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Abstract Surrogate models are used to dramatically improve
the design efficiency of numerical aerodynamic shape optimi-
zation, where high-fidelity, expensive computational fluid dy-
namics (CFD) is often employed. Traditionally, in adaptation,
only one single sample point is chosen to update the surrogate
model during each updating cycle, after the initial surrogate
model is built. To enable the selection of multiple new sam-
ples at each updating cycle, a few parallel infilling strategies
have been developed in recent years, in order to reduce the
optimization wall clock time. In this article, an alternative
parallel infilling strategy for surrogate-based constrained op-
timization is presented and demonstrated by the aerodynamic
shape optimization of transonic wings. Different from existing
methods in which multiple sample points are chosen by a
single infill criterion, this article uses a combination of multi-
ple infill criteria, with each criterion choosing a different sam-
ple point. Constrained drag minimizations of the ONERA-M6
and DLR-F4 wings are exercised to demonstrate the proposed
method, including low-dimensional (6 design variables) and
higher-dimensional problems (up to 48 design variables). The
results show that, for surrogate-based optimization of

transonic wings, the proposed method is more effective than
the existing parallel infilling strategies, when the number of
initial sample points are in the range from Nv to 8Nv (Nv here
denotes the number of design variables). Each case is repeated
50 times to eliminate the effect of randomness in our results.
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1 Introduction

Nowadays, numerical optimization is playing an increas-
ingly important role in aerodynamic design of aircraft,
where high-fidelity computational fluid dynamics (CFD)
is often employed. However, the main challenge is associ-
ated with the computational cost of the optimization pro-
cess, which can be prohibitive when a large number of
expensive CFD simulations are required. Therefore, the de-
velopment of efficient aerodynamic shape optimization
methods is of great interest.

CFD-driven numerical optimization methods can be
classified into two categories: gradient-based methods with
the gradients computed by the adjoint method (Jameson
1988 & 1997) and gradient-free methods. The gradient-
based methods are usually very effective, but the solution
optimality can be sensitive to the initial guesses and the
method often becomes trapped into a local minimum
(Chernukhin and Zingg 2013). Since aerodynamic func-
tions are usually multi-modal (Keane 2006; Laurenceau
2008), gradient-free methods capable of finding global
optimum are of great interest for an aerodynamic shape
optimization. However, the computational cost associated
with global optimization methods, such as genetic
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algorithms (GAs) or particle swarm optimization (PSO),
could easily become prohibitive with the increase of the
number of design variables, if high-fidelity CFD is
employed for functional evaluation.

The efficiency of a global optimization can be dramatically
improved by using surrogate models (Jones 1998), such as
polynomial regression (Vavalle 2007), radial basis functions
(Sobester 2005), kriging (Forrester 2009), and support vector
regression (Yun 2009), etc. A surrogate model is essentially an
approximation model for the cost function or constraint func-
tion, which is built from the limited information obtained by
probing (or sampling) the design space. Once the surrogate
model is built, it can be used to replace the expensive CFD
simulation for predicting the responses of the cost function or
constraint function during the optimization process. Since the
computational cost of evaluating a surrogate model is negligi-
ble, compared to a CFD simulation, the optimization efficien-
cy could be greatly improved. But for this strategy of simply
replacing CFD simulations with the surrogate models, the
optimization results heavily rely on the global approximation
accuracy. Especially, building a sufficiently accurate surrogate
model for a high-dimensional aerodynamic function needs a
huge number of CFD-evaluated sample points, which limits
the use of this strategy to the problems with only a few design
variables (less than around 10). A remedy is to use adaptive
sampling techniques, in which initial surrogate models are
built first and then new sampling data is repetitively added
to update the models, either to improve the current optimal
design (exploitation) or to improve the global accuracy of the
model (exploration) (Forrester 2009; Koziel 2013). In general,
this method only uses a small number of initial sample points,
and adaptively chooses new sample point (s) in the vicinity of
the optimum or the promising regions of the design space. In
turn, the computation cost of finding the optimum can be
dramatically reduced.

For an aerodynamic shape optimization, the initial surro-
gate models are usually not accurate enough, since a small
number of initial sample points are not sufficient to represent
the numerous peaks and valleys for typical aerodynamic func-
tions. Consequently, the strategies about how to determine the
sites of new sample points in the design space, i.e. infilling
strategies (also called infill criteria), are crucial for the success
of a surrogate-based optimization (Forrester 2009; Yao 2013).
Currently, a few infill criteria (Forrester 2009; Jones 2001) are
available, such as minimizing the predicted objective function
(MP), maximizing the expected improvement function (EI)
(Jones 2001), maximizing the probability of improvement
function (PI) (Forrester 2009), minimizing the lower confi-
dence bound (LCB) (Laurenceau 2010), maximizing the mean
squared error (MSE) (Forrester 2009), etc. The EI method in
conjunction with a kriging model, called efficient global opti-
mization (EGO) method (Jones 1998), quickly gained popu-
larity for aerodynamic and multidisciplinary design

optimizations (Simpson 2001; Jeong 2005; Hoyle 2006;
Goto 2008; Han 2010a, b and 2013; Song 2007; Kanazaki
2007). It is noted that, for the most of the researches, a single
infill criterion is employed and only one new sample point is
chosen and evaluated at each updating cycle. Obviously, this
is not economic for the modern computers which always have
multiple CPU cores. If multiple new sample points could be
chosen and multiple CFD simulations are performed in paral-
lel, the total wall-clock time for an optimization process can be
dramatically reduced.

To this end, several parallel infill strategies have beenmade
available in recent years. Ginsbourger et. al. (2007) developed
a multi-point infilling criterion (called q-EI) using a general-
ized EI method defined by Schonlau (1997). In the method, q
points are chosen in each updating cycle. However, a highly
expensive computational method such as Monte-Carlo simu-
lation is needed to derive the solutions of multiple EI criteria
when q>2. Therefore, they proposed to use the concept of
approximated q-EI method to reduce the computational bur-
den. Viana et al. (2010) used the PI criterion to select n points
from Monte Carlo sampling in the analytical test cases, and
they found that the more sample points are infilled at each
updating cycle, the less iterations are usually needed.
Sobester (2004) used the method to pick out the best Np local
maxima of the EI function as new sample points to update the
RBFs model and applied it to structural optimization.
Laurenceau (2010) developed a method in which 3 sample
points were chosen simultaneously at each updating cycle,
by setting 3 different values for the user-defined parameter
of a LCB criterion. This method was demonstrated by aero-
dynamic shape optimization of airfoils and wings. Parr (2012)
proposed the method of choosing multiple points from the
Pareto-front set of maximizing both the expected improve-
ment (EI) and the probability of satisfying the constraints.

