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Abstract An advanced automatic grouping method for
form-finding of tensegrity structures is presented. In the
proposed method, properties of self-equilibrium and stabil-
ity in tensegrity structures can be obtained by using the
force density method combined with a genetic algorithm. A
constrained minimization problem is formulated using the
standard deviation of the force density in the cables. As a
result, the minimum number of member groups for tenseg-
rity structures with automatic grouping can be obtained.
This elicited regular tensegrity structures with uniform force
density values. Moreover, the geometrical and mechanical
parameters of tensegrity structures with multiple states of
self-stress can be easily obtained by using the proposed
method.

Keywords Tensegrity · Form-finding · Force density
method · Genetic algorithm · Automatic grouping

1 Introduction

The design of tensegrity structures passes through three
steps: form-finding, structural stability and load analysis
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(Schenk 1983). A key step in the design of tensegrity struc-
tures is the determination of their equilibrium configuration,
known as form-finding (Tibert and Pellegrino 2003). As
pioneering work in form-finding, the force density method
was first proposed by Schek (1974) for cable structures.
The force density method is widely used in the form-
finding of tensegrity literature, such as Tibert and Pellegrino
(2003). Estrada et al. (2006) presented a multi-parameter
form-finding procedure for tensegrity structures using the
force-density method. Masic et al. (2005) extended the
force-density method by explicitly incorporating shape con-
straints for general and symmetric tensegrity structures.
Zhang and Ohsaki (2006) offered an adaptive force density
method for form-finding problems of tensegrity structures.
Most recently, Lee et al. (2014) proposed force identifica-
tion of tensegrity grid structures according to external loads
by using a force density method.

Most of form-finding methods assume given topologies,
symmetry conditions, and try to find equilibrium configu-
rations using some given constraints (Chen et al. 2015). A
different approach is to find the topology with a genetic
algorithm. There have been several researches that dealt
with optimum designs using the genetic algorithm (Liu X
et al. 2012; Hao et al. 2012; Le Riche and Haftka 1995).
Recently, several studies have researched the form-finding
methods of tensegrity structures using genetic algorithms
for searching self-equilibrium topology. Paul et al. (2005)
used genetic algorithms to develop an initial arbitrary topol-
ogy into a stable one. Xu and Luo (2010) presented a form-
finding method of irregular tensegrities based on a genetic
algorithm. Yamamoto et al. (2011) proposed a genetic algo-
rithm based form-finding method to obtain tensegrity struc-
tures with fewer design variables. Most recently, Koohestani
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(2012) provided an efficient form-finding method using a
genetic algorithm that is used as an optimisation technique.
Instead, Chen et al. (2012) used a ant colony system to build
the form-finding method.

Most of the available methods have dealt with the
form-finding of tensegrities for only the case of a single
self-stress state. Recently, however, one numerical meth-
ods is presented for form-finding of tensegrity structures
with multiple states of self-stress (Tran and Lee 2011).
Tran and Lee (2011) used appropriate number of mem-
ber groups that are employed to determine a single integral
feasible force density vector; the members are grouped
based on the geometrical symmetry properties. However,
in this case, member grouping is not systematic and rather
arbitrary. In this regard, the automatic member group-
ing method is developed in this paper in order to deter-
mine single integral feasible self-stress state of tensegrity
structures.

The present study aims at determining the self-
equilibrium and stability properties of tensegrity structures
using the force density method combined with genetic algo-
rithm. Also, the final goal of this paper is to present an
automatic grouping method and equally present minimum
number of groups that can be achieved the regular shapes
of the tensegrities. Tensegrity structures can be highly effi-
cient in terms of regular form, provided that the minimum
number of groups is applied to the system. There has been
increasing in a topic of grouping in recent years (Chen and
Feng 2012; Koohestani 2015). The best situation is one in
which the tensegrity structure is divided into two groups
(cables and struts). Since not all systems can be divided
into two groups, it is important that the systems have the
appropriate minimum number of groupings. The results of
these efforts indicated that regular tensegrity structures can
be drawn.

