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Abstract Structural designs proposed by engineers aim
to ensure that specific defined requirements are satisfied.
Structural optimization is also widely used to identify an
admissible design with optimal performance. However, it
is important to remember that real mechanical problems
exhibit uncertainties in practice that might entail challenges
when searching for admissible and/or optimal design solu-
tions. One objective of this paper is to discuss the possible
formulations of design problems in this type of uncer-
tain context. By considering uncertainties in the constraint
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and/or objective functions underlying design problems, sev-
eral design strategies might in fact be implemented. Espe-
cially, this paper should contribute to clarifying the use of
the concepts of robustness and reliability in design. After
an introduction, the featured design strategies are illustrated
and discussed via three academic examples which involve
multiple random and design variables. Results show that
the structural solutions obtained can be quite sensitive to
the formulation of the problem. Thus, the latter should be
considered as an essential step during the design procedure.

Keywords Optimization · Design · Robustness ·
Reliability

1 Introduction

During the design of a structure, engineers need to guar-
antee that it is able to sustain the loads exerted by its
environment. Analytical formulas or numerical models may
be used to assess the behavior of a structure and determine
whether a particular design is admissible (see e.g. Roy and
Chakrabarty 2009; Al Nageim et al. 2010). Parameters such
as the dimensions of the structure may be adapted by the
designer to prevent failure, and the identification of a set of
suitable design variables is also referred to as sizing in this
contribution.

Structural optimization is widely used by engineers
(Gallagher 1973; Haftka and Gürdal 1992). A perfor-
mance (resp. cost) metric is defined and subsequently
maximized (resp. minimized) using appropriate algorithms.
Constrained optimization provides an appropriate frame-
work to include engineering requirements, and the proce-
dure identifies the optimum from among the admissible
solutions. Structural optimization has been applied with
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success to solve academic as well as industrial problems
(Sobieszczanski-Sobieski and Haftka 1997; Shin et al. 2002;
Ermolaeva et al. 2004; Mrzyglod and Zielinski 2006).

Several parameters can be affected by uncertainties
which may be caused by a lack of knowledge about the
operating conditions, since little information is available in
the early design stage. Other parameters may show inher-
ent scatter, and cannot be reduced to a deterministic value
(such as, for example, seismic loading, lack of repeata-
bility in manufacturing processes, etc.). Such uncertainties
are often dealt with by introducing simplifying hypotheses,
for instance using safety factors, considering only average
or extreme values, etc. However, such approaches do not
enable us to fully capture the variability of the random
parameters, and the outcome of a deterministic optimization
may be highly sensitive to minor changes in the parameter
values. For instance, Guest and Igusa (2008) showed that
the consideration of uncertain nodal location and loads may
considerably modify the outcome of a topology optimiza-
tion. Thus, uncertainties should be explicitly accounted for
in order to guarantee that optimal performance is achieved.

In many papers on optimization under uncertainty avail-
able in the literature, the emphasis is laid on the implemen-
tation of efficient numerical procedures (see for instance
Valdebenito and Schuëller 2010a), whereas the focus of the
present contribution is on the formulation of the problem,
i.e. the strategy used to translate engineering requirements
into a formal mathematical problem. This paper actually
aims to provide a clear and precise synthesis of design for-
mulations commonly discussed in the literature. Implied
notions such as robustness and reliability are thus defined
and clarified. The problem formulation is effectively a

crucial step of design procedure since results depend sig-
nificantly on these formulations. This paper also introduces
methodologies to adapt a deterministic design problem to
a design in uncertain conditions. Stochastic formulations
of the objective and constraint functions are described.
Robustness is habitually associated with the consideration
of uncertainties in the objective function, and reliability-
based optimization with the introduction of uncertainties
in the constraint functions. This classification presented in
Table 1 is based on an overview of the literature available
on the topic (see e.g. Doltsinis and Kan 2004; Jensen et al.
2009; Shahraki and Noorossama 2014).

The paper is structured as follows: Section 2 discusses
the general concepts of uncertainties, detailing their causes
and origins and the way they can be taken into account.
It also proposes our classification of design formulations.
Based on this classification, Section 3 presents three deter-
ministic design formulations. Section 4 introduces five for-
mulations for design under uncertainty. It also discusses
the concept of robustness and an approach to take it into
account. Three academic examples then compare the results
obtained from each formulation on problems involving dif-
ferent numbers of random and design variables in Section 5.
Finally, some conclusions are drawn in Section 6.

2 Design under uncertainty

2.1 Sources of uncertainty and their classification

During the design process engineers are likely to face sev-
eral uncertainties, since the latter might in theory affect any