It is noted that these parallel infilling strategies use a single
infill criterion to choose multiple sample points, and therefore
the inherent drawback of this criterion could have a significant
impact on the results. For example, theMP tends to exploit the
region near the current best design and when it accurately
converges to a local optimum, it is trapped there; the EI has
a global performance but its local convergence is not satisfac-
tory; for the LCB, it is hard to set the user-defined parameter
for a new application; and for the MSE, it is a waste of sample
points to purely increase the global accuracy of the surrogate
model, even a local optimum can’t be found if it is used in
isolation. If multiple new sample points are chosen by a single
infill criterion to refine the surrogate model at each updating
cycle such as Laurenceau (2010), Schonlau (1997), Viana
(2010), and Sobester (2004), the weakness of this infill crite-
rion still exists. An alternative way is to choosemultiple points
by using multiple infill criteria. Yao (2013) developed a hy-
brid infill strategy by combining the LCB and DLI
(Divergence from local Linear Interpolation) criteria.
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Chaudhuri (2015) used the method of choosing multiple
points by combining the PI and EI criterion, which was ap-
plied to the optimization of the experimental flapping wing
and uncertainty quantifications.

Although the use of parallel infill strategies tends to a stan-
dard practice for a surrogate-based optimization, they haven’t
been well studied for higher-dimensional engineering prob-
lems, especially for strongly constrained aerodynamic design
optimization with large number of design variables. This arti-
cle is motivated by the inspiration of developing an alternative
parallel infilling strategy for the surrogate-based global opti-
mization and demonstrating it by low- and higher-dimensional
constrained aerodynamic shape optimization of transonic
wings. First, the existing infill sampling criteria such as EI,
PI, LCB, and MP are extended to the constrained form, which
are to be used simultaneously at each updating cycle of a
surrogate-based optimization. Second, the parallel infilling
strategy proposed in this article is verified by representative
analytical test cases, and compared with existing parallel
infilling strategies as well as the traditional single-point
infilling criterion. Then, drag minimizations of the ONERA-
M6 andDLR-F4wings withmultiple constraints are exercised
to demonstrate the proposed method. The optimization of the
M6 wing is performed in a comprehensive way: first, the
planform shape of the wing is optimized with a fixed sectional
shape (6 design variables); then, the sectional shapes are op-
timized with a fixed planform shape (24 design variables);
third, the planform and sectional shapes are optimized simul-
taneously (30 design variables). The proposed method is fur-
ther demonstrated by a higher-dimensional aerodynamic de-
sign problem (48 design variables), the design of a transport
aircraft wing, DLR-F4, and also compared with three refer-
ence parallel infilling strategies. The results show that the
proposed method is more effective than the exiting methods,
with faster convergence and slightly lower optimal drag (2–3
drag counts).

2 Surrogate-based optimizer with parallel infilling
strategy

An in-house surrogate-based generic optimizer called
SurroOpt (Liu 2012a; Han 2013; Zhang 2016) is used for all
the optimization study in this article. A number of surrogate
models such as kriging, polynomial response surface model,
radial basis functions, support vector regression, are available
in the code and the kriging model is used in this study.

This section describes the main ingredients of the
surrogate-based parallel optimizer in which the parallel
infilling strategy is used, including the design of experiments,
surrogate model, multiple-sample infill strategy, and the flow-
chart of the surrogate-based optimizer employed in this article.

2.1 Design of experiments

Design of experiments (DoE) (Giunta 2003) is used to gener-
ate sample points in the design space for constructing initial
surrogate models. To obtain a surrogate model as accurate as
possible with a limited number of pre-sampled points, the
space-filling design is usually favored. In this article, Latin
hypercube sampling (McKay 1979) is employed. Assuming
that we have ns sample points and Nv design parameters, the
range of each parameter is divided into ns bins with equal
probability, resulting in Nvð Þns bins in total. Then the ns sam-
ples are randomly selected in the parameter space subject to
the following requirements: (1) each sample is randomly
placed inside a bin; (2) when projected to one dimension, there
is no two points existing in the same bin. Assuming that the
range of each parameter is [0, 1], the sample points can be
obtained using the following formulation:

x ið Þ
j ¼ π ið Þ

j þ U ið Þ
j

ns
; 1≤ j≤Nv; 1≤ i≤ns ; ð1Þ

where i denotes the ith sample point, j denotes the jth design
variable, and U is a random number in [0,1]. For each j, πj
denotes a random permutation of {0, 1,⋯,ns−1}.

2.2 Surrogate modelling

Kriging is a geostatistical interpolation method suggested by
Krige (1951) and mathematically formulated by Matheron
(1963). Kriging was widely used in the context of
geostatistics. Another milestone in the development of kriging
model is that in 1989, kriging was extended by Sacks et al.
(1989) to the design and analysis of deterministic computer
experiments. Then it was widely used as a surrogate modeling
technique for predicting the output of a computer code in
simulation-based analysis and optimization. There are several
variants of the kriging model, in which ordinary kriging is the
most commonly used one. The following is a brief description
of ordinary kriging. The readers are referred to Ref. (Han et al.
2010a, b, 2012a, b, 2013; Han and Goertz 2012) for other
kinds of kriging models.

2.2.1 Kriging predictor and mean squared error

Kriging treats the output of a deterministic computer experi-
ment as the realization of a random process

Y xð Þ ¼ β0 þ Z xð Þ: ð2Þ

The stationary random process Z(x) has mean zero and
covariance of

Cov Z xð Þ; Z x
0

� �h i
¼ σ2R x; x

0
� �

; ð3Þ
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where σ2 is the process variance of Z(x). It is assumed that
σ2(x)≡σ2 for all x stationarity. And R is the spatial correlation
function that only depends on the Euclidean distance between
two sites x and x′.

