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Abstract Uncertainty-based multidisciplinary design optimi-
zation (UMDO) has been widely acknowledged as an ad-
vanced methodology to address competing objectives and re-
liable constraints of complex systems by coupling relationship
of disciplines involved in the system. UMDO process consists
of three parts. Two parts are to define the system with uncer-
tainty and to formulate the design optimization problem. The
third part is to quantitatively analyze the uncertainty of the
system output considering the uncertainty propagation in the
multidiscipline analysis. One of the major issues in the
UMDO research is that the uncertainty propagation makes
uncertainty analysis difficult in the complex system. The con-
ventional methods are based on the parametric approach could
possibly cause the error when the parametric approach has ill-
estimated distribution because data is often insufficient or lim-
ited. Therefore, it is required to develop a nonparametric ap-
proach to directly use data. In this work, the nonparametric
approach for uncertainty-based multidisciplinary design opti-
mization considering limited data is proposed. To handle lim-
ited data, three processes are also adopted. To verify the

performance of the proposed method, mathematical and engi-
neering examples are illustrated.

Keywords Akaike information criterion . Kolmogorov–
Smirnov test . Limited data . Nonparametric approach .

Reliability-based design optimization . Uncertainty-based
multidisciplinary design optimization

1 Introduction

In engineering design, the traditional deterministic design op-
timization model, which considers variables as deterministic
values, has been successfully applied to reduce the cost while
satisfying the system requirements. In the cases of complex
and coupled systems comprising many disciplines, multidis-
ciplinary design optimization (MDO) has been widely used to
solve system design problems (Yi et al. 2008; Balling and
Sobieszczanski-Sobieski 1996). As an advanced optimization
technique, MDO can provide a synthetic optimum solution of
the system while satisfying complicated and nonlinear design
constraints and considering the potential synergistic effect of
each discipline. In addition, with the improvement of technol-
ogy and competition between products, the demand for higher
reliability and robustness of products is a challenge (Taguchi
et al. 1983; Nguyen et al. 2009). Previously, to guarantee the
reliability and consider potential uncertainty, a marginal de-
sign was performed by employing a safety factor multiplied
by an actual constraint. However, because such a safety factor
was defined based on the intuition of a designer or by using
empirical data, it might have been misestimated, with a low
safety factor causing a function fault and performance failure,
and high safety factor leading to over design, and in turn to
increased cost (Elms 2004). However, there is no quantitative
standard to define a safety factor. Hence, a quantitative
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method, rather than a qualitative method, is necessary to eco-
nomically and effectively consider uncertainty and guarantee
reliability. For this purpose, uncertainty-based design (UBD)
has been explored (Lee and Park 2001; Rao 1992). In UBD,
two design approaches can be adopted. One approach is ro-
bust design optimization (RDO), which improves robustness
to find a non-sensitive solution, i.e., a robust solution, without
eliminating the causes (Lee and Park 2001). The other ap-
proach is reliability-based design optimization (RBDO) in-
cluding reliability analysis (RA), or the so-called uncertainty
analysis in the optimization process; in this approach,the prob-
ability of a system output is estimated quantitatively and sta-
tistically such that the design requirement—the reliability or
the failure rate—is satisfied (Rao 1992). These approaches
can also be applied together for the simultaneous improve-
ment of reliability and robustness. Recently, MDO and UBD
methodologies were integrated, and the resulting method was
named uncertainty-based multidisciplinary design optimiza-
tion (UMDO) (Yao et al. 2011). UMDO was first proposed
in the field of aerospace engineering, and it gained attention
because of the need for the regulations for reliability and ro-
bustness of responses to be strictly guaranteed, even for com-
plicated disciplines.

In the early stage of UMDO design, to apply uncertain-
ty to the design, the constraints imposed on the design
were reformulated with redefined factors instead of the
ideal factors based on the marginal design, which guaran-
teed the safety of the system even when the system faced
the worst possible combinations of uncertainties. With a
high safety factor, the design and optimization are prone
to reach a solution that is more conservative than a solu-
tion obtained using ideal factors. The method called
worst-case design was first proposed in aerospace engi-
neering, which is mainly focused on disciplines such as
structural engineering, aerodynamics, and control
(Parkinson et al. 1993). The worst-case design has been
shown to be effective in various applications in non-
complex problems; however, when the MDO system has
many constraints and a trade-off relationship exists be-
tween these constraints, the result of the worst-case design
is ineffective, or the design fails to find feasible solutions
(Gu et al. 2000).

The key steps in UMDO research involve determining how
to consider the uncertainty propagated between disciplines
and how to quantify the system probability of failure calcula-
tion (Yao et al. 2011). In the conventional method, for the
UMDO problem considering the coupling relationship of dis-
ciplines, the first-order Taylor series approximation is widely
used to analyze system uncertainty with cross propagation
between disciplines. In addition, the first-order reliability
method (FORM) is employed to quantify the reliability of
systems because of the simplicity of calculation and good
approximation of performance functions using the first-order

Taylor series approximation (Du and Chen 2005;
Padmanabhan and Batill 2002).

In an MDA phase, because the traditional methods assume
that uncertainty is regarded with only normal distribution, the
variation in the parameters of a normal distribution becomes a
convergence criterion. For example, when the variation in
mean and standard deviation between a previous and current
iteration is within a specified tolerance, the MDA phase is
stopped. However, when the normal distribution cannot iden-
tify the phenomenon or when the parametric distribution is
incorrectly estimated in an uncertainty modeling step, a seri-
ous error can occur, and this error can increase because of
uncertainty propagation. Even in realistic experiments and
environments, the uncertainty is limited because experiments
or exploitations are limited by a cost problem or an environ-
ment problem. Thus, the error increases during the optimiza-
tion process owing to wrong assumption. Therefore, a new
UMDO without using continuous parametric distribution but
directly adopting limited data should be developed.

In this paper, a nonparametric approach for UMDO is pro-
posed to consider limited data directly. Because the parame-
ters that represent a probability density function (PDF) are not
used, a new MDA phase and uncertainty analysis phase are
proposed for a nonparametric approach. TheMDA phase con-
sists of two steps including a data-transferring step and a con-
vergence test step. In a nonparametric approach, because the
limited data of variables is directly used, each discipline, ex-
periment, or simulation should import a combination of the
limited dataof each variable. Hence, as a data-transferring
step, an auto-correlation sequence is employed to make limit-
ed samples uncorrelated before analyzing a discipline in every
iteration. The Kolmogorov–Smirnov test (K-S test) is then
applied for a convergence test step to measure the uncertainty
propagation of coupled variables (Massey 1951). The K-S test
calculates the maximum difference of empirical cumulative
distribution functions (ECDFs) between previous and current
iterations. AnMDA phase is stopped if the difference is within
the specified tolerance. Finally, a nonparametric uncertainty
analysis based on the Akaike information criterion (AIC) is
proposed (Akaike 1973). AIC is a method that selects the best-
fitted distribution from several candidate distributions. To val-
idate the performance of the proposed method, mathematical
and engineering examples are provided. To verify the accura-
cy of the proposed method, the reliabilities of responses at the
optimum design as obtained by the proposed method were
compared with those obtained by Monte Carlo simulation.