Table 1 Different design approaches

Grey boxes take into account some uncertainties
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given quantity. In the mechanical engineering community,
it is common practice to separate them into two categories,
namely aleatory or random uncertainties and epistemic
uncertainties, see for example Beyer and Sendhoff (2007)
and Der Kiureghian and Ditlevsen (2009). On one hand,
aleatory or random uncertainties refer to those that can-
not be reduced by introducing additional data or improving
the modeling process. They therefore should be viewed as
inherent or intrinsic to the considered phenomenon and, as
Beyer and Sendhoff (2007) pointed out, “the designer has to
“live with them” and optimize his design according to this
reality”. Fluctuating loads due to the environment of oper-
ation, wind velocity, humidity and to some extent material
properties are often defined as aleatory uncertainties, i.e.
there is no means to control them. On the other hand, some
uncertainties are only due to a lack of knowledge of the
studied phenomenon or system behavior, and could there-
fore be reduced if some conceivable efforts are undertaken.
These are called epistemic uncertainties. In this category we
can include uncertainties associated with modeling errors
or imprecision (coming from the choice of particular math-
ematical models to describe the real behavior of physical
phenomena, knowledge regarding the boundary and opera-
tional conditions of such models, the adopted scheme for
resolution and numerical approximations), those involved
when measuring observations and those due to the statisti-
cal modeling of parameters (choice of probabilistic models
and evaluation of their parameters). From a philosophical
standpoint, most aleatory uncertainties could be converted
into epistemic ones if we could improve the knowledge
related to them and propose appropriate models. This means
that any given uncertainty could be considered either as
aleatory or epistemic depending on the “model universe”
selected by the engineer, as pointed out by Der Kiureghian
and Ditlevsen (2009). For example, uncertainties regarding
a material property could in fact be classified as aleatory,
due to their physical nature. However, they might potentially
be reduced with additional knowledge about the produc-
tion process (or if a better control is possible) and therefore
also be viewed as epistemic. Der Kiureghian and Ditlevsen
(2009) emphasize that the choice of such a classifica-
tion may have an impact in design, decision-making and
reliability related problems.

In a design framework, another classification for uncer-
tainties might be proposed, as suggested by several authors
(Chen et al. 1996; Allen et al. 2006; Rolander et al. 2006;
Beyer and Sendhoff 2007; Baudoui et al. 2012). From their
standpoint, uncertainties can be distinguished depending on
whether they can be acted upon or not in the design phase:

– Type I uncertainties are primitively linked to the envi-
ronment and conditions of use. The variables that show
this type of uncertainty are hereafter noted in the series

Pj (ω), j = 1, ..., m and stored in vector P(ω). They
do not play a role in the design procedure, i.e. they
are independent from it, and as such they are not
design variables. These variables can be known either
by characteristic values, noted P

(k)
i , or ranges of val-

ues described for example by probability distributions
obtained through measurements.

– System function uncertainties are those linked to the
evaluation of the performance (or output) of the system,
i.e. modeling, measurement and/or statistical uncertain-
ties. They were previously referred to as epistemic. In
this paper, these uncertainties are also gathered in vector
P(ω), i.e. with the type I variables.

– Feasibility uncertainties are associated with uncertain-
ties on the constraint functions, that is to say with the
design space. These uncertainties are also considered as
model uncertainties and grouped in vector P(ω).

– Type II uncertainties are those connected with the pro-
duction/manufacturing process. Geometrical variables
noted Xi(ω), i = 1, ..., n (and stored in vector X(ω))

are usually linked to this type of uncertainty. They are
part of the design variables which might affect the per-
formance of the system. In practice, the designer knows
their nominal values, noted X̄i , which he can modify
to some extent in order to obtain a reliable and robust
design.

2.2 Consideration of uncertainties in engineering

In the design process, two approaches can be used to take
uncertainties into account. The first approach consists of
converting each uncertain parameter into a reference value.
In this way the stochastic problem is transformed into a
deterministic problem. The so-called worst-case method
may be used to identify this reference value. Uncertain
parameters are assumed to be bounded, and for each vari-
able the bound associated with the worst scenario is iden-
tified. This method is commonly employed in tolerance
analysis (see e.g. Greenwood and Chase 1987; Scholtz
1995). For example, the quantity of material is minimized
(resp. maximized), and for each variable the bound associ-
ated with this configuration is identified. These two extreme
cases are often referred to as the maximum material con-
dition and the least material condition (see e.g. Simmons
et al. 2012). In tolerance analysis, the dimensions are uncer-
tain and the tolerance intervals are predefined. They provide
suitable bounds for each parameter. In general, the identi-
fication of appropriate bounds is a challenging issue. The
second method applicable to convert a random variable into
a deterministic parameter consists of multiplying or divid-
ing each uncertain parameter by safety factors. This method
is appropriate for unbounded variables as well. Indeed,
in design, resistance variables have to be reduced; these
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variables must hence be divided by safety factors, and load
variables have to be amplified and must be multiplied by
safety factors (see e.g. Faber and Sørensen 2002). However,
this method has limitations discussed in many references,
such as by Lemaire (2009). Alternative strategies are avail-
able in the literature to transform a stochastic problem into
a deterministic problem such as the Corner space evaluation
or the variation patterns formulation presented by Yao et al.
(2011).

The second approach consists of explicitly taking into
account uncertainties which are characterized by a mathe-
matical representation. It allows us to consider entirely the
variation in uncertain parameters and to propagate uncer-
tainties to the response of the structure. This approach
is more challenging than using a unique reference value
for each parameter, since it requires that uncertainties be
entirely modeled, which may necessitate much prelimi-
nary work to characterize each variable. Several approaches
may be employed to perform this characterization. The
probabilistic approach defines each uncertain variable by a
distribution function (such as normal distribution or Gum-
bel distribution) and its theory is detailed e.g. by Nowak and
Collins (2000). It is commonly used in mechanical design
(see e.g. Meng Li et al. 2015a). An alternative approach
is imprecise probability. The possibilistic approach defines
uncertain parameters by their possibility distributions, as
detailed e.g. by Zadeh (1978). This method has been bench-
marked by e.g. Inuiguchi and Ramı́k (2000) or Mousazadeh
et al. (2015). Another method is using fuzzy sets to charac-
terize uncertainties (see e.g. Dubois and Prade 1980). The
probabilistic approach may be used for aleatory uncertain-
ties and the imprecise probability approach for epistemic
uncertainties (see Pedroni et al. 2013). In the rest of this
paper, the probabilistic approach is used to consider explic-
itly all uncertainties.