The observed functional responses are denoted

ys ¼ y 1ð Þ;…; y nsð Þ� �T
. Following the derivation of (Sacks

1989; Liu 2012a; Han 2012a, b and 2013), we can obtain
the following kriging predictor

ŷ xð Þ ¼ β̂0 þ rT xð ÞR−1 ys−1β̂0

� �
; ð4Þ

where 1 is a unit column vector filled with ones and

β̂0 ¼ 1TR−11
� �−1

1R−1ys; ð5Þ

and

R: ¼ R x ið Þ; x jð Þ
� �h i

i j
∈ℝns�ns ;

r xð Þ :¼ R x ið Þ; x
� �h i

i
∈ℝns :

The mean squared error (MSE) of the kriging prediction at
any untried x is

MSE ŷ xð Þ
h i

¼ σ̂
2
1−rTR−1rþ 1−1R−1r

� �2.
1TR1

h i
; ð7Þ

where

σ̂
2
¼ ys−1β̂0

� �T
R−1 ys−1β̂0

� �.
ns: ð8Þ

2.2.2 Correlation models

The constructions of the correlation matrix R and the correla-
tion vector r require the calculation of the correlation func-
tions. The correlation function for random variables at two
sites x(i),x(j) is assumed to be only dependent on the spatial
distance. Here we focus on a family of correlation models that
is of the form

R x ið Þ; x jð Þ
� �

¼ ∏
k¼1

ny

Rk θk ; xk
ið Þ−xk jð Þ

� �
: ð9Þ

The correlation function used here is a cubic spline:

Rk ¼
1−15ξ2k þ 30ξ3k f o r 0 ≤ ξk ≤ 0:2
1:25 1−ξkð Þ3 for 0:2 < ξk < 1
0 f o r ξk ≥ 1

8<
: ð10Þ

where

ξk ¼ θk x ið Þ
k −x jð Þ

k

��� ���: ð11Þ

2.2.3 Kriging fit

Hyper parameters of the kriging, θ ¼ θ1;…; θNvð Þ, whose
dimensionality equals the dimensionality of the sampled data,
can be tuned by solving a maximum likelihood estimation
(MLE) problem:

MLE ¼ arg max
θ

−
1

2
nsln σ̂

2
� �

þ ln Rj j
	 
� �

: ð12Þ

In this paper, the quasi-Newton method (Byrd 1995) is
used.

2.3 Multiple-point infill strategy and constraint handling

Five types of typical infill criteria are investigated in (Liu
2012b). Since it was shown that the MSE criterion performs
much worse than the others, the other four infill criteria are
used in this article. Accordingly, four new points can be ob-
tained and evaluated in parallel at each updating cycle of a
surrogate-based optimization. The new sampling data is aug-
mented to the sampled database to update the surrogate
models, which drives the optimization towards the global
optimum.

2.3.1 Minimizing the prediction of surrogate models (MP)

This criterion directly replaces the cost function as well as the
constraint functions with surrogate models and searches for
the minimum objective based on the surrogate models. After
building the surrogate models for the cost function and the
constraint functions, the following optimization problem is
solved:

Minimize ŷ xð Þ
s : t : ĝi xð Þ≥0; i ¼ 1;⋯;NG

; ð13Þ

where NG is the number of the constraints. To solve this prob-
lem, both the genetic algorithm (GA) and gradient-based al-
gorithms (including quasi-Newton BFGS and sequential qua-
dratic programming (SQP)) are used. For GA, an efficient
constraint handling method proposed by Deb (2000) is
adopted. In this constraint handling method, the following
fitness function is used:

F xð Þ ¼
ŷ xð Þ if ĝi xð Þ≥0 ∀i ¼ 1; 2;⋯;NG

ŷmax þ
X NG

i¼1
ĝi xð Þ
D E

otherwise

8<
:

ð14Þ
where 〈〉 returns the absolute value of the operand if it is
negative. The parameter ŷmax is the objective function value
of the worst feasible solution in the population, and ĝi(x) is

(6)
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normalized here. Note that there is no user-defined penalty
parameter for this method. The detail of this method and its
advantages over the traditional penalty function methods can
be found in literature (Deb 2000). On the other hand, SQP can
handle the constraints by itself.

The constrained form of the MP criterion is called CMP
in this article. Practice suggests that it usually leads the
optimizer to become trapped in a local optimum, or some-
times even before a local optimum is found. However, the
optimization can be more accurately converged than that of
other criteria.

2.3.2 Maximizing the expected improvement (EI)

The expected improvement is defined as the improvement we
expect to achieve at an untried site x. We assume a random
variable Y∼N[ŷ(x), s2(x)], where ŷ is the kriging predictor
defined in Eq. (4), and s2 is the MSE defined in Eq. (7). Let
ymin be the current best real objective value, the improvement
can be expressed as I= ymin−Y(x) > 0. Then the expected im-
provement is given by

E I xð Þ½ � ¼
ymin−ŷ xð Þ
� �

Φ
ymin−ŷ xð Þ

s xð Þ

 !

þs xð Þ � ϕ
ymin−ŷ xð Þ

s xð Þ

 !
if s > 0

0 if s ¼ 0

8>>>>>><
>>>>>>:

ð15Þ

where Φ(·) and ϕ(·) are the cumulative distribution and prob-
ability density function of a standard normal distribution,
respectively.

For a constrained optimization, the EI method can be ex-
tended to the constrained form, which is depicted below. First,
a kriging model for the constraint function g(x) is constructed.
Similar to the expected improvement, we can assume a ran-
dom variable G∼N[ĝ(x), sg2(x)] for the constraint function.
The probability of satisfying the constraint can be written as

P G > 0½ � ¼ 1−Φ
−ĝ xð Þ
sg xð Þ

 !
; ð16Þ

where sg is the root mean squared error (RMSE) of the kriging
model for the constraint function. Then the constrained ex-
pected improvement can be calculated by :

Ec I xð Þ½ � ¼ E I xð Þ∩G > 0½ � ¼ E I xð Þ½ � � P G > 0½ �: ð17Þ

For the problem with multiple constraints, the constrained
expected improvement is obtained by multiplying each prob-
ability of satisfying the constraint, and the following problem
is solved:

Maximize : Ec I xð Þ½ � ¼ E I xð Þ½ � �∏
NG

i¼1Pi Gi > 0½ �: ð18Þ

This constrained form of the EI criterion is denoted by CEI
in this article. It soon got popularity for efficient global opti-
mization, after it was proposed. Nevertheless, we observed
that the EI function is highly multi-modal, and it is hard to
search the maximum value in high-dimensional problems.
Besides, even if the global optimum could be found, finding
it will be expensive (Jones 2001).