2 Uncertainty-based design

As a pre-process for employing uncertainty-based design, in-
put factors with uncertainty should be defined, and the uncer-
tainties of each input factor should be classified. We can then
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explain conceptually how to quantify and measure the uncer-
tainties of input factors.

2.1 Uncertainty classification

Uncertainty can be commonly classified as epistemic and ale-
atoric uncertainties (Scott et al. 2004; Thunnissen 2005;
Sankararaman and Mahadevan 2011; Liang et al. 2015). The
epistemic uncertainty occurs when a quantity has not been
measured sufficiently or accurately because the effects of the
uncertainty have been neglected in the model owing to (1) an
assumption or lack of knowledge, (2) deliberate hiding of
particular data, or (3) lack of information. The aleatoric uncer-
tainty is representative of unknowns that differ each time in
the same experiment, and is attributed to individual variations
and randomness of the model or phenomenon. In real life
applications, both types of uncertainties overlap. The intention
of uncertainty quantification is to work toward reducing epi-
stemic uncertainty because aleatoric uncertainty cannot be
reduced.

In the case of epistemic uncertainty, it is difficult to obtain
an accurate statistical model and to quantify it accurately.
Therefore, in this study, we focused on the quantification of
aleatory uncertainty. To reflect this uncertainty in the design
process, it is necessary to determine whether the uncertainty
depends on the design variables or on the design parameter.

When the outputs of a function of design variables and
parameters are assumed as the response, this classification is
required because the deviations in design variables directly
affect the sensitivity of the response in terms of design sensi-
tivity. That is, if the uncertainty that is dependent on design
variables is changed, the actual design sensitivity of the re-
sponses includes the sensitivity of standard deviation in the
uncertainty and the sensitivity of the design variables. For
example, manufacturing uncertainty is included in the uncer-
tainty that is dependent on the design variables such as the
shape and size of a product. In addition, environmental uncer-
tainties and the uncertainty of material properties are included
in the uncertainty that is independent of the design sensitivity
because they the material properties are related to the design
parameters.

2.2 Uncertainty-based design optimization

As engineering fields have become increasingly more com-
petitive, there is a demand for superior quality products in the
industry. The uncertainties from the control or noise factors
that a designer cannot control are caused by involuntary var-
iations in performances. In this paper, two uncertainty-based
design optimization (UDO) techniques are explained (Taguchi
et al. 1983; Nguyen et al. 2009; Lee and Park 2001; Rao
1992). Unexpected deviations in performances, which are
caused by uncontrollable uncertainty, reduce the quality of

products and their competitiveness. Robust design has been
developed to improve the quality of engineering products
(Taguchi et al. 1983). Recently, this technology has been ex-
panded to various design areas (Beyer and Sendhoff 2007;
Lee et al. 2014). The optimum solution of robust design tech-
niques has a unique advantage over the deterministic design
techniques that do not consider the uncertainty of factors. In
deterministic design, point 1 is considered to be the optimum
solution—the minimum value in the design space, as shown in
Fig. 1. However, if the factors have uncertainty, which is
called the variation in the factor, point 1 can potentially violate
the constraint. On the other hand, in robust design, point 2 is
considered as the optimum solution that improves the perfor-
mance and minimizes the variance of performance due to the
variation in the factor, Δx. Thus, point 2 never violates the
constraint under the uncertainty. This result is called the robust
optimum.

On the other hand, product failure under uncertainty is
a significant problem. In practice, because nominal values
of design variables are used in the design, half of the
products face the risk of failure even if only one con-
straint is active. A safety factor defined by a designer or
an engineer is employed in conventional design optimiza-
tion, but an empirically defined factor can cause
overdesigned products, and an incorrectly assumed safety
factor also causes failure. Hence, the failure rate can be
improved through statistically defined quantification of
uncertainty and optimization techniques. This process is
termed RBDO (Youn and Choi 2004; Cho et al. 2014).
Figure 2 shows the difference between the deterministic
solution of the conventional design optimization and an
RBDO solution. The dotted lines for each solution indi-
cate the variation caused by the uncertainty. Only RBDO
solution shows feasibility under the uncertainty.

Robust design is similar to RBDO because uncertainty is
considered in their optimization processes. Nevertheless, ro-
bust design handles the objective function to improve quality,
and RBDO converts deterministic constraint functions to sta-
tistical constraint functions through an optimization formula-
tion. Thus, the two uncertainty-based design methods were
integrated in recent studies to form reliability-based robust
design optimization (RBRDO) (Tang et al. 2012; Jang et al.
2015).

Fig. 1 Concept of uncertainty-based design optimization
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3 Uncertainty-based multidisciplinary design
optimization

MDO was developed for the engineering fields that focused
on complex systems involving a number of disciplines or
subsystems (Yi et al. 2008; Balling and Sobieszczanski-
Sobieski 1996). Because the performance of a multidisciplin-
ary system is driven not only by the performance of the indi-
vidual discipline, but also by its interactions, MDO is neces-
sary for designing complex systems. However, traditional
MDO theories consider the design variables, such as material
properties and manufacturing tolerance, as deterministic de-
sign variables and parameters, even though the design vari-
ables and parameters are not deterministic values but values
with uncertainties in real design. The traditional MDO is in-
accurate because it does not consider these uncertainties. To
include the uncertainty, UDO and MDO are integrated as the
parametric approach UMDO (Yao et al. 2011). A flowchart of
the parametric approach for UMDO is shown in Fig. 3.

System modeling involves organizing disciplines, optimi-
zation formulation, and defining design variables, objectives,
and constraints. Thus, this step should be carried out properly
to obtain a meaningful solution. After completing this process,
optimization is performed until an optimum solution is
achieved. Many optimization algorithms can be employed in
this process. During the optimization process, design informa-
tion for obtaining a feasible solution is transferred to an un-
certainty analysis process. This process consists of two sub-
steps: MDA and uncertainty analysis.