2.3 Design requirements

In design processes, a mechanical system can be character-
ized by two different output functions, characterizing the
state of the system’s performance. First, the objective-type
functions f (X(ω), P(ω)) aim to quantify the performances
of the mechanical system. The goal of all optimizations
is to maximize the performances of the system (e.g. qual-
ity level) or to minimize the cost. A target value can also
be assigned to the objective functions. Other design-related
functions are the constraint-type functions g(X(ω), P(ω))

which must be satisfied in all operating conditions. In fact,
if these functions are not respected, the system is not func-
tional. it is frequent that these constraint functions must be
achieved as closely as possible in order not to degrade the
objective functions. The admissible space is written {X ∈
R

n | g(X(ω), P(ω)) ≥ 0}.

2.4 Proposed classification of design formulations

When designing, several strategies can be considered to
account for the uncertainties previously defined, which
leads to multiple design problem formulations and intro-
duces specific notions such as reliability and robustness.
Gang et al. (2015) proposed a classification of five design
problem formulations. Our classification is introduced in
Table 1, where the distinction is made by taking into account
uncertainties in the objective and/or the constraint functions.
Robustness is defined by the faculty of a system’s response
to be insensitive to small variations in system parame-
ters, and is thus associated with the objective function. A
deterministic optimization also needs to be admissible with
respect to the design requirements. When uncertainties are
taken into consideration, non-admissible solutions are tol-
erated as long as they remain rare. Reliability is therefore
associated with the constraint function; it characterizes the
ability of a system to ensure its functions in a given context.

Three possible states can be defined for each output
function: no function is used, a deterministic function is
employed or a function subject to uncertainties is consid-
ered. Nine combinations are thus introduced according to
the state of objective and constraint functions in Table 1.
Hence, reliability-based robust optimization takes into con-
sideration uncertainties in both output functions.

However, alternative definitions of the optimization
problem under uncertainty exist. For instance, the optimiza-
tion of maintenance schedules often associates reliability
with the objective function (see e.g. Kharmanda et al. 2002;
Valdebenito and Schuëller 2010b; Beaurepaire et al. 2012);
A. Beck and his co-workers introduced risk-based opti-
mization (Beck and de Santana Gomes 2012; Beck et al.
2015); performance-based optimization provides an alter-
native framework for the consideration of uncertainties in
structural design (see e.g. Möller et al. 2009; Beck et al.
2014).

The next sections detail each design problem formulation
presented in Table 1. Indexes of vectors X̄ are used to define
the design problem formulation to which they refer.

3 Deterministic design formulation

3.1 Admissible design - sizing

An admissible design space corresponds to a set of solutions
(e.g. nominal values) that respect constraints. The under-
lying design formulation is completely deterministic (1).

Find X̄Adm such that: g(X̄Adm, P(k)) ≥ 0 (1)

This scheme is very often used (e.g. in Strength of Mate-
rials) because of its ease of implementation and because it
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gives the admissible solution space. If we want to deal with
uncertainties in an implicit manner, the worst-case approach
or the safety factors presented in Section 2.2 can be used
beforehand to transform an initial stochastic problem into
such a deterministic problem.

3.2 Optimal design - optimization without constraint

Optimal design consists of optimizing an objective func-
tion which is not subject to constraints. This problem, which
does not take into account uncertainties, is formulated in (2).

Find X̄Opt such that: X̄Opt = arg max
X̄

f (X̄, P(k)) (2)

This design formulation, being an unconstrained optimiza-
tion, is not used for industrial problems since it can lead
to non-admissible solutions (see Section 3.1). Thus it can
be applied only for mathematical applications such as lin-
ear and non-linear regressions solved by the least-square
method. Many methods have been devoted to solving such
optimization problems and are detailed by e.g. Huang and
Lin (2014), Zhang and Ni (2015) or Andrei (2016).

3.3 Optimal and admissible design - optimization under
constraint

The formulations presented in Sections 3.1 and 3.2 are gen-
erally insufficient for designers. The combination of these
two formulations is more relevant and leads to the definition
of a design which is both optimal with respect to the objec-
tive function and admissible with respect to the constraint
functions (3).

Find X̄OptAdm such that:
X̄OptAdm = arg max

X̄
f (X̄, P(k))

Subject to (s.t.): g(X̄, P(k)) ≥ 0

(3)

This is a classic problem of optimization under constraint
without considering uncertainties, which is also called
deterministic constrained optimization. It can be solved by
a wide range of standard methods, detailed e.g. by Rao
(2009). Deterministic constrained optimization has been
widely used by engineers and may feature several strategies
such as topology optimization (Mei et al. 2008), shape opti-
mization (Ghabraie et al. 2010) and multidisciplinary and
structural optimization (see e.g. Lee et al. 2014).