This procedure requires only the topology and the types
of members (i.e., either compression or tension). Both the
eigenvalue decomposition of the force density matrix and
the singular value decomposition of the equilibrium matrix
are iteratively executed to find the range of feasible sets of
the nodal coordinates and the force densities. When com-
bined with a genetic algorithm, the standard deviation of the
force densities in the cables is used to uniquely define a sin-
gle integral feasible set of force densities. In contrast to prior
existing methods, the proposed method can easily determine
the feasible sets of the force densities with automatic group-
ing. In this paper, Section 2 gives the theoretical basis for
the equilibrium equations. Section 3 will describe the for-
mulation of form-finding with a genetic algorithm theory.
The examples of tensegrity structures will be analysed in
Sections 4 and 5 will conclude the paper.

2 Formulation of self-equilibrium equations

2.1 Force density method

The force density method uses a linear equation in the nodal
coordinates: this equation can be linearised with notation
(1), known as force density (Tibert and Pellegrino 2003).

qk = fk

lk
(1)

where any member k has a member force fk and a length of
element lk(k = 1, 2, 3, · · · , b). For a d-dimensional (d=2
or 3) tensegrity structure with b members and n free nodes
can be expressed by a connectivity matrix C (∈ R

b×n) as
discussed in (Schek 1974). If member k connects nodes i

and j (i < j ), then the ith and j th elements of the kth row
of a connectivity matrix C are set to 1 and -1, respectively,
as follows:

C(k,p) =
⎧
⎨

⎩

1 for p = i
−1 for p = j
0 otherwise

(2)

Let x, y, z (∈ R
n) denote the nodal coordinate vectors of the

free node, in x, y and z directions. When the external load
and self-weight are ignored, the equilibrium equations can
be written as follows:

D[x y z] = CT diag(q)C[x y z] = [0 0 0] (3)

where D (∈ R
n×n) is the force density matrix (Tibert

and Pellegrino 2003; Estrada et al. 2006), or stress matrix
(Connelly 1982).

Instead of using the connectivity matrix C and force den-
sity vector q, the force density matrix D can be written
directly by Vassart and Motro (1999); Connelly and Terrell
(1995) as

D(i,j) =

⎧
⎪⎨

⎪⎩

−qk if nodes i and j are connected by member k∑

k∈Ω

qk for i = j

0 otherwise

(4)

in which Ω denotes the set of members connected to node
i. Equation (4) indicates that the force density matrix D is
always square and symmetric. D of the tensegrity structure
is semi-definite due to the existence of compression mem-
bers (struts), with qk < 0. Using a second term of (3), the
equilibrium equation can be expressed as

CT diag(q)Cx = 0 (5a)

CT diag(q)Cy = 0 (5b)

CT diag(q)Cz = 0 (5c)



Advanced automatic grouping for form-finding of tensegrity structures 961

Equation (5a) can be reorganized as

Aq = 0 (6)

where A (∈ R
dn×b) is known as the equilibrium matrix,

defined by

A =
⎛

⎝
CT diag(Cx)
CT diag(Cy)
CT diag(Cz)

⎞

⎠ (7)

Equation (3) shows the relationship between force den-
sity matrix D and nodal coordinates, and (6) illustrates the
relationship between the equilibrium matrix A and force
densities.

2.2 Rank deficiency conditions

The form-finding procedure of tensegrity structures requires
rank deficiency conditions of force density and equilibrium
matrices. The rank deficiency ofD (nD) has at least one state
of self-stress, since the sum of the elements of the row or
column of force density matrix (D) always equals zero. Fur-
thermore, in a d-dimensional tensegrity structure, the rank
deficiency of D has at least d useful particular solutions.
Therefore, the rank deficiency condition is defined as

nD ≥ d + 1 (8)

The second rank deficiency condition is related to a
dimension of null space of the equilibrium matrix A. The
dimension of null space of the equilibrium matrix A is iden-
tical to ”s”, known as the number of independent states of
self-stress. A tensegrity structure ensures the existence of at
least one state of self-stress and can be stated as

s = nA ≥ 1 (9)

