoi goes towards exploration, the model accuracy

1http://codes.arizona.edu/toolbox/

improvement is comparatively slower. Since both algo-
rithms were run with their default settings, the running times
mentioned in Table 3 reflect the time taken in a typical run.
Different hyperparameter combinations might yield faster
or slower running times.

Although the exploration component of the
Neighborhood-Voronoi algorithm may lead to slower
improvement in accuracy, it ensures that unknown feasible
regions will be found if given enough sampling budget. The
following example illustrates the importance of exploration.

5.4 Example: disconnected feasible regions

The problem of finding feasible regions becomes challeng-
ing when the area occupied by feasible regions is very
small in comparison to the entire design space. Problems are
compounded if there are multiple disjoint feasible regions
forming islands in the design space.

Consider the modified Branin function (Sasena 2002) of
the form:

Min f (x) = −(x1 − 10)2 − (x2 − 15)2,

s.t. g(x) =
(
x2 − 5.1

4π2
x2
1 + 5

π
x1 − 6

)2

+10
(
1 − 1

8π

)
cos x1 + 10 ≤ 5.

The problem translated to the following classification prob-
lem with the class label yi assigned to instance xi as:

yi =
{
1, g(xi ) ≤ 5,
0, otherwise.

The Neighborhood-Voronoi and EDSD algorithms are
used to solve for the constrained design space represented
by g(x). In order to illustrate the need for exploration, a
small initial design of 10 points in the form of a CVT is
used. The same initial design is used with both algorithms
to ensure a fair start for the sampling process. The sampling
budget is set to a total of 200 points.

The results are shown in Fig. 8. Since the initial design
missed two of the three feasible regions, the EDSD algo-
rithm had no means to reach the two distant islands. The
EDSD algorithm incorporates local exploration on and
around the decision boundary but lacks a global exploration
component. The Neighborhood-Voronoi algorithm was able

http://codes.arizona.edu/toolbox/
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(a) (b)

Fig. 8 Modified Branin Function: The comparison of sampling per-
formed by the EDSD and Neighborhood-Voronoi algorithms. The
initial design common to both algorithms consisted of 10 points that

did not cover the two feasible regions at the bottom. The sampling
budget is set to 200 points

to identify all three feasible regions owing to Voronoi-
based global exploration, even though the initial design had
missed two regions. This can be critical in problems where
the feasible regions occupy a small area of the design space,
and the initial design is not large enough to cover all feasible
regions.

Indeed, the exploration component eliminates the need
to carefully choose the size of the initial design and allows
for automatic sequential coverage of the design space. The
EDSD algorithm works very well in quickly refining SVM
classifier boundaries, but will struggle in such scenarios and
can also benefit from incorporation of a global exploration
component.

5.5 Example: optimization of a GPS antenna

Finally, a 5-dimensional classification problem is consid-
ered. Consider a textile microstrip probe-fed compressible
GPS patch antenna (Vallozzi et al. 2009) shown in Fig. 9.
The antenna consists of a square patch with two truncated
corners glued on a flexible closed-cell expanded rubber pro-
tective foam substrate. The patch is fed in the top right
corner by a coaxial probe, exciting a right hand circular
polarization. The nominal characteristics of the substrate are
relative permittivity εr equal to 1.56, loss tangent tanδ equal
to 0.012 and thickness h equal to 3.94 mm.

The optimization of the design of such a GPS antenna
is a nontrivial task, as multiple constraints have to be satis-
fied. First, the antenna has to comply with the requirements
of the GPS-L1 standard. Therefore, its return loss |S11| has
to be lower than −10 dB and its axial ratio AR (defined
as the ratio between the amplitudes of the orthogonal com-
ponents composing the circularly polarized field) has to

be smaller than 3 dB in the [1.56342,1.58742] GHz fre-
quency band. Second, the fulfilment of these criteria has
to be achieved without sacrificing the directive gain of the
antenna, which is of paramount importance for its cor-
rect operation. Moreover, since the antenna is simulated by
means of the Keysight’s ADS Momentum 2012–08 full-
wave solver, the whole process is expected to be very
time consuming. Each simulation takes approximately one
minute on an Intel Core i5 machine with 4 GB RAM.

Therefore, the Neighborhood-Voronoi algorithm is
applied to find the feasible region of the considered design
with respect to specified constraints over the objectives

Fig. 9 GPS antenna: topview and cross-section of textile microstrip
probe-fed GPS patch antenna
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|S11|, boresight AR and boresight Gain in the GPS-L1
frequency band. More specifically, the objectives of the
optimization are minimizing |S11|max and ARmax, and max-
imizing Gain. The constraint satisfaction problem is formu-
lated as the following classification problem with the class
label yi assigned to instance xi as:

yi =
{
1, (ARmax < ARlim, |S11|max < |S11|lim),

0, otherwise,
(13)

where the limits ARlim and |S11|lim are dictated by the
GPS-L1 standard, being 3 dB and −10 dB, respectively.
ARmax, |S11|max and Gainmin are the maximum and the
minimum values, respectively, at operating frequencies
1.56342 GHz, 1.57542 GHz and 1.58742 GHz. Each point
is a 5-dimensional vector xi = {Li, Wi, ci, xi

f , yi
f } corre-

sponding to a realization of the GPS antenna under study,
and is simulated in Keysight’s ADS Momentum 2012–08
to obtain the values of |S11|, boresight AR and boresight
Gain. Consequently, the class label yi is assigned to xi based
on the simulated values (13). The geometric parameters are
varied within the following ranges:

72.6 mm < Lpatch < 75.2 mm,

69.2 mm < Wpatch < 71.5 mm,

6.5 mm < xf < 9.7 mm,

13.8 mm < yf < 16.4 mm, and

3 mm < c < 6 mm.

The initial design is a Latin Hypercube of 300 points
in 5 dimensions, in addition to the 32 corner points of the
design space. The Neighborhood-Voronoi algorithm selects
5 new points in each iteration until a simulation budget of
500 simulations is exhausted.

The resulting feasible region in the output space can be
seen in Fig. 10. The Neighborhood-Voronoi algorithm sam-
pled the 5D input space in order to characterize the feasible
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Fig. 10 GPS antenna: feasible region in the output space of the GPS
antenna design problem

region. The algorithm selected 28 points within the feasi-
ble region, and the rest outside. The total running time of
7 h and 4 min included approximately 6 h and 45 min spent
performing simulations.

The resulting model can be used to quickly test if a given
combination of input parameters satisfies the requirements
of the L1-band GPS standard almost instantaneously. This
is a gain of an order of magnitude over performing a simu-
lation (< 1 s versus 45 s). Such models aid the practitioner
in performing design space exploration and expedite the
design process.

6 Conclusion and future work

Many design and optimization problems in engineering
involve training of a classification model based on com-
putationally expensive simulation data. A novel sequential
sampling strategy for training classification models is pre-
sented in this paper that minimizes the number of training
points needed to obtain an accurate classifier. The novel
sequential sampling algorithm is compared to state-of-the-
art algorithms and illustrated on several non-linear analyti-
cal examples and on a structural design problem. Although
only binary classification problems are discussed as exam-
ples for the purpose of exposition, the proposed algorithm
functions as described for multi-class classification prob-
lems as well. The algorithm is scalable till approximately
5–6 dimensions, beyond which the running time prolongs
considerably (van der Herten et al. 2015). Future work
involves exploring fuzzy theory-based approaches to extend
the algorithm towards handling problems having upto 10
input dimensions.
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