4 Formulation of design in an uncertain context

4.1 Reliable design

Reliable design formulation (4) can be viewed as an
extension of the admissible design problem introduced in

Section 3.1. In this approach, uncertainties are explicitly
taken into account. They may be modeled by the prob-
abilistic approach briefly recalled in Section 2.2, thereby
leading to an assessment of the failure probability of a sys-
tem or structure and guaranteeing that it is below a given
threshold value Ptarget . X̄ denotes therefore the mean of the
probability distribution of X.

Find X̄Rel such that:
Prob

(
g(X(X̄Rel, ω), P(ω)) ≤ 0

) ≤ Ptarget
(4)

The failure probability threshold value may be fixed using
a risk-based approach (e.g. Rackwitz 2002) for which con-
sequences of failure are evaluated. In the case of major
impact failure events Ptarget needs to be very low, whereas
its value can be higher if failure events have minor
consequences.

4.2 Optimal and reliable design - reliability-based
design optimization

Optimal and reliable design formulation is the search for
a deterministic optimum, i.e. no uncertainties are involved
in the objective function but uncertainties in the con-
straint functions are explicitly considered, as described
in Section 4.1. This design, commonly named reliability-
based design optimization (RBDO), is formulated in (5) as
suggested by Vanmarcke (1973), Aoues and Chateauneuf
(2010), Shahraki and Noorossama (2014), Meng et al.
(2015b), and Meng et al. (2015a). In this paper, RBDO is
always associated with deterministic objective and proba-
bilistic constraints.

Find X̄OptRel such that:
X̄OptRel = arg max

X̄
f (X̄, P(k))

s.t.: Prob
(
g(X(X̄, ω), P(ω)) ≤ 0

) ≤ Ptarget

(5)

RBDO has been applied with success to solve industrial
problems. For instance Acar and Solanki (2009) optimized
the design of a car subjected to crashes. Obtained RBDO
solutions may be significantly different from those resulting
from optimization and admissible design problems. This has
been highlighted as well by Dubourg et al. (2011) and Beck
and de Santana Gomes (2012).

Reliability-based design optimization has been widely
discussed in the literature and alternative formulations are
proposed, such as those which consider uncertainties in both
objective and constraint functions (Nikolaidis and Burdisso
1988; Enevoldsen and Sørensen 1994; Gasser and Schuëller
1997; Schuëller and Jensen 2008; Xia et al. 2015).
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4.3 Robust design

Robust design formulation consists of maximizing the
objective function, which is affected by uncertainties, with-
out taken any constraints into account (6).

Find X̄Rob such that:
X̄Rob = arg max

X̄
�(X(X̄, ω), P(ω)) (6)

Industrial problems often include constraints which cannot
be considered in this formulation. Hence, (6) cannot be used
int this context. The choice of formulation for the robust
function is essential, since it can significantly modify the
result of the optimization. Many formulations can be used
for the robust function, from basic ones to more elaborate
formulas. Papadrakakis et al. (2005) suggested to consider
“an additional objective function which is related to the
influence of the random nature of some structural parame-
ters on the performance of the structure”. To perform this,
a multi-objective formulation (7) can be used (Mourelatos
and Liang 2006; Rathod et al. 2013).
⎧
⎨

⎩

Minimize E
[
f (X(X̄, ω), P(ω))

]

Minimize V ar
[
f (X(X̄, ω), P(ω))

] (7)

where E[◦] is the expectation and V ar[◦] is the variance.
One of the major disadvantages is that no compromise

is suggested. Indeed, the minimum of the first objective
function is not necessary on the minimum of the second
objective function. A Pareto front draws the whole possible
compromises between the two objectives. These compro-
mises are the points where if one of the two objectives is
improved the other will be worsened. Additional criteria
need to be introduced to select the optimum on the Pareto
front.

Another technique to formulate a robust objective func-
tion is the linear combination between the quality and the
variation of the performance. This is a method to transform
the multi-objective problem into a problem with only one
objective function, and can also be a technique to choose the
desired compromise on the Pareto front. Papadrakakis et al.
(2005) introduce a linear combination between the expecta-
tion (E[◦]) and the standard deviation (σ [◦]) of the initial
objective function (8).

φ(X̄) = λ × E[f (X(X̄, ω)), P(ω)]
+(1 − λ) × σ [f (X(X̄, ω)), P(ω)]

λ ∈ [0, 1] (8)

This formulation is only used when the function f must be
minimized; the robust function φ must therefore be mini-
mized. Other references (Du et al. 2004; Youn et al. 2005;
Lee et al. 2008; Yadav et al. 2010; Zaman et al. 2011) sug-
gest a few alternative formulations. The linear combination
is an easy formula to model the robust objective function.

Moreover, it enables designers to choose which parame-
ter (quality or variation) they want to highlight, since the
parameter λ is arbitrarily selected.

Trosset (1997) and Beyer and Sendhoff (2007) present
the Taguchi approach. The robustness of a system can be
measured by the loss of quality, quantified by Taguchi’s
Mean Square Deviation (MSD) function, defined by (9).

MSD(X̄) = E
[
(f (X(X̄, ω), P(ω)) − f̄ )2

]

� 1

p

p∑

j=1

(f (X(X̄, ωj ), P(ωj )) − f̄ )2 (9)

where f̄ is the system’s performance objective (defined by
the specifications) and f (X(X̄, ωj ), P(ωj )) are the product
performance measurements affected by uncertainties. The
MSD formula is different if the designer wants to mini-
mize, to maximize or to be as close to a target as possible.
All of these cases are introduced by Zang et al. (2005).
Taguchi’s approach is closely linked to that of experimental
design. Equation (9) contains a discrete sum of the results
of the available experiments. Equation (10) is an alter-
native continuous expression for Taguchi’s Mean Square
Deviation.