2.3.3 Minimizing the lower confidence bounding (LCB)

The lower confidence bounding is defined as following:

LCB xð Þ ¼ ŷ xð Þ−A� s xð Þ; ð19Þ
where s(x) denotes the standard deviation defined in Eq. (7),
and A is an user-defined parameter, which can determine the
relative weight of exploitation and exploration. A larger A
makes the search tend to be more global; otherwise, a smaller
A means the search is more local. In this article, A is set to 4,
according to our best practice. In each iteration of updating the
surrogate models, we solve the following constrained sub-
optimization problem:

Minimize : LCB xð Þ ¼ ŷ xð Þ−A� s xð Þ
s:t: ĝi xð Þ≥0; i ¼ 1;⋯;NG

; ð20Þ

using the same optimization method and constraint handling
method as used in CMP. Note that the constrained form of
LCB criterion is denoted CLCB in this article.

2.3.4 Maximizing the probability of improvement (PI)

Similar to the EI criterion, we assume a random variable
Y∼N[ŷ(x), s2(x)]. Hence, the probability that the predicted ob-
jective value precedes the current best real objective value is
as following:

P Y < ymin½ � ¼ Φ
ymin−ŷ xð Þ

s xð Þ

 !
: ð21Þ

The constraints are handled in the same manner as the CEI
criterion. The constrained form of the PI criterion is denoted
by CPI in this article. For the CPI criterion, new sample point
is obtained by solving the following sub-optimization prob-
lem:

Maxmize : Φ
ymin−ŷ xð Þ

s xð Þ

 !
�∏

NG

i¼1Pi Gi > 0½ �: ð22Þ

For this criterion, the strengths and weaknesses are similar
to the CEI.
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For the use of aforementioned multiple infill criteria, mul-
tiple new sample points can be obtained, with each criterion
choosing a single point. Then the new sample points can be
evaluated in parallel. As each infill criterion has pros and cons,
employing the criteria simultaneously can complement each
other. The EI, LCB, and PI can find different promising re-
gions since they have distinct characteristics of balancing the
exploitation and exploration. In addition, MP can exploit the
region of the current optimum design and lead the optimizer to
accurately converge to the optimum. It is noted that this meth-
od can be readily extended to add arbitrary number of sample
points at each update cycle, by simply selecting multiple sam-
ple points for each of the four infill criteria using the methods
from Laurenceau (2010), Schonlau (1997), Viana (2010), and
Soberster (2004), which is beyond the scope of this article.

2.4 Flowchart of surrogate-based parallel optimization
method

Similar to other “two-step” surrogate-based optimization
methods, a certain number of initial sample points are chosen
in the design space using a DoE, which is LHS in this article.
Then the samples (each sample point corresponds to a wing
shape) are evaluated by CFD in parallel. Kriging models are
subsequently built for the cost function as well as the con-
straint function(s), based on the sampled data. Then 4 sub-
optimization problems are executed individually in parallel:
minimizing the kriging approximated cost function (CMP),
maximizing the expected improvement (CEI), minimizing
the lower confidence bounding (CLCB), maximizing the
probability of improvement (CPI). After that, the 4 new points
obtained by solving the sub-optimization problems are

evaluated by CFD in parallel, and then the resulting data is
augmented to the sample database to update the kriging
models. The updating process is repeated until the global op-
timum is found or a limit to the total number of function
evaluations is reached. Figure 1 shows the flowchart of this
parallel optimizer.

3 Analytical test cases

To verify the effectiveness of the developed parallel infilling
strategy, it is compared to three kinds of similar methods re-
cently developed in the literature and the conventional single-
point infilling EGO method as well.

3.1 Three existing parallel infilling strategies

3.1.1 Kriging Believer (KB)

For the Kriging Believer strategy (Ginsbourger 2010), the true
responses at the site with maximum EI are replaced by the
predicted values and the dummy sample data is augmented
to the sample data set to rebuild the Kriging models. The
iteration repeats until q sites have been chosen to run in par-
allel. In this research, the CEI criterion is used to choose the
new sites.

3.1.2 Multiple point CEI (Multi-CEI)

First proposed by Sobester (2004), this strategy chooses the
positions of multiple local maxima of the CEI function to
update the surrogate models.

Design Space 

DoE  

Construct Surrogate model 

CFD 

Update the 
sample data 

Convergence criteria 
satisfied?

Output

no 

yes 

CFD CFD CFD 

New sample points 

CMP 
Sub-optimization using 

each criterion 

CFD CFD 

CEI CLCB CPI

Distributed computing 

Distributed computing 

Fig. 1 Flowchart of the
surrogate-based parallel
optimizer, SurroOpt
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3.1.3 Multiple point CPI (Multi-CPI)

This strategy was first investigated by Viana and Haftka
(2010), it chooses multiple points using the probability of

the improvement criterion. Instead of picking the best set
of q points from randomly generated datasets, q points are
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Fig. 2 Averaged convergence of the five infilling sampling strategies
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Fig. 4 Comparison of pressure distributions between CFD and
experimental data for ONERA-M6 wing
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optimization)

Efficient aerodynamic shape optimization of transonic wings 931



obtained by searching the q local maxima of the CPI func-
tion in this research.

For all of the three aforementioned strategies, q is set to
four for convenience of comparison.

3.2 Problem definition

A strongly constrained global optimization problem G9 (Deb
2000) and a tough local optimization problem Rosenbrock are
employed to carry out the comparison.

3.2.1 G9 problem

This problem has seven design variables and four non-
linear constraints. The mathematical model is of the
form

Minimize : f xð Þ ¼ x1−10ð Þ2 þ 5 x2−12ð Þ2 þ x34 þ 3 x4−11ð Þ2 þ 10x56

þ7x62 þ x74−4x6x7−10x6−8x7
�
; xi ¼ −10; 10½ �; i ¼ 1; 7

s : t : :

g1 xð Þ ¼ 127− 2 x12 − 3 x24 − x3− 4 x42 − 5 x5≥ 0
g2 xð Þ ¼ 282 − 7 x1− 3 x2− 10 x32 − x4 þ x5≥ 0
g3 xð Þ ¼ 196 − 23 x1− x22 − 6 x62 þ 8 x7≥ 0
g4 xð Þ ¼ −4x12−x22 þ 3x1x2−2x32−5x6 þ 11x7≥0

:

ð23Þ

The optimal solution observed so far is x* ¼ 2:3305;ð
1:9514;−0:4775; 4:3657;−0:6245; 1:0382; 1:5942Þ;
f x*
� � ¼ 680:6300573:

3.2.2 Rosenbrock

The mathematical model of this problem is as following:

Minimize : f xð Þ ¼
XNv−1

i¼1

100� xiþ1−xi2
� �2 þ 1−xið Þ2

h i !

xi∈ −2; 2½ �; i ¼ 1;⋯;Nv

:

ð24Þ

The true optimal solution is x* ¼ 1;⋯; 1ð Þ; f x*
� � ¼ 0.