3 Form-finding process

3.1 Formulation

This proposed method does not require initial geometry
or symmetrical conditions of the tensegrity structure. The
dimension size, the connectivity of nodes and the type of
each member are only required for a form-finding proce-
dure. Based on the type of individual member, the initial
force density coefficients of cables and struts are automati-
cally assigned as +1 and -1, respectively, as follows:

q0 = {+1 + 1 · · · + 1
︸ ︷︷ ︸

cables

−1 − 1 · · · − 1
︸ ︷︷ ︸

struts

}T (10)

Firstly, the force density matrix is calculated from the ini-
tial force density vector by (10) and the nodal coordinates

are adopted from the eigenvalue decomposition of the force
density matrix D. The square force density matrix D can be
factorized as follows by using the eigenvalue decomposition
(Meyer CD 2000).

D = ΦΛΦT (11)

where Φ (∈ R
n×n) is the orthogonal matrix (ΦΦT = In,

in which In ∈ R
n×n is the unit matrix) whose ith column

is the eigenvector basis φi (∈ R
n) of D. Λ (∈ R

n×n) is
the diagonal matrix whose diagonal elements are the corre-
sponding eigenvalues, i.e., Λii = λi . The eigenvector φi of
Φ corresponds to eigenvalue λi of Λ. The eigenvalues are
in increasing order as

λ1 ≤ λ2 ≤ · · · ≤ λn (12)

It is clear that the number of zero eigenvalues of D is equal
to the dimension of its null space. The first d + 1 eigen-
vectors of Φ̄, corresponding to the first d + 1 smallest
eigenvalues, respectively, are chosen as nodal coordinates
[x, y, z] for d-dimensional tensegrity structure.

Subsequently, these nodal coordinates are substituted
into (6) to select the candidates for a set of force densities
by the singular value decomposition of the matrix A.

A = UVWT (13)

where U (∈ R
dn×dn) = [u1 u2 · · · udn] and W (∈

R
b×b) = [w1 w2 · · · wb] are orthogonal matrices. V

(∈ R
dn×b) is a diagonal matrix with non-negative singular

values of A in decreasing order as

σ1 ≥ σ2 ≥ · · · ≥ σb ≥ 0 (14)

The matrices U and W from (13) can be expressed, respec-
tively, as (Pellegrino 1993)

U = [u1u2 · · · urA | m1 · · · mm] (15)

W = [w1w2 · · · wrA | q1 · · · qs] (16)

where the vectorsmi ∈ R
dn (i = 1, 2, · · · , m) denote m(=

dn− rA) inextensional mechanisms including both possible
infinitesimal mechanisms and rigid body motions, while the
vector qj ∈ R

b (j = 1, 2, · · · , s) are s independent states
of self-stress that satisfy the linear homogeneous (6).

Regarding s = 1 (one state of self-stress), the vector q1
(∈ R

b) in (16) matching in signs with q0 is indeed the sin-
gle state of self-stress that satisfies the homogeneous (6).
However, the proposed form-finding algorithm continues
iterating until (8) and (9) are met.

Where s ≥ 2, the bases of the vector spaces of force
densities and mechanisms of any tensegrity structure are
calculated from the null space of the equilibrium matrix
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(Pellegrino 1993). As a result, the general solution q̄ of (6)
that lies in the null space of A is formulated as

q̄ =
d+1∑

i=1

ciqi (17)

where the coefficients ci are arbitrary values and qi ∈ R
b

(i = 1, 2, ..., s) are the particular solutions of (6). A genetic
algorithm is then used to obtain the general solution q̄
that satisfies (3). Finally, the eigenvalue decomposition of
the force density matrix and the single value decomposi-
tion of the equilibrium matrix are performed iteratively to
find the range of feasible sets of nodal coordinates and
force densities that satisfy the required rank deficiency of
the force density and equilibrium matrices, respectively.
Figure 1 shows the flowchart of solving the form-finding
problem by using the genetic algorithm.