As shown in Fig. 3, MDA is applied to find converged
coupled variables between disciplines. In the MDA phase of

an UMDO problem, the key step is to quantify the uncertainty
propagation for coupled disciplines and to determine the con-
vergence of the uncertainty for coupling variables. First, for a
multidisciplinary complex system, if the uncertainty propaga-
tion across disciplines is not quantified properly, it can make
the uncertainty analysis difficult and inaccurate. In the para-
metric approach for UMDO, the Taylor series expansion-
based method is employed to analyze quantitatively the un-
certainty of coupled variables propagated through the interac-
tion of subsystems. Second, running a multidisciplinary anal-
ysis of the complex system with coupled disciplines is time-
consuming because such an analysis requires numerous itera-
tions for obtaining the appropriate convergence of coupled
variables. In the parametric approach for UMDO, the user
decides whether they converged on the basis of the difference
between the parameters of distributions of coupled variables
in the previous iteration and the current iteration
(Padmanabhan and Batill 2002). If the sum of their differences
is within a certain tolerance, the MDA process is stopped, and
the final parameters and outputs are used to obtain the reliabil-
ity in the uncertainty analysis step. This convergence test step
is mathematically formulated as shown in Eq. (1). The super-
script “old” indicates the mean and standard deviations of a
previous iteration, and the superscript “new” indicates those
of the current iteration.

μnew
y12

−μold
y12

��� ���þ σnew
y12

−σold
y12

��� ���
þ μnew

y21
−μold

y21

��� ���þ σnew
y21

−σold
y21

��� ��� < tolerance
ð1Þ

After the MDA process, the effect of uncertainty should be
evaluated to determine whether the system is safe. This step is
called the uncertainty analysis. In the parametric approach for
UMDO, mainly FORM (which approximates as a lineariza-
tion of a first-order equation for a limit state function) is used
to evaluate the reliability (Du and Chen 2005).

In uncertainty analysis process, coupled variables and re-
sponses are obtained by analyzing the disciplines. This pro-
cess is repeated until the criterion of convergence for coupled
variables with uncertainty propagation is satisfied as
expressed in Eq. (1). The information obtained from the
MDA process is used to quantify the uncertainty of the sys-
tem. Finally, the optimization process is completed when the
updated information of objectives and constraints obtained
from the final step satisfies the requirements. However, with
FORM, the accuracy of the reliability decreases as nonlinear-
ity increases because it only employs first-order Taylor expan-
sion. Moreover, it is difficult to apply FORM to non-normally
distributed design variables and parameters even if they can be
transformed to normal distributions, because errors arise dur-
ing this process. Thus, there is the demand for a new method
that does not require such an assumption for engineering ap-
plications that have many distributions and nonlinearity.

Fig. 2 Difference between the solutions obtained by the overestimated
safety factor, that obtained by the wrongly assumed safety factor, and that
considering uncertainty
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4 Nonparametric approach for UMDO

4.1 Theory preliminary

4.1.1 Definition of nonparametric approach in UMDO

The reliability is generally determined by tail distributions and
the tail models of the most distributions are similar configu-
ration. Thus, there are small errors to estimate the reliability in
RBDO even though the selected distribution in parametric
approach is not the best fitted distribution. Due to that reason,
the parametric approaches in RBDO have been recognized as
an efficient method. It is why previous UMDO techniques
have been developed from RBDO techniques. However, the
process of UMDO is quite different with it of RBDO due to
theMDA.MDO have to do a repetitive inner process called as
MDA, to obtain the coincident coupled variable. In contrast
with RBDO, propagated uncertainty should be quantified in
MDA of UMDO. As a qualitative criterion, parametric ap-
proaches use statistical moments of uncertainty expressed in
a certain distribution such as a normal distribution. It does not
focus on tail configuration and inaccurate distribution estima-
tion makes the error of the MDA result propagated. Also, the
distributions of coupled variables can be changed while the
coupled variables are converged in MDA process.
Consequently, these phenomena in UMDO cause an error in
uncertainty analysis process, and the optimum design from the
parametric approaches cannot guarantee the total system reli-
ability. Therefore, anewUMDOmethod should be developed.

The key of UMDO is how to reduce an error in MDA
process until the distribution of coupled variables between
the previous and current iteration is coincided. One alternative
is to directly use the uncertainty data of coupled variables in
MDA process instead of using parameters. Only the data of
coupled variables is dealt with in the MDA process until the
data is converged without any assumption. It is why the

proposed method is termed as nonparametric approach for
UMDO. The use of nonparametric approach in MDA reduces
the propagation of error by parametric estimation.

After MDA process, uncertainty analysis method is re-
quired to obtain the reliability. Monte Carlo simulation
(MCS) method is widely used for sampling method.
However, it is unable to apply to UMDO because it needs
many samples for the accurate reliability. Also, if MCS using
the insufficient data makes the uncertainty analysis process in
Fig. 4 not converged due to the discontinuous reliability value.
Thus, the estimationmethod for the insufficient data should be
adopted. In this paper, Akaike information criterion (AIC)
method which effectively estimates the best distribution type
for the insufficient data is applied.

4.1.2 Definition of limited data

In the design process, the uncertainty data might be complete
data or limited data to estimate distribution. However, the
sample size which can be completed for estimation is unclear.
And all the uncertainty data required for UMDO problem is
unable to have complete data. Especially, the experimental
data is form of limited data due to time and cost. In that case,
it is necessary to directly use the limited data in UMDO with-
out any processing, which is related to apply the nonparamet-
ric approach to UMDO process.

For the nonparametric approach, the appropriate amount of
limited data is necessary. Because the uncertainties of all the
design variables are combined in MDA process, the sample
size of uncertainty data for all disciplines should be equal. In
this paper, the number of limited data of all design variables is
assumed to be the same. If the number of limited data of
design variables differ, resampling techniques such as slice
sampling and Markov chain Monte Carlo (MCMC) method
should be applied (Neal 2003; Christophe et al. 2003).

Fig. 3 Flowchart of the parametric approach for uncertainty-based multidisciplinary design optimization
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4.2 Nonparametric approach procedure

As shown in Fig. 4, the nonparametric approach for
UMDO consists of three parts. In the first part, the system
modeling process involving system modeling and uncer-
tainty modeling is carried out. The disciplines and the
relationships between disciplines are investigated in the
system modeling process. Then, the uncertainty of design
variables or parameters is quantified in the uncertainty
modeling process. In the second part, the optimization
process, the optimization algorithm transfers a candidate
design point to the uncertainty analysis process until it is
converged. Lastly, uncertainty analysis process is per-
formed as the third part. This process consists of MDA
and uncertainty analysis, which is similar to the paramet-
ric approach for UMDO. In the MDA process, the limited
data is directly used and outputs of them are calculated.
Before analyzing each discipline, auto-correlation se-
quence is performed to retain the relation between the
limited data of the coupled variables. The limited data of
coupled variables is determined using the fixed point iter-
ation method, and convergence is checked by the
Kolmogorov-Smirnov test (K-S test) (Massey 1951).
After the MDA process, uncertainty analysis is performed
based on the pre-determined limited data of responses.