MSD(X̄) = σ 2(f (X(X̄, ω), P(ω))

+δ2(f (X(X̄, ω), P(ω)) (10)

where σ 2(f (X(X̄, ω), P(ω)) is the performance variance

and δ2(f (X(X̄, ω), P(ω)) = (
E(f (X(X̄, ω), P(ω)) − f̄

)2

is called the average shift, E(f (X(X̄, ω), P(ω)) being the
average performance of the system. To reduce the noise of
the response, the Signal-to-Noise-Ratio (SNR) defined in
(11) is used.

SNR(X̄) = −10log10(MSD(X̄)) (11)

One criticism concerns the fact that the same weight is
assigned to σ 2(f (X(X̄, ω), P(ω)) and δ2(f (X(X̄, ω), P(ω))

in the definition of MSD. Indeed, contrary to a linear com-
bination approach, it is not possible to modify the weight of
the quality parameter with respect to the variation param-
eter. This approach still enables us to have an indicator
of robustness in percentage terms. In fact, if the MSD is
divided by the target performance f̄ , the indicator will be
dimensionless.

In the next section, the robust objective function is noted
�(X(X̄, ω), P(ω)) and could be associated with any of the
functions defined in (8–11).

4.4 Robust and admissible design

As discussed by Otto and Antonsson (1991), the previous
formulation is generally insufficient for designers, the con-
straint functions being discarded. Robust and admissible
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design consists of searching for the solution that optimizes
the robust objective function subject to deterministic con-
straint functions (12). This formulation is also known as
feasibility robustness (Chen et al. 1996; Allen et al. 2006).

Find X̄RobAdm such that:
X̄RobAdm = arg max

X̄
�(X(X̄, ω), P(ω))

s.t.: g(X̄, P(k)) ≥ 0

(12)

This formulation involves uncertainties in the objective
functions but the constraint functions remain deterministic.
This allows us to obtain an optimum performance which
is rather insensitive with respect to moderate variations of
the variables. However, as the uncertainties in the constraint
functions are not accounted for, the failure probability of the
structure cannot be controlled.

4.5 Robust and reliable design

In this last formulation, uncertainties are taken explicitly
into account in both objective and constraint functions (13).
Solutions are both robust and reliable. This formulation is
sometimes called reliability-based robust design optimiza-
tion (RBRDO) (Lee et al. 2008; Yadav et al. 2010; Rathod
et al. 2013; Shahraki and Noorossama 2014).

Find X̄RobRel such that:
X̄RobRel = arg max

X̄
�(X(X̄, ω), P(ω))

s.t.: Prob
(
g(X(X̄, ω), P(ω)) ≤ 0

) ≤ Ptarget

(13)

This formulation might be viewed as the most complete
formulation since it allows to identify the design solution
which is insensitive to moderate fluctuations of variables
for objective and constraint functions (Du and Chen 2000).
Lee et al. (2008) apply the RBRDO formulation to solve
a problem involving a side impact on a car and compare
three methods which are the Dimension Reduction Method,
Performance Moment Integration and the Percentile Differ-
ence Method. Youn and Xi (2009) propose the eigenvector
dimension reduction method to solve the RBDO problem.

4.6 Numerical efforts of the consideration
of uncertainties

The consideration of uncertainties in design procedure
involves an increase of the computational efforts, as stochas-
tic simulations require numerous evaluations of a numerical
model. Optimization under uncertainty demands thus more
efforts than deterministic optimization. Trosset and Torczon
(1997) and Jin et al. (2003) have proposed efficient numer-
ical strategies to perform these optimizations. Generally
in the literature, research efforts about robust optimization
are geared towards the identification of appropriate robust-
ness criteria. In Reliability-based Design Optimization, the

numerical efforts are critical issues and multiple efficient
strategies are proposed in the literature (see for instance
Valdebenito and Schuëller 2010a, for an in-depth review).
The reference method to estimate probabilities is the Monte
Carlo method (see e.g. Caflisch 1998) as it converges
towards the exact solution. However, a large number of
evaluations of the numerical model are required, and the
numerical efforts become prohibitive. Some methods can be
employed to approximate the limit state such as the First
and Second-Order Reliability Method (see e.g. Du 2005)
with reduced numerical efforts. However, these methods are
based on significant assumptions and limitations have been
identified (see e.g. Rackwitz 2001). Two other schemes
allow the designer to reduce considerably design numeri-
cal efforts associated with the RBDO. First, the calculation
of the failure probability gradient can be coupled with a
gradient optimization algorithm (Royset and Polak 2004;
Valdebenito and Schuëller 2011) at this goal. Jensen et al.
(2009) show that this scheme provides a significant numer-
ical effort reduction. The second approach is the calibration
of a metamodel of the time-consuming model (involving
for instance a finite element analysis) to be able to evalu-
ate the performance function with reduced efforts (see e.g.
Papadrakakis and Lagaros 2002; Agarwal and Renaud 2004;
Jensen 2005; Echard et al. 2011; Bourinet 2016; Dı́az et al.
2016). Dubourg and Sudret (2014) propose a coupling of
these two approaches in their Meta-IS method.

Even though efficient advanced methods have been pro-
posed, stochastic design methods are much more time-
consuming than their deterministic counterparts.