Here we are concerned with the problem with 5 design vari-
ables (Nv=5).

3.3 Results

For both problems, ten initial sample points are used and the
limit of the total number of sample points is prescribed to 250
and 400 respectively. For each infilling strategy, the optimiza-
tions are repeated for 30 times and the averaged convergence
histories are shown in Fig. 2. It is shown that for both problems
the proposed parallel infilling strategy performs the best, follow-
ed by the EGO, Kriging believer, multi-CPI, and multi-CEI.

4 Wing design optimization

4.1 Flow analysis

The flow analyses are performed with an in-house code called
PMNS3D. It solves the Reynolds-averaged Navier–Stokes
(RANS) equations to simulate the flow around a 3D

Table 1 Lower and upper limits
of the design variables for the
planform shape optimization of
M6 wing

Design variable Baseline Lower limit Upper limit

lr (chord length of wing root) 0.8059 0.70 0.90

ℓ (half span) 1.1963 1.10 1.35

Λl (sweep-back angle of leading edge) 30° 25° 35°

Λt (sweep-back angle of trailing edge) 15.8° 10° 20°

θr (twist angle of wing root) 0 0° 3°

θt (twist angle of wing tip) 0 −5° 0°

Table 2 Comparison of
the planform parameters
between baseline and
optimized wing (Case 1:
planform shape
optimization of M6)

Design variable Baseline Optimum

lr 0.8059 0.7673

ℓ 1.1963 1.3500

Λl 30° 34.89°

Λt 15.8° 20.00°

θr 0 0.5556°

θt 0 −2.22°

Table 3 Comparison of the aerodynamic force coefficients and wing
area for baseline and optimized wing (Case 1: planform optimization of
M6)

Baseline Optimum

Cd 0.01751 0.01491 (−14.85 %)

Cl 0.23803 0.23805 (+0.01 %)

Area 0.75318 0.75325 (+0.01 %)
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configuration. The three-dimensional RANS equations used
in PMNS3D are as follows:

∂W
∂t

þ ∂E
∂x

þ ∂F
∂y

þ ∂G
∂z

¼ ∂Ev

∂x
þ ∂Fv

∂y
þ ∂Gv

∂z
; ð25Þ

whereW are conservative variables, E, F andG are the invis-
cid flux terms,Ev, Fv andGv are the viscous flux terms respec-
tively. With the structured grids of C-H topology, the equa-
tions are solved by using the cell-centered finite volumemeth-
od. The second-order Jameson central scheme is used as the
spatial discretization scheme and the Spalart-Allmaras one-

equation turbulence model is used for turbulence closure.
Implicit residual smoothing, local-time stepping and multigrid
techniques are used to accelerate the solution to converge to
the steady state. Figure 3 shows the C-H type grids used in this
paper, which are generated automatically by our in-house
code, with the grid distribution of 208 (chord-wise direc-
tion)× 48 (normal direction) × 48 (span direction). Figure 4
shows the comparison of pressure distributions of the
ONERA-M6 wing between the CFD results obtained by
PMNS3D and the wind-tunnel experimental results at the
free-stream condition of Ma = 0.8395, Re = 11.72 × 106,
α=3.06°. As one can see, the CFD results are in reasonably
good agreement with the experimental data.

4.2 Geometric parameterization of wing

Generally, the wing shape contains two parts: planform shape
and sectional shape. Once the planform parameters and the
shapes of the specified control sections are determined, the shape
at any span-wise location can be obtained by interpolation.

Table 4 Comparison of the predicted and the validated Cd andCl at the
obtained optimal point (Case 1)

by CFD by surrogate error

Cd 0.01491 0.014907 0.03 %

Cl 0.23805 0.238033 0.006 %

(a) Baseline 

(b) Optimum 

Fig. 6 Comparison of the pressure contours for baseline and the
optimized shape (surface and 37.6, 72.7 % semi-span) (Case 1:
planform shape optimization of M6 wing)
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Fig. 7 Comparison of the pressure distributions for baseline and
optimized shapes (Case 1: planform shape optimization of M6 wing)
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4.2.1 Planform parameterization

In general, there are 7 independent parameters to describe the
shape of a trapezoidal wing: area of the wingArea, aspect ratio
AR, root-to-tip ratio λ, leading-edge sweep angle Λl, dihedral
angle θd, twist angle of the wing tip θt and the incident angle
θm. For convenience, the first 4 parameters are replaced with
the following equivalent 4 parameters: chord length of the root
section lr, half span ℓ, leading-edge sweep angle of Λl, and
trailing edge sweep angle of Λt. Besides, the incident angle is
replaced with the twist angle of wing root θr, since a single
wing (without fuselage) is used in this article; and the dihedral
angle is not considered. As a result, 6 independent parameters
are considered and taken as the design variables for the plan-
form shape optimization (see Fig. 5). The design variables and
their ranges are shown in Table 1. The twist angle is prescribed
to vary linearly from the root to tip for the planform shape
optimization.

4.2.2 Wing section parameterization

Since the sectional shape of the wing can be considered as an
airfoil, in this article, the CST (class function/shape function
transformation) method proposed by Kulfun (2008) is used.
The CST method can describe an airfoil with a small number
of variables.

The CST describes an airfoil shape (y coordinates of upper
or lower surfaces) with the product of a class function C(x/c)
and a shape function S(x/c):

y
c
¼ C

x
c

� �
⋅S

x
c

� �
þ x

c
⋅
Δzte
c

; ð26Þ

where c is the chord length, and C(x/c) has the form of

C
x
c

� �
¼ x

c

� �N1

⋅ 1−
x
c

h iN2

; 0≤
x
c
≤1 : ð27Þ

Usually,N1=0.5 andN2=1.0 are used for a round nose and
sharp trailing edge airfoil.