4.3 Auto-correlation sequence

If a discipline has more than two variables with uncertain-
ty, responses of the discipline are influenced by relation
between variables with uncertainty. In the proposed meth-
od, it is able to control the relation between variables with
uncertainty because the uncertainty data is directly used.
Figure 5 shows the relat ion between variables .

Uncertainties indicated in Fig. 5a and b have a dependent
relation with each other, and the relation of Fig. 5a is
stronger than that of Fig. 5b. On the other hand, the sam-
ples are evenly spread in the domain in Fig. 5c have
independent relation.

The methods to evaluate the relation between samples are
widely known for the Pearson correlation coefficient,
Spearman correlation coefficient, and Cronbach’s alpha. In
this research, considering the size and type of data and the
limited data, the Pearson correlation coefficient was used. It
is calculated as shown in Eq. (2).

r ¼ rxy ¼

Xn

i¼1

xi−x
� �

yi−y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

xi−x
� �2

vuut
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

yi−y
� �2

vuut
ð2Þ

The Pearson correlation coefficient, γ, ranges from −1 to 1.
The magnitude of the value indicates the degree of correlation,
a value close to 1 or −1 indicates a strong correlation, and a
value close to 0 indicates a weak correlation between the two
data values.

In this research, this process is called “Auto-correlation
sequence,” because it regulates the correlation between uncer-
tainties of coupled variables. And it is performed in each dis-
cipline analysis to ensure an adequate response.

In a MDA procedure, the limited data of the coupled var-
iable is determined through the analysis of other discplines. In
the fully coupled problem, the limited data of the coupled
variable is variated due to the analysis of other discipline until
the coupled variable converges. Thus, the auto-correlation se-
quence is able to guarantee the relations between uncertainties
of the variables before discipline analysis in every iteration. In

Fig. 4 Flowchart of nonparametric approach for uncertainty-based multidisciplinary design optimization
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case of independent relation, the method makes the sample set
in forms of multi-variate normal distribution. Figure 6 shows
how auto-correlation sequence is performed in the MDA pro-
cess. This example has two coupled disciplines. Each disci-
pline has three input variables, two design variables and one
coupled variable. In the view point of nonparametric UMDO,
the inputs have individual distributions due to its uncertainty
as shown in Fig. 6. In the nth iteration, the uncertainties of
design variables x1, x2 and coupled variable y21

(n) are used to
analyze discipline 1.

For analysis of discipline 1 at nth iteration, the number
of data set should be analyzed. it is important to choose

the combination of the data set, [x1, x2, y21]. In auto-
correlation sequence, the correlation of data set is deter-
mined according to the prior information from correlation
analysis. If the input data have correlation, the proposed
method can control the correlation of data set. This is one
of the advantages compared with parametric approaches
in UMDO.

To obtain a response set, y12
(n), adequate auto-correlation

sequence is carried out on the uncertainties of x1, x2, and y21
(n).

Similarly, auto-correlation sequence between the data of x3,
x4, and y12

(n)is carried out before analysis of discipline 2 to
obtain data set of y21

(n+1). As shown in Fig. 6, the data of a

Fig. 6 Auto-correlation sequence
in multidisciplinary analysis

Fig. 5 Density shape of limited
data according to correlation; (a)
top-left, (b) top-right, (c) bottom
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coupled variable y21
(n+1)differs from that of y21

(n). Therefore,
auto-correlation sequence is repeated in every iteration until
the uncertainties of coupled variables,y21

(n) and y12
(n), are con-

verged. The next chapter the method to check the convergence
of the data of coupled variables is introduced.

4.4 Kolmogorov-smirnov test

In a fully coupled MDO problem, the coupled variables
between the disciplines and their uncertainty distribution
are unknown. The coupled variables are inputs for a dis-
cipline and are the same as the output of another disci-
pline. The uncertainties of the variables propagate through
these coupled relations in UMDO problems. In the non-
parametric approach for UMDO, in which the uncertainty
is discrete form such as that shown in Fig. 7, the uncer-
tainties of coupled variables are also discrete form.
Therefore, the uncertainties of coupled variables are
variated with iteration and cannot be determined by a
certain distribution such as the parametric approach. In
this research, all information of variable uncertainty in
MDA procedure exist in the discrete data forms, in the
other words they are not expressed in certain parameter,
which is nonparametric. For nonparametric, we have to
check the convergence of the coupled variables over the
iteration. There are many researches to check the distribu-
tion fitness for the specific data. However, we need to
evaluate the difference between discrete data in nth itera-
tion and in n+ 1th iteration. It is quite different with dis-
tribution fitness. Thus, we need to propose a new criterion
for checking the convergence of the uncertainty of
coupled variables.

We give attention to the simplicity of the K-S test
which is widely known for one of distribution check
method (Massey 1951; Engmann and Cousineau 2011).
The K-S test is also able to provide the maximum differ-
ence level between two discrete data. In this research, the
data can be considered as converged if the sum of the test
statistics of the coupled variables is less than the tolerance
pre-determined by a user. Equation (3) shows the

mathematical expression of an example of this conver-
gence criterion. F indicates the cumulative mass functions
of each data of coupled variables. The superscript “old”
indicates the cumulative mass function of the previous
step, and the superscript “new” indicates that of the cur-
rent step.

D ¼ sup
y12

Fnew
y12

y12ð Þ−Fold
y12

y12ð Þ
��� ���

þ sup
y21

Fnew
y21

y21ð Þ−Fold
y21

y21ð Þ
��� ��� < tolerance

ð3Þ

4.5 Akaike information criterion-based uncertainty
analysis

After system analysis, the limited data of performance
functions can be obtained through the steps explained ear-
lier. Because this limited data consists of relatively little
data, it is difficult to evaluate the precise reliability of a
performance function directly. Therefore, a technique is
necessary to calculate the reliability of a limited perfor-
mance data. In this research, the AIC-based uncertainty
analysis is employed. This method estimates the PDF of
limited data and calculates the reliability based on the
CDF.

The AIC is a criterion that estimates the best-fitted distri-
bution and its parameters for the specific limited data (Akaike
1973). It selects the best-fitted distribution from candidate
distributions listed by a designer. It is defined as shown in
Eq. (4).

AIC ¼ −2 f ml−nfree
� � ð4Þ

where fml is the maximum log likelihood of a candidate distri-
bution, and nfree refers to the number of parameters of the
candidate distribution. The distribution with the lowest AIC
value is the best-fitted distribution among the candidate distri-
butions. We considered seven types of distributions as shown
in Table 1. Figure 8 shows the overall procedure of distribu-
tion estimation from limited data using AIC (Cho et al. 2014).