5 Application examples

This section aims to implement and illustrate each design
formulation of the classification (Table 1) on three academic
applications, with different numbers of random variables
and design variables. The solutions obtained are then com-
pared and discussed, showing the crucial influence of the
formulation on the results.

5.1 Mathematical example

The first example studied is a mathematical application
based only on one parameter. The performance is here
defined by the following objective function, which is plotted
in Fig. 1:

f (X) = 9+6 exp(−14+X) sin(15−X)− 1

8
(8−X)2 (14)

This function is supposed to be maximized to increase the
performance of the system. The Nelder-Mead algorithm
(Nelder and Mead 1965) is used for the optimization. The
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Fig. 1 Results of the
mathematical application for
different design formulations

non-admissible and
non-reliable domain
non-reliable domain
objective function
target value

=

= =

Without target value

potential solutions are subjected to a constraint function
defined by (see Fig. 1):

g(X) = X − 5 (15)

This function must be positive to be admissible. Solutions
resulting from featured design formulations in Table 1 are
summarized in Table 2.

Deterministic design The admissible domain (Fig. 1) is
defined by the constraint function. All the nominal values X̄

verifying X̄ ≥ 5 are admissible. The deterministic optimum

of f (X) is obtained for X̄Opt = 14.04. This corresponds
to the global maximum presented in Fig. 1. This solution
is admissible regarding the constraint function; it is conse-
quently the solution for optimization under constraint which
corresponds to the optimal and admissible design.

Design in an uncertain context The variable X is now
considered to be uncertain and modeled by a Gaussian
distribution centered on its nominal value X̄ and with a
standard deviation σX = 1. A maximum target failure prob-
ability Ptarget = 0.1 is assumed. The reliable domain is

Table 2 Summary of results for the mathematical application
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therefore defined by the set of nominal values X̄ verifying
Pf (X̄) ≤ Ptarget , i.e. X̄ ≥ 5.7. The failure probabil-
ity is determined using Monte Carlo simulation with 106

samples.
The Taguchi’s Signal to Noise Ratio (11) is selected to

be the robustness metrics when uncertainties are considered
in the objective function. Two cases are studied. First, no
target value for the objective function is considered. In this
case the solution is X̄Rob = 7.93, corresponding to the local
maximum of the objective function. The difference with the
deterministic optimization is explained by the fact that the
deterministic optimum is on the highest peak. A little vari-
ation in the variable X here implies a large variation in the
system response f . The curve on the robust optimum is
smoother; the variation is thus weaker. In the second case, a
target value f̄ = 6 is assigned to the objective function; the
global optimum of the SNR function is now the solution, i.e.
X̄Rob = 3.42.

The three non-robust maximizations (deterministic
objective function) give the same result, i.e. X̄ = 14.04.
This maximum is in both the feasible and reliable domains,
and thus is not affected by the strategy used to con-
sider uncertainty in the constraint functions. The robust
design with the target value is not admissible with respect
to the deterministic and reliable domains. The admissible
and robust optimum corresponds to a second peak of the
SNR function which is a local optimum, i.e. X̄RobAdm =
X̄RobRel = 11.63. The robust and admissible solution falls
in the reliable domain, and is thus equal to the robust and
reliable solution. Explicitly modeling the uncertainties in
the constraint function here does not affect the result.

Even if this example is a mathematical application with
only one design variable, it shows the main differences

between the formulations and the influence of the choice of
formulation on the optimization results.

5.2 Application to a container

The second application used to highlight the effect of design
formulation on the solution is the study of a cylindrical con-
tainer (like a soft drink can). This container is defined by
a radius R and a height h and must be able to contain a
minimum of 33 cm3 whilst using a minimum of material.
The latter is metal sheet with the same thickness for the top,
bottom and sides. The constraint function is thus defined
by (16).

g(R, h) = V (R, h) − 33 = πR2h − 33 (16)

This function must be positive for the container to have
a sufficient volume. The two design variables (R, h) are
sought to minimize the quantity of container material. Thus,
the objective function (in grayscale in Fig. 2) is defined in
(17) by the area of sheet metal used.

f (R, h) = 2πRh + 2πR2 (17)

This function has to be minimized. The Nelder-Mead algo-
rithm is used for the optimization. As shown in Figs. 2 and 3,
the optimization problem is convex and the only local opti-
mum is the global optimum. Hence, the selection of the
optimization algorithm is not a critical issue in this particu-
lar example. However, for problems of greater complexity,
the optimization algorithm needs to be selected carefully, as
it may have an influence on the outcome of the optimiza-
tion procedure. The search of each design is bounded to
1 ≤ R ≤ 4 and 1 ≤ h ≤ 10 (cm) and results are given in
Table 3.

Fig. 2 Results for Container
test case objective function
(−f (R, h) to be maximized) in
grayscale
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Fig. 3 Results for Container
test case objective function
(−�(R, h) to be maximized) in
grayscale

Deterministic design The non-admissible domain is
defined by the constraint function (16) and corresponds to
designs which cannot contain 33 cm3. It is represented by a
hatched area in Fig. 2. The optimal design is the zero solu-
tion (R = 0 and h = 0) since no constraint is taken into
account; the quantity of material is obviously minimized
when no material is used. To best respect the constraint, the
optimal and admissible solution (R = 1.73 and h = 3.53)
is at the limit between the admissible and non-admissible
domains (see continuous curve Fig. 2).