The shape function is the weighted sum of nth-order
Bernstein polynomial

S
x
c

� �
¼
Xn
i¼0

Ai⋅Ki;n⋅
x
c

� �i
⋅ 1−

x
c

� �n−i	 

; ð28Þ

where Ki,n are the coefficients of the Bernstein polynomial

Ki;n≡
n
i

� �
≡

n!
i! n−ið Þ! ; ð29Þ

and Ai are the weights, which are the design variables for the
sectional shape optimization.

Table 5 Comparison of the drag reduction and CPU time for the EGO
and parallel method (Case 1: planform shape optimization of M6 wing)

Drag reduction CPU time

EGO 14.02 % 197 h,17 min

Parallel infill 14.85 % 48 h,28 min

Iteration
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100
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Parallel infill

Fig. 9 Comparison of the convergence histories for EGO and parallel
method (Case 1: planform shape optimization of M6 wing)

Table 6 Comparison of the aerodynamic force coefficients and
geometric parameters for baseline and optimized shapes (Case 2:
section shape optimization of M6 wing)

Baseline Optimum

Cd 0.01751 0.01562(−10.79 %)

Cl 0.23803 0.23804 (+0.01 %)

Thickr 0.09786 0.09793 (+0.07 %)

Thickt 0.09786 0.09799 (+0.13 %)

Evaluation
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200
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infeasible

bestDoE

Fig. 8 Convergence history of objective function of the optimization
process (Case 1: planform shape optimization of M6 wing)
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It is evident from Eq. (28) that, for the CSTwith nth-order
Bernstein polynomial, there are n+1 design variables for up-
per and lower surface respectively, so there are 2n+2 design
variables in total for an airfoil or a wing section. The accuracy
of fitting an airfoil or wing section is higher if larger n is used.
Kulfan (2008) suggested that 4~6 is enough to fit a conven-
tional airfoil with sufficient accuracy. Hence, 5th-order
Bernstein polynomials are used in this article.

4.3 Design cases

Four cases are exercised in this research, three of which
are drag minimizations of an ONERA-M6 wing. First,
the planform shape is optimized with fixed section
shapes (case 1, 6 design variables); then, the section
shapes are optimized with fixed planform shape (case
2, 24 design variables); third, the planform and section
shapes are optimized simultaneously (case 3, 30 design
variables). The fourth case is the sectional shape opti-
mization of a DLR-F4 wing (48 design variables).

4.3.1 Planform shape optimization of M6 wing

In this case, we take the six parameters given in sub-sec-
tion 4.2.1) as design variables. The objective is to minimize
the drag at the free-stream condition of Ma = 0.8395,
Re=11.72×106, α=3.06°, with two constraints about the lift

(a) Baseline 

(b) Optimum 

Fig. 10 Comparison of the pressure contours for baseline and the
optimized shapes (surface and 37.6, 72.7 % semi-span) (Case 2:
sectional shape optimization of M6 wing)
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Fig. 11 Comparison of the pressure distributions for baseline and
optimized shapes (Case 2: sectional shape optimization of M6 wing)

Table 7 Comparison of the predicted and the validated Cd andCl at the
obtained optimal point (Case 2)

by CFD by surrogate error

Cd 0.01562 0.01567 0.28 %

Cl 0.23804 0.238033 0.003 %
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coefficient and the area of wing. The mathematical model is as
following:

Minimize : Cd

s : t :
1ð Þ Cl ≥ Cl0

2ð Þ Area≥Area0
: ð30Þ

20 initial sample points are selected using the LHS, and the
maximum allowable number of CFD calls is set to 150. The
optimization experienced 48 h 28 min using a PC with a 4-
cores, Intel i7 processor (3.4 GHz). The comparison of the
baseline and optimized planform parameters is shown in
Table 2.

Table 3 gives the comparison of aerodynamic performance
and wing area between the baseline and optimized wing. From
the two tables, one can see that the root chord length is de-
creased while the half-span length is increased; and the sweep
angles for leading edge and trailing edge are both increased.
As a result, the induced drag and wave drag are reduced due to
the increased aspect ratio and sweep angle are increased.
Table 3 also shows that the total drag coefficient is reduced
by 14.85 %, while both two constraints are strictly satisfied.
Table 4 gives the predicted aerodynamic coefficients by
kriging at the best site, which shows that the surrogate have
satisfactory accuracy of approximation at this site.

Figure 6 compares the pressure contours between the base-
line and optimized wing. It is shown that the aspect ratio and
sweep-back angle are both increased, resulting in smaller in-
duced drag and wave drag. Figure 7 compares the pressure
distributions of two spanwise sections. It can also be seen that

the shock at each section is weakened for the optimized wing.
Figure 8 shows the convergence history of the objective func-
tion during the optimization process. It should be noted that,
the black square and blue delta symbols denote the feasible
and infeasible solutions, respectively, while the solid line de-
notes the best feasible solution obtained so far.

This problem is also solved by single-point infilling EGO
method with the same number of initial samples and limit
number of total CFD evaluations. Only one CPU core is
employed since one point is infilled per updating cycle. As a
result, the drag is reduced by 14.02 %, which is slightly less
than that of the parallel infilling method proposed in this arti-
cle. Besides, it costs 197 h 17 min, almost 4 times as long as
that of the parallel infilling method (also shown in Table 5).
The convergence of the objective function value with respect
to the iteration number is shown in Fig. 9. It is observed that
less iterations are needed for the parallel infilling method.

4.3.2 Sectional shape optimization of M6 wing

For this case, the planform parameters are taken from the
baseline and only the root and tip sections are parameterized
using the CST of 5th order, resulting in 12 variables for each
section and 24 in total. The objective here is also to minimize
the drag at the same free-stream condition as in case 1 and

Table 8 Comparison of the drag reduction and CPU time for EGO and
parallel method (Case 2: sectional shape optimization of M6 wing)

Drag reduction CPU time

EGO 9.62 % 190 h,7 min

Parallel infill 10.79 % 60 h,14 min

Table 9 Comparison of the aerodynamic force coefficients and
geometry parameters of the baseline and optimized shapes (Case 3:
planform and sectional shape optimization of M6 wing)

Baseline Optimum

Cd 0.01751 0.01277 (−27.07 %)

Cl 0.23803 0.23814 (+0.05 %)

Thickr 0.09786 0.09786 (+0.00 %)

Thickt 0.09786 0.10021 (+2.40 %)

Area 0.75318 0.75529 (+0.28 %)

Iteration
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Fig. 13 Comparison of convergence histories of EGO and Parallel
method (Case 2: sectional shape optimization of M6 wing)
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Fig. 12 Convergence history of objective function of the optimization
process (Case 2: sectional shape optimization of M6 wing)
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with 3 constraints on the lift coefficient, the maximum
thickness-to-chord ratio of the root and tip sections. The math-
ematical model is

Minimize Cd

s : t :
1ð Þ Cl ≥ Cl0

2ð Þ Thickr ≥Thickr0
3ð Þ Thickt ≥Thickt0

; ð31Þ

where Thickr denotes the maximum thickness-to-chord ratio
of the root section, while Thickt denotes the tip thickness.