From the estimated distribution determined through
AIC, the reliability can be calculated by integrating the
PDF of the best-fitted distribution. The mathematical ex-
pression for this calculation is shown in Eq. (5).

R ¼
Z x¼0

−∞
f best fitted xjθð Þdx

¼ F 0jθð Þ
ð5Þ

Fig. 7 Uncertainty propagation in the nonparametric approach
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5 Examples

Proposed method directly uses not a distribution assump-
tion but limited data in MDA. The mathematical examples
are used to show weakness of parametric approach com-
pared with nonparametric approach in case of wrongly
estimated distribution under UMDO problem. The accu-
racy of optimum results in two methods is compared with
MCS result of each optimum point. Also, design of pilot
miner system under deep-sea environments is applied to
demonstrate the effectiveness of proposed method in real
applications.

5.1 Mathematical examples

In order to demonstrate the performance of the proposed ap-
proach, mathematical examples are considered, and three
methods are compared: deterministic approach, parametric
approach, and nonparametric approach. As mathematical ex-
amples, two coupling problems between disciplines are select-
ed for comparison. One is an uncoupled problem and the other
is a fully coupled problem. Uncoupled problem is regarded as
RBDO problem, not UMDO problem. The reason to choose
these two problems is to check the difference between UMDO

Table 1 Types of the candidate
distributions Probability model Probability density function Parameters

Normal
f xð Þ ¼ 1ffiffiffiffiffiffiffiffi

2πβ2
p exp − x−αð Þ2

2β2

� � α: location, β: scale

Log-normal
f xð Þ ¼ 1

x
ffiffiffiffiffiffiffiffi
2πβ2

p exp − lnx−αð Þ2
2β2

� � α: scale, β: shape

Gamma
f xð Þ ¼ βα

Γ αð Þ x
α−1e−βx

α: shape, β: rate

Weibull
f xð Þ ¼ β

α
x
α

� �β−1
exp − x

α

� �β� � α: scale, β: shape

Extreme value
f xð Þ ¼ 1

β exp
x−α
β

� �
exp −exp x−α

β

� �� � α: location, β: scale

Exponential f(x) =α exp(−αx) α: scale

GEV (generalized extreme value) f xð Þ ¼ 1

β
t xð Þγþ1 exp −t xð Þð Þ

t xð Þ ¼
1þ γ

x−α
β

	 
−1=γ

if γ≠0

exp
− x‐αð Þ

β

	 

if γ≠0

8>><
>>:

α: location, β: scale, γ: shape

Fig. 8 Distribution estimation by
using the AIC
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and RBDO when the parametric approach has ill-estimated
distribution.

In addition, these problems are classified as two cases. One
case considers the normally distributed uncertainty and the
other case considers non-normally distributed uncertainty.
Totally, four cases problems are solved to identify howwrong-
ly assumed parameters influence on the accuracy of the reli-
ability at the optimum.

Example 1. Two-variable problem (Youn et al. 2005).

Min
X

μ f xð Þ
s:t: G1 Xð Þ ¼ Pr g1 Xð Þ≤0½ �≥0:9772

G2 Xð Þ ¼ Pr g2 Xð Þ≤0½ �≥0:9772
G3 Xð Þ ¼ Pr g3 Xð Þ≤0½ �≥0:9772

where f xð Þ ¼ −
x1 þ x2−10ð Þ2

30
−

x1−x2 þ 10ð Þ2
120

g1 Xð Þ ¼ 1−
X 2

1X 2

20
g2 Xð Þ ¼ −1þ Y 2 þ Y 3 � 0:6Y 4 þ Z

g3 Xð Þ ¼ 1−
80

X 2
1 þ 8X 2 þ 5

� �
Y ¼ 0:9063X 1 þ 0:4226X 2−6
Z ¼ 0:4226X 1−0:9063X 2

ð6Þ

The first problem is an RBDO problem with uncoupled
subsystems between disciplines. And it has two design vari-
ables and three constraints. It is difficult to solve this problem
owing to the high nonlinearity of the constraints. In Ex. 1–1,
the uncertainties of design variables are assumed as normal
distribution as expressed in Eq. (7).

Ex 1−1
X 1eN μX 1

; 0:32
� �

; 0≤μX 1
≤10

X 2eN μX 2
; 0:32

� �
; 0≤μX 2

≤10
X ¼ X 1;X 2½ �

ð7Þ

The optimum results are listed in Table 2. The results of the
parametric approach and nonparametric approach show that
the results of them are converged to similar design points. For
each approach, the optimum solution is validated by using
MCS. The results show that the nonparametric approach has
less error than the parametric approach, but there are no sig-
nificant differences.

Ex 1−2
X 1ebeta 2; 5ð Þ−0:2857þ μX 1

; 0≤μX 1
≤10

X 2egamma 3; 0:1ð Þ−0:2996þ μX 2
; 0≤μX 2

≤10
X ¼ X 1;X 2½ �

ð8Þ

The same problem in ex 1–1 is considered under the as-
sumption of non-normally distributed uncertainty for design
variables. As shown in Table 3, the parametric and nonpara-
metric approaches provide similar solutions, while the deter-
ministic approach does not guarantee the reliability because
the it does not consider the uncertainty of design variables.
Compared with MCS at each optimum, the nonparametric
approach shows less error than the parametric approach for
G1, and both approaches show almost the same reliability for
G2.
Example 2. Normal distribution: three-variable problem

(Park 2006)

Min
μ1;μ2;μc

f ¼ f 1 þ f 2 ¼ E Znc
1

� �
−0:5

� �2 þ E Znc
2

� �
−0:5

� �2
s:t: G1 Xð Þ ¼ Pr 1:0−Znc

1 ≤0
� �

≥0:9772
G2 Xð Þ ¼ Pr 1:0−Znc

2 ≤0
� �

≥0:9772
where Znc

1 ¼ B1−2:5ð Þ þ Bc−2:0ð Þ−0:5Zc
2

Zc
1 ¼ B1−2:5ð Þ þ Bc−2:0ð Þ−0:4Zc

2
Znc
2 ¼ B2−3:0ð Þ þ Bc−2:0ð Þ−0:7Zc

1
Zc
2 ¼ B2−3:0ð Þ þ Bc−2:0ð Þ−0:6Zc

1

ð9Þ

Table 2 Results for example 1-1
Method x1 x2 f G1 (MCS) G2 (MCS) G3 (MCS)

Deterministic
approach

5.1969 0.7405 −2.2917 0.5000 (0.5073) 0.5000 (0.4757) 1.0000 (1.0000)