Ini�al Input Data

Equilibrium Equa�ons

Fitness Evaluta�on

Feasible Force Density Set

Converge?

Stop

Selec�on

Crossover

Mutate

NO

YES

GA operators

Start

D[x y z]=[0 0 0]
Aq=0

Fig. 1 The flowchart of solving the form-finding problem by using
the genetic algorithm

3.2 Fitness function

In this study, the form-finding algorithm is formulated using
constrained optimization problems combined with the stan-
dard deviation of the force density in the cables as follows:

Minimize

√
√
√
√
√
√
√
√

m∑

k=1
q2
k

m
−

⎛

⎜
⎜
⎝

m∑

k=1
qk

m

⎞

⎟
⎟
⎠

2

(qk ∈ �c) (18)

Subject to

i)

(
0 < qi < 1(qi ∈ �c)

−1 < qj < 0(qj ∈ �s)

)

(19a)

ii)
qi − nqj

qi

≤ ε0 (19b)

in which � denotes the total set of the force density and m is
the number of cables. �c and �s are the set of the force den-
sities for cable members and strut members, respectively. qi

and qj are a component of q̄. Subscript (i and j ) denotes
element numbers, and ε0 is used to define the tolerance.
Equation (19a) indicates unilateral conditions for tenseg-
rity grid structures, which are necessary in order to have a
unique value of initial self-stress forces. On the other hand,
(19b) are optional constraints for drawing the desired group-
ing of the tensegrity from the optimization problem and for
two distinct members that are in a linear relationship to each
other.

3.3 Automatic grouping scheme

The standard deviation is a measure that is used to quantify
the amount of variation or dispersion of a set of data val-
ues (Bland and Altman 1996). In this study, a role of the
standard deviation is to make uniform force density values
so that the value of fitness function can be minimized. We
aim to solve the minimisation problem with a genetic algo-
rithm, this logic ensures that the standard deviation of force
densities for cables converges to minimum value as much
as possible. By using these uniform values, the proposed
method leads regular geometries of tensegrity structures to
be formed. As a result of this algorithm, a feasible set of
force densities with a suitable grouping is easily obtained.

Figure 2 shows comparison of two systems which have
a non-uniform and uniform force density sets, respectively.
The structures possessing the non-uniform force density sets
lead to irregular geometries. However, with the iterative pro-
cesses of the genetic algorithms, the force densities of the
elements are uniformly distributed by using the proposed
fitness function.
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Fig. 2 A role of the standard deviation is to make uniform the force density values. The proposed method leads regular geometries of tensegrity
structures to be formed; A two-dimensional two-strut tensegrity structure

4 Numerical example

The tensegrity structures with one state of self-stress, a
two-dimensional hexagonal tensegrity structure, a three-
dimensional three-strut octahedral cell and a three-
dimensional six-strut tensegrity are illustrated to demon-
strate the capability of the proposed method. Based on the
algorithm developed, both the nodal coordinates and the sin-
gle integral feasible force density vector are simultaneously
defined with limited information of the nodal connectivity
and the type of each member. We have fixed a maximum
of 100 iterations using a population size of 200. The algo-
rithms of all numerical examples were terminated when the
terminating conditions were reached prior to the maximum
iterations. Note that all of the force densities given in tables
are normalized with respect to the force density coefficient
of Element 1. The main parameters of the proposed genetic
algorithm is set as:

– Population size : 200
– Maximum generations : 100
– Child : One child per pair of parents
– Bounds of variables : [-1,0] for struts / [0,1] for cables
– Inner loop : 20