40 initial points are selected by the LHS, and totally 200
CFD simulations have been run during the entire optimi-
zation process. This costs 60 h 14 min in total using 4 CPU

cores. Table 6 compares the aerodynamic performance and
thickness of control sections between the baseline and op-
timized wings. We see that the drag is reduced by 10.79 %
with all the constraints strictly satisfied. Table 7 also gives
the predicted aerodynamic coefficients by kriging at the

(a) Baseline 

(b) Optimum 

Fig. 14 Comparison of the pressure contours for baseline and the
optimized shapes (surface and 37.6, 72.7 % semi-span) (Case 3:
planform and sectional shape optimization of M6 wing)
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Fig. 15 Comparison of the pressure distributions for baseline and
optimized shapes (Case 3: planform and sectional shape optimization of
M6)
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Fig. 16 Convergence history of objective function of the optimization
process (Case 3: planform and sectional shape optimization of M6 wing)

Table 10 Comparison
of the predicted and the
validatedCd andCl at the
obtained optimal point
(Case 3)

by CFD by surrogate error

Cd 0.01 277 0.01273 0.32 %

Cl 0.23814 0.238302 0.07 %
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optimum site, which shows that the surrogate models are
accurate enough at this site.

Figure 10 shows the comparison of baseline and opti-
mized pressure contours. It is evident that the shock at each
section is weaker for the optimized shape, which results in
notable drag reduction. The weakened shock is further
checked by comparison of the pressure distributions at
two spanwise sections of the wing, and the results are
shown in Fig. 11. The convergence history of the objective
function is shown in Fig. 12. In this figure, the blue trian-
gles and black squares represent the infeasible and feasible
points, respectively, while the red line stands for history of
observed best solution so far.

Similar to the previous case, the conventional single-
point infilling EGO is also performed as the reference.
The result shows that the drag is reduced by 9.62 %, which
is less than that of the proposed parallel infill method in
this article. Besides, it costs 190 h 7 min, about 3 times
longer than that of the parallel infilling method. The com-
parison of drag reduction as well as the CPU time is shown
in Table 8, and the comparison of convergence histories is
shown in Fig. 13. It is shown that the proposed method
gains more drag reduction and requires much less itera-
tions, when compared with the single-point infilling
EGO, which indicates the benefits of using the parallel
infill strategy.

4.3.3 Planform and sectional shape optimization of M6 wing

This case combines the previous two, with the same objective
and at the same free-stream condition. There are 30 design
variables and 4 constraints in total. The constraints are asso-
ciated with the lift coefficient, maximum thickness-to-chord
ratio of the root and tip sections and area of the wing. The
following formula gives the mathematical model of the opti-
mization problem:

Minimize : Cd

s : t : :

1ð Þ Cl ≥ Cl0

2ð Þ Thickr ≥Thickr0
3ð Þ Thickt ≥Thickt0
4ð Þ Area ≥ Are a0

: ð32Þ

Initially, 40 sample points are selected by LHS and the max-
imum allowable number of CFD simulations is set to 200. The
optimization process takes 68 h 50 min on a PC with a 4-cores
Intel i7 (3.4GHz) processor. Table 9 shows the comparison of
the aerodynamic coefficients and geometric parameters be-
tween the baseline and optimized wings. The drag is reduced
by 27.07 %. The surrogate-model predicted and CFD-validated

Table 11 Comparison of the drag reduction and CPU time for EGO
and parallel method (Case 3: planform and sectional shape optimization
of M6 wing)

Drag reduction CPU time

EGO 24.44 % 272 h,20 min

Parallel infill 27.07 % 68 h,50 min

Iteration
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Fig. 17 Comparison of the convergence histories for EGO and Parallel
infill method (Case 3: planform and sectional shape optimization of M6
wing)

section 1

section 4

section 2

section 3

Flow

Fig. 18 Design sections of DLR-F4 wing

Table 12 Comparison of the aerodynamic force coefficients and
geometry parameters for baseline and optimized shapes (Case 4:
sectional shape optimization of DLR-F4 wing)

Baseline Optimum

Cd 0.02798 0.02636 (−5.79 %)

Cl 0.54626 0.54718 (+0.17 %)

Cm −0.08462 −0.10870
Thick1 0.15036 0.15124 (+0.59 %)

Thick2 0.12200 0.12830 (+5.16 %)

Thick3 0.12189 0.12412 (+1.83 %)

Thick4 0.12182 0.12271 (+3.56 %)
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aerodynamic coefficients are compared in Table 10. It is shown
that the surrogate models are sufficiently accurate at the site of
the optimum solution.

The comparison of pressure contours is given in Fig. 14.
One can see that both of the two shocks are almost removed,
due to the simultaneous modification of the planform shape
and sectional shape. Figure 15 compares the pressure distri-
butions of two spanwise sections, it is evident that, there exists
aft-loading for the optimized wing, which is similar to super-
critical wings. Figure 16 shows the convergence history of the
objective function. This figure shows that, although none of
the initial sample points are feasible, the optimizer can find
good results that strictly satisfy all the constraints by the use of
constrained infill criteria.