Parametric
approach

4.6860 1.5407 −1.9146 0.9772 (0.9713) 0.9772 (0.9834) 1.0000 (1.0000)

Nonparametric
approach

4.7709 1.5583 −1.9039 0.9772 (0.9800) 0.9772 (0.9846) 1.0000 (1.0000)

Table 3 Results of example 1-2
Method x1 x2 f G1 (MCS) G2 (MCS) G3 (MCS)

Deterministic
approach

5.1969 0.7405 −2.2917 0.5000 (0.3980) 0.5000 (0.6970) 1.0000 (0.9930)

Parametric
approach

4.8151 1.1486 −2.0995 0.9772 (0.9833) 0.9772 (0.9807) 1.0000 (1.0000)

Nonparametric
approach

4.7816 1.1570 −2.0969 0.9774 (0.9799) 0.9772 (0.9871) 1.0000 (1.0000)
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The second problem is an MDO problem and a fully
coupled problem between disciplines. It is selected to show
the differences in the results of the MDA process when disci-
plines are fully coupled. Monte Carlo simulation (MCS) is
used for validating each method, and the accuracy of system
reliabilities at optimum results of each method are validated.
In example 2–1, the uncertainties of all design variables are
assumed to be normally distributed.

B1eN μ1; 0:5
2

� �
; B2eN μ2; 0:5

2
� �

; BceN μc; 0:5
2

� �
0:0≤μ1;μ2;μc≤10:0

ð10Þ

Table 4 lists the results of each approach; all results have a
small error of reliability as compared to MCS at the optimum
points. The parametric and nonparametric approaches show
similar optimum points and the reliability.

B1 þ 0:8862−μ1ð Þewbl 1; 2ð Þ
B2 þ 2−μ2ð Þegamma 2; 1ð Þ;
−Bc þ 0:2þ μcð Þebeta 0:5; 2ð Þ
0:0≤μ1;μ2;μc≤10:0

ð11Þ

In example 2–2, a solution to the UMDO problem, which
has a formulation as shown in example 2–1, is determined by
adjusting non-normally distributed uncertainties such as
Weibull, gamma, and beta distributions for design variables.
The results in Table 5 show that the nonparametric approach
presented similar reliabilities at the optimum points and that
the parametric approach has relatively large error.

5.2 Result of mathematical examples

In the parametric approach, the uncertainties of these coupled
variables are assumed as normal distribution, which results in
a large error in the MDA process. From examples 2–1 and 2–
2, it is seen that if the uncertainties of coupled variables have

non-normal distributions, the optimum solution obtained by
the parametric approach is inaccurate because of its assump-
tion. Further, the nonparametric approach provides better ac-
curacy than the parametric approach for non-normal distribut-
ed uncertainty as shown in Fig. 9.

5.3 Engineering example: design of pilot miner system

Deep-sea manganese nodules that have been found on the
seafloor contain many types of metals such as manganese,
nickel, copper, cobalt, and rare-earth elements (Ku and
Broecker 1969). They are economically valuable and are col-
lected using the deep-sea mining system shown in Fig. 10. A
pilot miner designed for collecting manganese nodules is an
integrated system that includes the collector, the crawler, and
the chassis structure (Hong et al. 2010). It collects manganese
nodules while traveling on the cohesive soft soil of the deep-
sea floor in the KODOS area, which is about 5000 m deep.
Mining systems involve a variety of design requirements.
Hence, the deep-sea mining system cannot be separately de-
signed. Therefore, these design requirements necessitate the
application of MDO (Lee et al. 2012; Cho et al. 2013).

Meanwhile, the performances of the pilot miner are affect-
ed by noise parameters such as deep-sea environment param-
eters. In particular, the variations in oceanic current, shear
stress, and steering ratio of the deep-seabed affect the travel
stability, and the environment can bring about an unexpected
change in travel stability. Moreover, a number of couplings
occur among subsystems. For example, velocity is an input
variable for the dynamic analysis of the crawler and a primary
design variable of the collector. Thus, we should consider
these coupled relationships for the design optimization of the
pilot miner system using UMDO (Muro 1983; Lee et al.
2007).

Out of the many environmental variables, we select two,
namely, steering ratio and shear strength. The shear strength of
the deep-seabed is the most significant variable in the

Table 4 Results of example 2-1
Method μ1 μ2 μ3 f G1 (MCS) G2 (MCS)

Deterministic approach 3.4436 4.1670 2.6106 0.5000 0.5000 (0.5000) 0.5000 (0.4997)

Parametric approach 4.2754 5.4439 4.4161 9.8611 0.9772 (0.9748) 0.9772 (0.9827)

Nonparametric approach 4.7919 5.9246 3.9136 9.8138 0.9772 (0.9766) 0.9772 (0.9790)

Table 5 Results for example 2-2
Method μ1 μ2 μ3 f G1 (MCS) G2 (MCS)

Deterministic approach 3.4436 4.1670 2.6106 0.5000 0.5000 (0.5389) 0.5000 (0.4130)

Parametric approach 4.9992 5.9972 4.0665 11.3810 0.9772 (0.9534) 0.9772 (0.8236)

Nonparametric approach 5.2565 6.8179 4.6586 19.1857 0.9772 (0.9693) 0.9772 (0.9869)
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optimization of the test miner (Choi et al. 2010). Data of the
noise variables were collected through exploration using a
multiple corer (MC) with 9.5-cm diameter and a length of
60 cm between 1997 and 2006 in the KODOS area (Lee
et al. 2006). The shear strength data of 117 samples as shown
in Fig. 11 were used in this research (Choi et al. 2011). The
steering ratio is assumed to have an exponential distribution
with a specific range for operation because the pilot miner
system spendsmost of the time traveling straight for collecting
manganese nodules.

1) Frame
The chassis structure supporting the vehicle system

must be strong and stiff enough to maintain its shape
under pressures of approximately 500 bars of the deep-
sea and must be able endure any handling procedures
such as launch and recovery of the miner. For the chassis
structure, a structural analysis model was developed to
evaluate the natural frequencies and structural strength

using a commercial finite-element program, ABAQUS.
For the boundary condition for structure analysis, the
launch and recovery system (LARS)was considered be-
cause the water weight, acceleration of the cable required
to recover, and the weight of the miner affect the total
weight. The frame is illustrated in Fig. 12.

2) Crawler
The pilot miner for collecting deep-sea manganese

nodules must run stably on the cohesive soft seabed while
collecting the manganese nodules. The traffic-ability of
the crawler to move on cohesive soft soil depends strong-
ly on the proper driving resistance. The driving resistance
is directly related to the shear stress of the deep-sea soil
(Chi et al. 1999). Further, a rigid-body model of the
crawler is used to execute the dynamic simulation as fast
as possible; the design variables for the model are shown
in Fig. 13. The mean values of steady state were adopted
to represent the responses of dynamic simulation. To eval-
uate the mobility of the traveling vehicle, four responses
are considered: pitch angle (θpitch), vertical sinkage (δz),
slip rate of track (slip), and drag velocity (Vg).