4.1 2D four-strut tensegrity

In this and next sections, two tensegrity structures with one
state of self-stress (s = 1) are demonstrated to verify the
accuracy of the proposed method. The 2-dimensional four-
strut tensegrity has been selected from (Tran and Lee 2010).
This structure is composed of four cables and four struts
(Fig. 3). In prior studies, all members have been grouped
into two sets, including one group of cable members and
the other group of strut members. The proposed method
does not use a grouping constraint and the feasible sets of
the force densities with automatic grouping can be easily

determined. The calculated force density value after nor-
malizing with respect to the force density coefficient of the
Element 1 is as presented in Table 1. These results agree
well with those of prior studies. The calculated force den-
sity value after normalizing with respect to the force density
coefficient of the Element 1 is as presented in Table 1.
These results agree well with those of previous study. Since
the fitness function of the proposed method tends to make
uniform the force density values of cables, the algorithm
works effectively in these examples which group members
into two sets. After investigating the rank deficiency of the
force density matrix, the 2-dimensional four-strut tenseg-
rity is formed to have one self-stress state (s = 1) and no
infinitesimal mechanism (m = 0) (Pellegrino 1993).

4.2 3D expandable octahedron

The three-dimensional expandable octahedron has been
selected from (Guest 2011); and this system consists of

Fig. 3 The initial topology of the 2D four-strut tensegrity structure
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Table 1 Comparison of the force densities obtained by the proposed
method with other paper(2D four-strut tensegrity)

Type No. of groups Member Force density

Tran and Lee
(2010)

Present

Cables 1 1 1.0 1.0

2 1.0 1.0

3 1.0 1.0

4 1.0 1.0

Struts 2 5 −2.0 −2.0

6 −2.0 −2.0

7 −2.0 −2.0

8 −2.0 −2.0

24 cables and six struts (Fig. 4). The obtained three-
dimensional expandable octahedron possesses one state of
self-stress (s = 1) and one infinitesimal mechanism (m = 1).
Table 2 shows a force density set of the elements. The result
in Table 2 indicates that the same results as those of previ-
ous study can be yielded. We must note that the results were
obtained without a grouping condition.

4.3 2D hexagonal tensegrity structures

We consider two 2D hexagonal tensegrity structures which
are composed of 9 elements and 11 elements, respectively,
this examples have been selected from (Tran and Lee 2010)
and (Tran and Lee 2011). Figure 5a and b show the initial
topologies of the 2D hexagonal tensegrity structure with six
cables and eight cables, and cables (struts) are depicted by
thin (thick) lines. The distinction between the number of
cables of two structures, leads to different self-stress states.

Fig. 4 The initial topology of the 3D expandable octahedron

Table 2 Comparison of the force densities obtained by the proposed
method with other paper(3D expandable octahedron)

Type No. of groups Member Force density

Tran and Lee
(2010)

Present

Cables 1 1 1.0 1.0

2 1.0 1.0

3 1.0 1.0

4 1.0 1.0

5 1.0 1.0

6 1.0 1.0

7 1.0 1.0

8 1.0 1.0

9 1.0 1.0

10 1.0 1.0

11 1.0 1.0

12 1.0 1.0

13 1.0 1.0

14 1.0 1.0

15 1.0 1.0

16 1.0 1.0

17 1.0 1.0

18 1.0 1.0

19 1.0 1.0

20 1.0 1.0

21 1.0 1.0

22 1.0 1.0

23 1.0 1.0

24 1.0 1.0

Struts 2 25 −1.5 −1.5

26 −1.5 −1.5

27 −1.5 −1.5

28 −1.5 −1.5

29 −1.5 −1.5

30 −1.5 −1.5

The 2D hexagonal tensegrity structure with six cables has
one self-stress state (s = 1), whereas the 2D hexagonal
tensegrity structure with eight cables has s = 2.