Table 13 Comparison
of the predicted and the
validatedCd andCl at the
obtained optimal point
(Case 4)

by CFD by surrogate error

Cd 0.02636 0.02628 0.32 %

Cl 0.54718 0.54641 0.14 %

(a) Baseline 

(b) Optimum 

Fig. 19 Comparison of the pressure contours for baseline and the
optimized wing shapes (surface and 30.2, 45.0, 65.0, 86.9 % semi-span)
(Case 4: sectional shape optimization of DLR-F4 wing)
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Fig. 20 Comparison of pressure distributions of the baseline and
optimized wing shapes (Case 4: sectional shape optimization of DLR-F4)
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In the case of conventional single-point infilling EGO,
the drag reduction is 24.44 %, at a cost of 272 h 20 min
using a single CPU core. The drag reduction is less than
that of the parallel infilling method, and the CPU time is
almost 3 times longer (also shown in Table 11).
Comparison of the convergences of the objective value
with respect to the iteration number is shown in Fig. 17.
Similar to the previous cases, much less iterations are
needed for the proposed method by the use of the parallel
infilling strategy.

4.3.4 Sectional shape optimization of DLR-F4 wing

The DLR-F4 is a wing-body configuration from the 1st Drag
PredictionWorkshop (DPW-1). In this test case, only the wing
is considered, without including the fuselage. Four sections at
different spanwise locations are taken as the control sections
for the shape optimization (Redeker 1994), which is shown in
Fig. 18. Note that section 1 is taken as the wing root.

The 5th-order CST method is used to parameterize each of
the sections, resulting in 48 design variables in total. The
objective is to minimize the drag at the free-stream condition
of Ma=0.75, Re=3.0×106, α=0°, with 6 constraints on the
lift coefficient, the maximum thickness-to-chord ratio of the 4
sections, and the pitching moment coefficient. For the calcu-
lation of pitching moment coefficient, the mean aerodynamic
chord (m.a.c.) is taken as the reference length and the quarter
of the m.a.c. is taken as the reference point. The following
formulation shows the mathematical model of the optimiza-
tion:

Minimize : Cd

s:t: :
1ð Þ Cl ≥ Cl0; 2ð Þ Cmj j ≤ 0:12
3ð Þ Thick1≥Thick1;0; 4ð Þ Thick2≥Thick2;0
5ð Þ Thick3≥Thick3;0; 6ð Þ Thick4≥Thick4;0

:

ð33Þ
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Fig. 21 Convergence history of objective function of the optimization
process (Case 4: sectional shape optimization of DLR-F4 wing)
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Fig. 22 Mean and standard deviation of the drag of the repeated 50 runs
during the optimizations with different number of initial samples points
(Case 4)
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In the optimization process, 50 initial sample points are
selected by the LHS, and the maximum number of CFD sim-
ulations is set to 300. The whole optimization process costs
125 h 36 min in total, when 4 CPU cores are employed.
Table 12 compares the objective and constraint function
values between the baseline and the optimized wings. One
can see that the drag is reduced by 5.79 % and all the con-
straints are strictly satisfied. The approximation accuracy of
the surrogate models is checked at the site of the optimum, as
shown in Table 13. The absolute error for drag coefficient is as
small as 1.2 counts and relative error is about 0.3 %, which
confirms that through infilling sampling the accuracy of the
surrogate models are dramatically improved in the vicinity of
the optimum, even for the optimization problem with number
of design variables as large as around 50 .

Figures 19 and 20 respectively depict the pressure contours
and surface pressure distributions, for the baseline and opti-
mized wings. It can be observed that for the optimized wing,
the shock is weaker, thus the wave drag is reduced. Figure 21
shows the convergence history of the drag coefficient during
the optimization process. Although none of the initial sample
points is feasible, because of the strict constraints, the optimizer
is still able to find good feasible solutions by repetitively
infilling new sample points, which demonstrates the capacity
of the proposed method for constraint handling.

This optimization problem was also carried out using the
aforementioned three reference parallel infilling strategies, and
the results are compared with that of using themethod proposed
in this article. For each parallel infilling strategy, the optimiza-
tion is performed using different number of initial sample
points, in the range from Nv to 8Nv, to clarify the effect of the
initial sampling. Furthermore, in order to eliminate the effect of
randomness, each optimization case is repeated by 50 times and
the statistical results, i.e. mean and standard deviations, are
obtained. Note that since this comparison is very costly, we
moved all the optimization stuff to the TianHe-1A supercom-
puter of the National Supercomputer Center in Tianjin, China.

Figure 22 depicts the convergence histories for each of the
infilling strategies. The lines represent the averaged drag from

50 runs (Cd ), and the vertical bars are corresponding to the
standard deviation of drag (σCd). The length of a vertical bar

equals σCd with its center locates at Cd . It is shown that the
presented parallel infilling strategy outperforms the others, for

the cases with different numbers of the initial sample points.
Table 14 gives the mean drag coefficients of optimized wings
from the repeated 50 runs with the number of initial sample
points set as one time of the number of design variable. From
this table, it can also be seen that, the present method proposed
in this article achieves a lowest drag.

The effect of number of initial sample points is further studied
in Fig. 23, which shows the convergence histories with different
number of initial sample points using the presented parallel
infilling strategy. As one can see, the convergence rate is quite
different, but the final optima seem to be insensitive to the num-
ber of the initial sample points. It suggests that in the case that the
computational budget is limited, setting number of initial sample
points to Nv or 2Nv is likely to be a favorable choice.

5 Conclusions

In this article, an alternative parallel infilling strategy for a
surrogate-based optimization is developed. The key feature of
this strategy is to use multiple infill criteria simultaneously to
choose multiple new sample points, which are to be evaluated
in parallel at each updating cycle. In this infilling strategy, each
criterion is extended to consider the constraints, which makes it
well suited to problems with multiple constraints.

The proposed method is demonstrated by four cases of
strongly-constrained aerodynamic shape optimization of tran-
sonic wings, including both planform and section shape de-
sign problems and with the number of design variables in the
range from 6 to 48. The results verify that, the proposed par-
allel infilling strategy is more effective than three existing
reference parallel infilling strategies, when the number of ini-
tial sample points are in the range from Nv to 8Nv (where Nv

here denotes the number of design variables). Each case is
repeated 50 times to eliminate the effect of randomness in
our results. This proposed method can be readily extended
to adding arbitrary number of new sample points at each
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Fig. 23 Comparison of the convergence histories with different initial
sample points using the presented parallel infilling strategy

Table 14 Mean of the optimized drag of the repeated 50 runs, initial
sample =Nv (Case 4: DLR-F4 wing)

method Baseline (CFD) Optimum (CFD)

KB 0.02798 0.02661

Multi-CEI 0.02798 0.02673

Multi-CPI 0.02798 0.02655

Present method 0.02798 0.02631
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updating cycle, by simply selecting multiple sample points
from each of the four infill criteria.
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