3) Collector
A collector is mounted in front of the self-propelled

mining vehicle system, and it collects mineral resources
from the ocean floor as illustrated in Fig. 14. In this re-
search, we adopted the Coanda nozzle type, which floats
manganese nodules from the deep-seabed by using the
principle of a pressure drop in the jet flow through a
rounded surface (Murakami et al. 1992). It is easy to
operate and to transfer the manganese nodules, but the
region between the collecting device and the deep-
seabed is very sensitive. Thus, it is necessary to maintain
certain distance between the collecting device and the

0

5

10

15

20

Er
ro

r (
%

)
Parametric Nonparametric

Fig. 9 Error comparison between parametric and nonparametric in
mathematical examples

Fig. 10 Schematic diagram of an
integrated mining system
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deep-seabed and to optimize the curvature of the
collecting plate, flow rate, and the nozzle shape for
collecting efficiency (Murakami et al. 1992). Figure 15
presents the layout of the collector developed in our re-
search. For robust operation under irregular ground con-
ditions, a certain distance should be maintained between
the ground and the collector plate while collecting the
manganese nodules. In addition, lift force is one of the
essential design requirements for ensuring sufficient col-
lection. However, if the distance between the ground and
the collector plate is large, the lift force is inefficient. This
causes problems that make it difficult for the optimization
method to find a feasible solution. Finally, the nozzles
have a limit velocity even if the inflow of the water jet

per unit time increases. Therefore, it is necessary to ob-
serve the limit velocity at the nozzles for efficient
collection.

4) Framework and formulation of pilot miner system
Low power consumption of the total system is one of

the essential design requirements. For this purpose, the
scales of the mining vessel and the power cable system
are determined. As the power consumption increases, the
cost to install, operate, and maintain the system also in-
crease exponentially. Thus, low power consumption of
the crawler and the collector is considered as the objective
of the design optimization.

For the total pilot miner system, 13 design vari-
ables are defined. Among the 13 design variables,
three are defined as common design variables that
are used in all disciplines. They are the length of
tracked vehicle (L), outer track span (B2), and dis-
tance ratio from the real centroid of buoyancy (Rb).
Six design variables are defined only for the frame:
shell thicknesses of six parts of the frame. Four
design variables are defined only for the collector:
inflow water jet per unit time (Q), distance between
the nozzle and ground (d), height of the nozzle
from ground (h), and curvature of take-off plate (R).

The coupling between each system should be in-
vestigated to formulate the problem. Since a collec-
tor picks up manganese nodules using the Coanda
jet flow, the distance between the collector plate and
ground (Dtake off) is important in the design. It can
be affected by vertical sinkage (Sinkage) and pitch
angle (Pitch) and also by the height of the collector

Fig. 11 Probability density
obtained from the experiment
data and histogram of the shear
stress of the deep seabed at 10-cm
depth

Fig. 12 Finite element model and its parameters for a structure of a pilot
mining robot system
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plate (d). In addition, the track velocity (Vt) can
affect both the collector and the crawler consider-
ably. The distance between the collector plate and
the ground is coupled with vertical sinkage, pitch
angle, and height of the collector plate. Further,
drag velocity (Vd) is coupled with slip rate (slip)
and track velocity. These interactions are as follows:

Dtake off ¼ d−
L
2
⋅Pitchþ Sinkage

 �
Vd ¼ 1−slipð Þ⋅Vt

ð12Þ

According to the definitions of the design variable, envi-
ronmental variable, and relationship between the disciplines, a
system diagram of the pilot miner system was constructed as
shown in Fig. 16. Thirteen design variables and two environ-
mental variables were directly used in the analysis of disci-
plines. The response of frame analysis, that is, the weight of
the pilot miner (W), is a coupled variable necessary for ana-
lyzing crawler discipline. Similarly, slip, sinkage, and pitch
are coupled variables related to the crawler and collector

discipline. Thus, the deep-seabed pilot miner system with 13
variables and 6 constraints is formulated as follows:

Min
X

f Xð Þ ¼ ECrawler X;Pð Þ þ ECollector X;Pð Þ
s:t: Gj Xð Þ ¼ Pr g j X;Pð Þ≤0

h i
≥0:9772; j ¼ 1 to 7

where X ¼ B2;Rb; L; T 1; T 2;…; T 6;Q; h;R; d½ �
P ¼ Sr; τ½ �

g X;Pð Þ ¼ g1; g2; g3; g4; g5; g6½ �
¼ ω1;σmax;Dtake off ; f lift;Mcollector;Vnozzle

h i
Mcollector ¼ f lift � Vd �#of nodulesperunitmeter

ð13Þ

5.4 Result of engineering example

In this study, optimization was performed using the commer-
cial program MATLAB. Sequential quadratic programming
(SQP) was adopted as an optimization algorithm. As listed
in Table 7, the initial design was infeasible owing to probabi-
listic constraints. As a result, all constraints were satisfied at
the solution when the optimization of the proposed method is
achieved. We can derive the UMDO result from the objective
function—the total power consumption was decreased by
about 14.1 % while all deterministic and reliable design con-
straints were satisfied. The results of UMDO are summarized
in Tables 6 and 7. The design variables are expressed relative

Fig. 13 Design variables of the
tracked vehicle part of the pilot
robot mining system

Fig. 14 Configuration of the collector of the pilot mining robot system Fig. 15 Design variables of collector part of pilot mining robot system
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to the initial design between the lower and upper bounds, and
responses are normalized to each constraint value.

As listed in Table 7, the deterministic constraints of the
initial design and deterministic MDO result are feasible, but
probabilistic constraints do not satisfy the target reliability of
0.9772. However, the results of both the UMDOs, parametric
and non-parametric, satisfy the feasibility of deterministic
constraints and the target reliability of probabilistic con-
straints. At each optimum point of the UMDO solution, the
reliability of probabilistic constraints was verified through
Monte Carlo simulation. The solution of the parametric
UMDO result had a maximum relative error of 13.4 %, but
non-parametric solution had a maximum relative error of only
1.02 %. This is attributed to the non-normality of the coupled
variable. As shown in Fig. 17, it is difficult to express the
shapes of the histogram of the coupled variables as normal
distributions.

6 Conclusion

This paper proposes a nonparametric approach for UMDO,
which utilizes limited data of variables. The proposed method

includes methods to find the optimum combination of limited
data and perform the convergence check of coupled variables
and reliability analysis through limited data.