While six cables case automatically obtained the results
with two groups (The force densities for cable and strut
equal 1.0 and −0.5, respectively.), such as those of previous
study, the case of eight cables obtained the new force density
values, as presented in Table 3. Table 3 shows a comparison
of the results of previous study (Tran and Lee 2011) with
grouping and the results of the proposed method with auto-
matic grouping. The previous method requires appropriate
grouping in order to obtain a single feasible pre-stressed
mode. The authors repeated the analysis eight times to
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Fig. 5 The initial topologies of
the 2D hexagonal tensegrity
structure with; a six cables
(s = 1), and b eight cables
(s = 2)

(a) (b)

obtain the appropriate group of the two-dimensional three-
strut tensegrity structure. Accordingly, trial and error should
be employed to find the appropriate five groups. Contrast-
ingly, the proposed method required only one analysis to
yield the feasible set of force densities. The results of the
proposed method show the same group classification with
those of previous studies without any grouping constraint.
In spite of enough iteration steps in the genetic algorithm
processes, the reason why the proposed method is actually
more dfficient is that EVD and SVD analyses are the most
computationally intensive unlike the genetic algorithm.

Figure 6 shows the obtained geometry of previous study
and present study. In the previous study, in order to obtain
a single integral feasible prestressed mode, a linear relation
between member 2 and 3 is imposed as q3 = 1.5q2. As a
consequence of the linear relation, this process obtained one
geometry as indicated in Fig. 6a. However, in this study, a
different result can be obtained without grouping conditions
or linear relationships as shown in Fig. 6b.

Table 3 Comparison of the force densities obtained by the proposed
method with other paper (the 2D hexagonal tensegrity structure with
eight cables)

Type No. of groups Member Force density

Tran and Lee
(2011)

Present

Cables 1 1 1.0 1.0

2 1.0 1.0

3 1.0 1.0

4 1.0 1.0

2 5 2.0 1.5

6 2.0 1.5

3 7 3.0 2.5

8 3.0 2.5

Struts 4 9 −2.5 −2.0

10 −2.5 −2.0

5 11 −0.5 −0.5

(a)

(b)

Fig. 6 The obtained geometry of the 2D hexagonal tensegrity struc-
ture; a Tran and Lee (2011), and b Present study
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Fig. 7 The initial topology of the 3D three-struct octahedral cell

4.4 3D three-strut octahedral cell

As the next example, a three-dimensional three-strut octa-
hedral cell that has three struts and 12 cables as shown in
Fig. 7 is considered. The input parameters for this exam-
ple are n = 6, b = 15, and d = 3. After investigating
the rank deficiency of the force density matrix, the tenseg-
rity is formed to have three self-stress states (s = 3) and no
infinitesimal mechanism (m = 0).

In Table 4, comparison of the results of previous study
(Tran and Lee 2011) with grouping and the results of the

Table 4 Comparison of the force densities obtained by the proposed
method with other paper(3D three-strut octahedral cell)

Type Member Force density

Tran and Lee (2011) Present

Cables 1 1.0 1.0

2 1.0 1.0

3 1.0 1.0

4 1.0 1.0

5 0.5 1.0

6 0.5 1.0

7 0.5 1.0

8 0.5 1.0

9 0.5 1.0

10 0.5 1.0

11 0.5 1.0

12 0.5 1.0

Struts 13 −1.5 −2.0

14 −1.5 −2.0

15 −1.0 −2.0

Fig. 8 The obtained geometry of the 3D three-strut octahedral cell;
a Previous study (Tran and Lee 2011) with grouping, b Present study
with automatic grouping

proposed method with automatic grouping is presented. In
the prior study, based on the symmetry properties, the mem-
bers were divided into four groups. The proposed method,
however, does not require any symmetry properties of the
structure or grouping constraint. Applying the proposed
form-finding method, the range of feasible sets of the nodal
coordinates and the force densities is obtained, divided into
two groups. A difference in the number of grouping is
caused by fitness functions of the genetic algorithms. Thus,
the appropriate minimum groups for tensegrity structures
that satisfy the rank deficiency conditions of force density
and equilibrium matrices can be easily obtained through

Fig. 9 The initial topology of the 3D six-strut tensegrity
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the proposed algorithm. The geometries of three case are
obtained as shown in Fig. 8. This shows that the geome-
try result of present study with two groups is formed into
regular shape as compared with the previous studies.

4.5 3D six-strut tensegrity

A 3-dimensional six-strut tensegrity has six struts and 24
cables, and the initial topology is composed of 12 nodes and
30 elements Fig. 9. After investigating rank deficiency, the
structure obtained two states of self-stress (s = 2), and two
infinitesimal mechanisms (m = 2).