Design in an uncertain context The variables R and h are
affected by type-II uncertainties and modeled by Gaussian
distributions with the same standard deviation of 0.5 cm,

independently of their nominal value. The probability that
the volume is less than 33 cm3 constitutes the design fail-
ure probability, set at 0.1, i.e. Ptarget = 0.1. Monte Carlo
simulation with 106 samples is used to estimate failure prob-
abilities. The Monte Carlo simulations are directly nested
within the optimization procedure to perform optimization
under uncertainty; this technique is sometimes referred to
as the double loop. The method converges towards the opti-
mum, but it requires a large number of evaluations of the
performance function. In case large scale numerical mod-
els are involved, it is advised to used advanced procedures,
as discussed in Section 4.6. The reliable design domain is
bounded by this limit and the non-reliable domain is repre-
sented by the hatched area in Fig. 3. This reliable domain

Table 3 Summary of results for the container application



On the consideration of uncertainty in design: optimization - reliability - robustness 1433

is more restrictive than the admissible domain, since nei-
ther the worst-case approach nor safety factors are used for
deterministic designs.

For robust optimization, uncertainties must be considered
in the objective function, therefore requiring us to resort
to a new objective function. We here choose to define the
robustness criterion (in grayscale in Fig. 3) by a linear com-
bination (18) of the expectation (E(◦)) and the standard
deviation (σ(◦)) of the initial objective function.

�(R, h) = 0.25 × E(f (R, h)) + 0.75 × σ(f (R, h)) (18)

Since no constraints are taken into account, the robust
design solution is R = 0 and h = 0, as in the case of the
deterministic solution. It is hence not an admissible design
but corresponds to the global optimum of the objective
function.

As mentioned previously, the reliable domain is more
restrictive than the admissible domain. By optimizing the
objective function in such a framework, the obtained RBDO
solution (R = 2.44 and h = 3.4) appears at the limit
between the reliable and non-reliable domains (see dotted
curve in Fig. 2). As with optimal and admissible design
(resp. optimal and reliable design), the robust and admis-
sible design (resp. robust and reliable design) is at the
limit between the admissible and non-admissible domains
(resp. reliable and non-reliable design). However, their posi-
tions (see Fig. 3) have changed to be more insensitive to
variations in the problem parameters.

The container application considering two design vari-
ables leads to the same conclusions as the first example.
Indeed, the results obtained depend on the choice of design
formulation, which therefore should be considered as an
essential component of the design process in order to obtain
the desired design.

5.3 Application to a bracket structure

This application is inspired by Chateauneuf and Aoues
(2008) and aims to compare the different design formula-
tions for a structural application with four design variables
and five random variables. The bracket structure sketched in
Fig. 4 will now be studied.

It is loaded by its own weight and by a vertical load
applied at its free tip. Two failure modes are taken into
account.

– The maximum bending stress in the CD-beam should
not exceed the yield strength of the material

g1(x) = σy − σB(x) ≥ 0 (19)

where

σB = 6MB

wCDt2
with MB = PL

3
+ ρgwCDtL2

18
(20)

Fig. 4 Bracket structure, reproduced from Dubourg et al. (2011)

– The maximum axial load in the AB-beam should not
exceed the Euler critical buckling load

g2 = FBuckling(x) − FAB(x) ≥ 0 (21)

where

FBuckling(x) = π2Etw3
AB9 sin2 θ

48L2
(22)

FAB = 1

cos θ

(
3P

2
+ 3ρgwCDtL

4

)
(23)

The objective function is defined by (24) and corresponds
to the weight of the structure to be minimized. As in the
previous examples, the Nelder-Mead algorithm is used for
the optimization. The design variables are highlighted in
grey in Table 5. The domain of these variables is bounded:
50 ≤ μwAB

, μwCD
, μt ≤ 300 (mm) and 45◦ ≤ μθ ≤ 80◦.

Results of each formulation are summarized in Table 4 and
illustrated in Fig. 5.

c(wAB, wCD, t, θ) = ρtL

(
2wAB

3 sin θ
+ wCD

)
(24)

Deterministic design Deterministic optimization without
constraints results in the combination which most mini-
mizes the weight of the structure, such as the minimum for
the length and the maximum for the angle. For determin-
istic optimization under constraints, safety factors are used
here. For such purposes, force P is transformed into γsP ,
the unit mass ρ becomes γpρ and the yield stress σy changes
to σy/γr with γs = γr = 1.5 and γp = 1.35. The resulting
performance is 1785kg, which is certain to be admissible
thanks to the safety factors.

Design in an uncertain context All the parameters
involved in the problem are now assumed to be uncer-
tain except variable g, which remains deterministic (see
Table 5). The mean values of the random variables high-
lighted in grey are assumed to be adjustable and corre-
spond to the considered design variables. They are thus
affected by type-II uncertainties, whereas the other random
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Table 4 Summary of results for the bracket structure application

variables are affected by type-I uncertainties. The proba-
bilistic approach enables us to characterize these variables
by their distribution, presented in Table 5. The coefficients
of variation are maintained constant throughout the opti-
mization process. Thus, increasing the mean value of a
variable results in an increase in its standard deviation. The
distribution of the other random variables is also defined in
Table 5. Their parameters remain constant during the opti-
mization procedure. The target failure probability of each
constraint function is taken as being Ptarget = 0.023, i.e.