1. In order to input independent limited data into different
disciplines, it is necessary to find the optimum combina-
tion of limited data as a set of data. Since limited data
includes many combinations, a method that finds the best
set based on the correlation of the design variables pre-
ferred by the designer is proposed. The proposed method
finds the optimum data set as the limited data changes,
and this method only changes the combination of vari-
ables without causing any loss of information.

2. The MDO system aims to find the design point where all
coupled variables converge. This aspect is the same in the
nonparametric approach for UMDO. The proposed meth-
od, which directly uses the limited data, checks the con-
vergence of the entire limited data because the coupled
variables in the MDO system also include limited data. In
this study, the convergence of the coupled variables was
checked using the K-S test that minimizes the maximum
error between the probabilities of two empirical CDFs
based on the i-1th and ith coupled variables. The efficien-
cy of convergence was enhanced because the method
used only the probability, which is a normalized value.

3. The responses obtained after the MDA process are in the
form of limited data. Therefore, it is impossible to apply
the reliability analysis technique based on the parametric
approach. In this study, the AIC method, which was de-
veloped to determine the best-estimated distribution in
statistics, was applied as a reliability analysis technique.
This method is not based on any assumption since it di-
rectly uses limited data. Further, it is easy to implement,
and its result is robust to nonlinearities of responses.

The proposed nonparametric approach, which is divided
into three detailed methods, is a different paradigm for pre-
senting UMDO. The parametric approach for UMDO simply
performs an additional analysis in the deterministic MDO
method to estimate system reliability; the proposed method
solves many of the problems of the present method, such as
limitation of distributions, error amplification and

Fig. 16 Diagram of the pilot miner system

Table 6 Comparison of optimization result: design variables

Design variables

T1 T2 T3 T4 T5 T6 L B2 Rb Q h R d

Initial design 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

MDO 0.47 0.00 0.00 0.00 0.96 0.00 0.73 1.00 0.00 0.00 0.05 1.00 0.00

Parametric 0.55 0.00 0.00 0.00 0.67 0.00 1.00 1.00 0.00 0.00 0.03 0.00 0.13

Non-parametric 0.55 0.00 0.00 0.00 0.65 0.00 1.00 1.00 0.00 0.00 0.00 0.39 0.17
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convergence problems, and inefficiency when the number of
design variables increases. The advantages of the proposed
method are as follows:

1. The present parametric approaches for UMDO assume
that the design variables are normally distributed. When
the assumption of distribution is not appropriate, the er-
rors increase. In theMDO system, when uncertainty prop-
agation is incorrectly estimated, errors propagate, leading
to inaccurate design. The proposed method is more effec-
tive because it directly utilizes the limited data of variables
and has no limitations of distributions.

2. The most critical issue in the previous UMDO was uncer-
tainty propagation in MDA.When nonlinearity exists, the
previous methods that calculate the mean and standard
deviation of coupled variables using Taylor series expan-
sion can be inaccurate. The proposed method has no loss
of limited data in MDA because it uses the limited data of

the coupled variable, and thus, it allows more accurate
design than that possible by previous methods.

3. The first order Tayler series expansion is a time-
consuming process when the number of coupled variables
increases. The proposed method is efficient when the
number of coupled variables is large because it can inde-
pendently extract the limited data of a coupled variable.

4. The convergence of the deterministic MDO method is
checked bymeans of the changes in the coupled variables,
but in the present UMDO, the convergence of the coupled
variable is calculated as the sum of the change of mean
and standard deviation. The increase in parameters causes
low convergence and increased computational cost. The
proposed method utilizes the K-S test to guarantee the
convergence because the test employs only one parame-
ter. This parameter is also a probability value, which is a
normalized value regardless of the range of the coupled
variable.

Table 7 Comparison of optimization result: Objective function and constraints

Initial
design

MDO Parametric
(MCS)

Non-parametric
(MCS)

Objective function Etotal 1.6036 1.2626 1.2290 1.2290

Constraint Deterministic Cstress Feasible Feasible Feasible Feasible
Cfreq

Cnozzle

Probabilistic (97.72 %) CF,lift 0.001 0.999 1.000 (1.000) 1.000 (1.000)

CD,take_off 0.967 0.052 0.997 (0.931) 0.985 (0.975)

Ccollection eff 0.000 0.000 1.000 (0.997) 0.990 (0.994)

Fig. 17 Histograms of coupled
variables of the pilot miner: pitch,
sinkage, and slip
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5. The accuracy is guaranteed because the method directly
applies limited data without manufacturing the informa-
tion. In previous parametric approaches for UMDO, sev-
eral steps such as the determination of design variable
distribution, extraction of information of coupled variable
in MDA, and the assumption of normal distribution for
coupled variable and constraints are needed. In this study,
the only assumption needed is that the assumption of an
optimal distribution among candidate distributions in the
reliability analysis; thus, there is less loss of information.

6. In the Taylor series expansion and reliability analysis in
the previous methods, as the number of design variables
increases, the computational cost increases. This makes
the method less applicable since MDO has many design
variables. Because the proposed method does not use de-
sign sensitivity in the uncertainty propagation and reliabil-
ity analysis, the number of design variables has less influ-
ence. The accuracy and computational cost may change
with the amount of limited data, which can be controlled
by the designer.

In this paper, a nonparametric approach for UMDO is
proposed, and its advantages are analyzed. As mathematical
examples, two coupling problems between disciplines are
selected for comparison. One is an uncoupled problem and
the other is a fully coupled problem. As a result, when the
parametric approach has ill-estimated distribution in the fully
coupled problem, the optimum solution obtained by the
parametric approach is inaccurate because of its assumption.
The nonparametric approach provides better accuracy than
the parametric approach for the fully coupled problem.

Further, as a design application, the UMDOof a pilot miner
system used to collect deep-sea manganese nodules was de-
fined and studied. Once the pilot miner system is designed,
one must consider the uncertainties because the performances
of the system are influenced by the variations in the steering
ratio and weakness of the seabed sediment. The design re-
quirements and coupled relationships between each subsys-
tem were investigated, and the UMDO problem was formu-
lated. The results showed a reduction in power consumption
by nearly 14.1 % compared with the initial design, while sat-
isfying all the specified design constraints.

The recent trend in design optimization techniques is a shift
from the parametric approach to the nonparametric approach.
In this research, a new paradigm for UMDO by estimating the
uncertainty using the nonparametric approach when there is
uncertainty in the MDO system was explored. For application
to real problems, further investigation is necessary. For exam-
ple, studies of the appropriate sample set and sampling meth-
od are necessary for problems in which the amount of limited
data differs between design variables. Furthermore, more de-
tailed research is necessary on the three methods proposed in
this paper.
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