In Table 5, a comparison of the results of previous stud-
ies (Tran and Lee 2011) with grouping and the results of

the proposed method with automatic grouping is presented.
In previous studies, four groups were chosen through trial
and error. Applying the proposed form-finding method, the
seven groups obtained differ from those of the previous
study. The results are appropriately grouped by using the
proposed algorithm, however, it is not minimum groups for
this system. To obtain the minimum number of grouping,
a specific force density ratio constraint of Element 1 and
Element 2 (q1 = q2) is additionally imposed to the fitness
function. As a result, the results obtained again agree fairly
with those of the previous study and the minimum number
of groups (four groups) can be achieved. This indicates that
a suitable minimum number of groups is easily obtained
using the proposed method. For the purpose of obtaining

Table 5 Comparison of the
force densities obtained by the
proposed method with other
paper(3D six-strut tensegrity)

Type Member Force density

Tran and Lee (2011) Present

Automatic grouping Automatic grouping

+ Optional constraint (q1 = q2)

Cables 1 1.0 1.0 1.0

2 1.0 3.6 1.0

3 1.0 1.0 1.0

4 1.0 3.6 1.0

5 1.0 1.0 1.0

6 1.0 3.6 1.0

7 1.0 1.0 1.0

8 1.0 3.6 1.0

9 1.6 4.5 1.6

10 1.6 4.5 1.6

11 1.6 4.5 1.6

12 1.6 4.5 1.6

13 1.6 2.9 1.6

14 1.6 2.9 1.6

15 1.6 2.9 1.6

16 1.6 2.9 1.6

17 1.6 4.5 1.6

18 1.6 4.5 1.6

19 1.6 4.5 1.6

20 1.6 4.5 1.6

21 1.6 2.9 1.6

22 1.6 2.9 1.6

23 1.6 2.9 1.6

24 1.6 2.9 1.6

Struts 25 −1.6 −3.7 −1.6

26 −1.6 −3.7 −1.6

27 −1.6 −3.7 −1.6

28 −1.6 −3.7 −1.6

29 −2.2 −3.2 −2.2

30 −2.2 −4.0 −2.2
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fewer number of groupings, with a new constraint condition
where all force densities of cables are set as unified is pro-
vided for the algorithm, equilibrium configurations cannot
be obtained. Eventually, this means that four groups are the
optimum number of groupings.

5 Conclusion

In this study, an automatic grouping method for the form-
finding of tensegrity is presented to find the self-equilibrium
and the stability properties of the structures. For tensegri-
ties with multiple self-stress states (s > 1), all the members
must be manually grouped in accordance with the geomet-
rical symmetry in order to have the unique feasible solution
in most previous investigation. However, present study auto-
matically generates the member group of the tensegrity by
simply providing the unilateral conditions of the members.
The standard deviation of the force densities in the cables is
used to uniquely define a single integral feasible set of force
densities. The fitness function using the standard deviation
can be significant in creating uniform force density val-
ues. Five examples of tensegrity structures are performed,
and a very good performance of the proposed method has
been shown in the numerical examples. In all the numerical
examples, minimum number of member groups are easily
obtained automatically with only unilateral condition except
for 3D six-strut tensegrity case. In 3D six-strut tensegrity
case, the specific force density ratio constraint was used
additionally to obtain the minimum number of member
groups. Form-finding with minimum number of member
groups was achieved in the present study that is, the regular
shapes of the tensegrity was obtained.

Acknowledgments This research was supported by a grant (NRF-
2015R1A2A1A01007535) from NRF (National Research Foundation
of Korea) funded by MEST (Ministry of Education and Science
Technology) of Korean government.