Prob({gi ≤ 0}) ≤ 0.023 for i = [1, 2]. Monte Carlo sim-
ulation with 106 samples is employed to calculate failure
probabilities.

An aggregation approach (25) is used here when uncer-
tainties are taken into account in the objective function.

�(c) = 0.25 × E(c) + 0.75 × σ(c) (25)

The robust design (Fig. 5d) is slightly different from the
optimal design (Fig. 5a) without constraints, but is still
non-admissible since the constraints are not considered.

Fig. 5 Illustration of the results
of the bracket structure
application; (a) Optimal design,
(b) Optimal and admissible
design, (c) Optimal and reliable
design, (d) Robust design, (e)
Robust and admissible design,
(f) Robust and reliable design
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Table 5 Probabilistic model for the bracket structure

A robust and admissible design (Fig. 5e), taking uncer-
tainties into account in the objective function, results in an
increase in the average weight of the structure from 1785kg
(for the optimal and admissible design (Fig. 5b)) to 1825kg
but it ensures a reduced sensitivity with respect to parameter
variations. The solutions obtained by the RBDO (Fig. 5c)
and by the robust and reliable design (Fig. 5f) are quite
close, even if the average weight is once again increased
by the consideration of uncertainties in the objective func-
tion: 1361kg for the RBDO (Fig. 5c) compared to 1396kg
for the robust and reliable design (Fig. 5f). It is worth noting
that there are major differences between the results obtained
from deterministic constraint formulations and those pro-
duced using uncertain constraint formulations. In fact, the
safety factors excessively restrict the admissible domain by
increasing the obtained weight by 400kg, which represents
30 % of the result provided by the reliable optimization
formulation.

Finally, it appears that the design is strongly influenced
by the formulation of the problem. The use of safety factors
appears to be too conservative, and increases the weight of
the structure. This example also shows that increasing the
number of design variables and random variables does not
change the conclusions, which is that major differences exist
between design formulations.

6 Conclusions

A classification of design problems (Table 1) is proposed
in this paper, and different definitions and formulations are
clarified. A comprehensive summary of design formulations
for designers is discussed. Designing aspires to identify
admissible solutions subject to constraints, and optimizing

aims to maximize performance metrics. During these pro-
cedures, uncertainties can be taken into consideration in
two main ways: each parameter can be characterized by
a reference value and a deterministic optimization is then
solved, or uncertainties can be taken into account explic-
itly and a stochastic optimization is then solved. Robustness
is linked to the objective whereas reliability is associated
with the constraints. Thus, a reliable and robust design
considers both objective and constraint uncertainties. A
consensus has been reached for the formulation of uncer-
tainties in constraint functions: failure probability is used.
Numerous strategies exist for robustness and some of them
are reviewed in this paper. Applications show that signifi-
cant differences exist between formulations. The choice of
design formulation is hence an essential step in the design
procedure and requires careful consideration since it must
be a trade-off between the accuracy of results and the
numerical effort.
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Xia B, Lü H, Yu D, Jiang C (2015) Reliability-based design optimiza-
tion of structural systems under hybrid probabilistic and interval
model. Comput Struct 160:126–134

Yadav OP, Bhamare SS, Rathore A (2010) Reliability-based robust
design optimization: a multi-objective framework using hybrid
quality loss function. Quality Reliab Eng Int 26:27–41

Yao W, Chen X, Luo W, van Tooren M, Guo J (2011) Review
of uncertainty-based multidisciplinary design optimization meth-
ods for aerospace vehicles. Progress Aerospace Sci 47:450–
479

Youn BD, Xi Z (2009) Reliability-based robust design optimization
using the eigenvector dimension reduction (EDR) method. Struct
Multidiscip Optim 37:475–492

Youn BD, Choi KK, Yi K (2005) Performance moment integra-
tion (PMI) method for quality assessment in reliability-based
robust design optimization. Mech Based Des Struct Mach 33:185–
213

Zadeh LA (1978) Fuzzy sets as a basis for a theory of possibility. Fuzzy
Sets Syst 1:3–28

Zaman K, McDonald M, Mahadevan S, Green L (2011) Robustness-
based design optimization under data uncertainty. Struct Multidis-
cip Optim 44:183–197

Zang C, Friswell MI, Mottershead JE (2005) A review of robust
optimal design and its application in dynamics. Comput Struct
83:315–326

Zhang H, Ni Q (2015) A new regularized quasi-Newton algorithm
for unconstrained optimization. Appl Math Comput 259:460–
469


	On the consideration of uncertainty in design: optimization - reliability - robustness
	Abstract
	Introduction
	Design under uncertainty*-1.5pt
	Sources of uncertainty and their classification*-1.5pt
	Consideration of uncertainties in engineering
	Design requirements
	Proposed classification of design formulations

	Deterministic design formulation
	Admissible design - sizing
	Optimal design - optimization without constraint
	Optimal and admissible design - optimization under constraint

	Formulation of design in an uncertain context
	Reliable design
	Optimal and reliable design - reliability-based design optimization
	Robust design
	Robust and admissible design
	Robust and reliable design
	Numerical efforts of the consideration of uncertainties

	Application examples
	Mathematical example
	Deterministic design
	Design in an uncertain context


	Application to a container
	Deterministic design
	Design in an uncertain context


	Application to a bracket structure
	Deterministic design
	Design in an uncertain context



	Conclusions
	Acknowledgments
	References