References

Bland JM, Altman DG (1996) Statistics notes: measurement error. Bmj
313(7059):744

Chen Y, Feng J (2012) Generalized eigenvalue analysis of symmet-
ric prestressed structures using group theory. J Comput Civ Eng
26(4):488–497

Chen Y, Feng J, Wu Y (2012) Novel form-finding of tensegrity
structures using ant colony systems. J Mech Robot 4(3):031001

Chen Y, Feng J, Ma R, Zhang Y (2015) Efficient symmetry method
for calculating integral prestress modes of statically indeterminate
cable-strut structures. J Struct Eng 141(10):04014240

Connelly R (1982) Rigidity and energy. Invent Math 66:11–33
Connelly R, Terrell M (1995) Globally rigid symmetric tensegrities.

Struct Topol 21:59–78
Estrada GG, Bungartz H-J, Mohrdieck C (2006) Numerical form-

finding of tensegrity structures. Int J Solids Struct 43:6855–
6868

Guest SD (2011) The stiffness of tensegrity structures. IMAJ Appl
Math 76(1):57–66

Hao P, Wang B, Li G (2012) Surrogate-based optimum design for
stiffened shells with adaptive sampling. AIAA J 50(11):2389–
2407

Koohestani K (2012) Form-finding of tensegrity structures via genetic
algorithm. Int J Solids Struct 49:739–747

Koohestani K (2015) Automated element grouping and self-stress
identification of tensegrities. Eng Comput 32(6):1643–1660

Lee S, Woo BH, Lee J (2014) Self-stress design of tensegrity grid
structures using genetic algorithm. Int J Mech Sci 79:38–46

Liu X, Cheng G, Wang B (2012) Optimum design of pile foundation
by automatic grouping genetic algorithms. ISRN Civ Eng

Masic M, Skelton RE, Gill PE (2005) Algebraic tensegrity form-
finding. Int J Solids Struct 42:4833–4858

Meyer CD (2000) Matrix analysis and applied linear algebra. SIAM
Paul C, Lipson H, Cuevas FJV (2005) Evolutionary form-finding of

tensegrity structures. In: Proceedings of the 7th annual conference
on Genetic and evolutionary computation. ACM, pp 3–10

Pellegrino S (1993) Structural computations with the singular value
decomposition of the equilibrium matrix. Int J Solids Struct
30(21):3025–3035

Le Riche R, Haftka RT (1995) Improved genetic algorithm for
minimum thickness composite laminate design. Compos Eng
5(2):143–161

Schek HJ (1974) The force density method for form finding and com-
putation of general networks. Comput Methods Appl Mech Eng
3:115–134

Schenk M (1983) Master’s thesis, Statically balanced tensegrity mech-
anisms. Delft University of Technology

Tibert AG, Pellegrino S (2003) Review of form-finding methods for
tensegrity structures. Int J Space Struct 18(4):209–223

Tran HC, Lee J (2010) Advanced form-finding or tensegrity structures.
Comput Struct 88:237–246

Tran HC, Lee J (2011) Form-finding of tensegrity structures with
multiple states of self-stress. Acta Mechanica 222:131–147

Vassart N, Motro R (1999) Multiparametered form finding method:
application to tensegrity systems. Int J Space Struct 14(2):147–154

Xu X, Luo Y (2010) Form-finding of nonregular tensegrities using a
genetic algorithm. Mech Res Commun 37:85–91

Yamamoto M, Gan BS, Fujita K, Kurokawa J (2011) A genetic algo-
rithm based form-finding for tensegrity structure. Procedia Eng
14:2949–2956

Zhang JY, Ohsaki M (2006) Adaptive force density method for
form-finding problem of tensegrity structures. Int J Solids Struct
43:5658–5673


	Advanced automatic grouping for form-finding of tensegrity structures
	Abstract
	Introduction
	Formulation of self-equilibrium equations
	Force density method
	Rank deficiency conditions

	Form-finding process
	Formulation
	Fitness function
	Automatic grouping scheme

	Numerical example
	2D four-strut tensegrity
	3D expandable octahedron
	2D hexagonal tensegrity structures
	3D three-strut octahedral cell
	3D six-strut tensegrity

	Conclusion
	Acknowledgments
	References


