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Abstract The identification of model material parameters is
often required when assessing existing structures, in damage
analysis and structural health monitoring. A typical procedure
considers a set of experimental data for a given problem and
the use of a numerical or analytical model for the problem
description, with the aim of finding the material characteristics
which give a model response as close as possible to the ex-
perimental outcomes. Since experimental results are usually
affected by errors and limited in number, it is important to
specify sensor position(s) to obtain the most informative data.
This work proposes a novel method for optimal sensor place-
ment based on the definition of the representativeness of the
data with respect to the global displacement field. The method
employs an optimisation procedure based on Genetic
Algorithms and allows for the assessment of any sensor layout
independently from the actual inverse problem solution. Two
numerical applications are presented, which show that the
representativeness of the data is connected to the error in the
inverse analysis solution. These also confirm that the pro-
posed approach, where different practical constraints can be

added to the optimisation procedure, can be effective in de-
creasing the instability of the parameter identification process.

Keywords Inverse problem . Sensor placement . Genetic
algorithms . Error . Transducer . Digital image correlation

1 Introduction

In structural engineering, when analysing real systems, an
accurate response prediction is required to investigate the
structural capacity to withstand specific loading conditions.
This is usually performed by adopting a numerical or analyt-
ical model of the physical problem characterised by a set of
material properties. Their definition is not trivial especially for
existing structures, thus the inverse problem of “material pa-
rameter identification” represents one of the most critical tasks
in the analysis process.

Inverse problems appear in several fields, including medi-
cal imaging, image processing, mathematical finance, astron-
omy, geophysics and sub-surface prospecting (Goenezen et al.
2011; Barbone and Gokhale 2004; Balk 2013; Leone et al.
2003). In structural engineering, they are often related to
non-destructive testing (Garbowski et al. 2012; Bedon and
Morassi 2014), damage identification (Friswell 2007;
Gentile and Saisi 2007) and structural health monitoring
(Farrar and Worden 2007) and are generally based on estimat-
ing model parameters by the knowledge of some experimental
data. Inverse problems are very often ill-posed, where accord-
ing to Hadamard’s definition (Kabanikhin 2008) a problem is
well-posedwhen i) the solution exists, ii) it is unique, and iii) it
is stable, i.e. if a small noise is applied to the known terms, the
solution of the “perturbed” problem remains in the
neighbourhood of the “exact” solution. Since a perfect match
between experimental and computed data is not achievable in

* Corrado Chisari
corrado.chisari@gmail.com

Lorenzo Macorini
l.macorini@imperial.ac.uk

Claudio Amadio
amadio@units.it

Bassam A. Izzuddin
b.izzuddin@imperial.ac.uk

1 Department of Engineering and Architecture, University of Trieste,
Piazzale Europa, 1, 34127 Trieste, Italy

2 Department of Civil and Environmental Engineering, Imperial
College London, London SW7 2AZ, UK

Struct Multidisc Optim (2017) 55:647–662
DOI 10.1007/s00158-016-1531-1

http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-016-1531-1&domain=pdf


practice and thus the solution in this sense does not exist, the
existence condition is usually relaxed by searching for the
minimum-discrepancy solution. In this way, the existence of
the inverse problem solution always holds. The uniqueness
and stability are mainly related to the type of experimental
setup and the number and type of experimental data. In par-
ticular, the experimental test must be representative of the
unknown variables. If the test setup is properly chosen, i.e.
the global response is sufficiently sensitive to the sought pa-
rameters, the inverse problem is globally well-posed and the
model material parameters can be identified by using the mea-
sured full-field response.

In some inverse problems, e.g. imaging inverse problems
(Barbone and Bamber 2002; Ferreira et al. 2012), it is as-
sumed that a full strain or displacement field is known.
When this is not the case, it may be possible that a well-
posed problem becomes unstable because of the limited ex-
perimental measurements. This case can be referred to as a
data-induced ill-posed problem where, as shown by Chisari
et al. (2015) and Fontan et al. (2014), different sensor layouts
applied to the same test setup lead to different errors. The
design of the optimal sensor layout is thus paramount for
parameter identification. A comprehensive review in the field
of dynamic testing can be found in Mallardo and Aliabadi
(2013), while some strategies for the optimal sensor placement
are proposed by Beal et al. (2008) for structural health
monitoring and Bruggi and Mariani (2013) to detect damage
in plates.

Independently from the inverse problem to be solved, the
general approach is to locate the sensors such that the sensi-
tivity of the recorded response to the sought parameters is as
large as possible (Fadale et al. 1995). If the measuring errors
of all data are not correlated with each other and have the same
variance σ2, the variances of the identified parameters are
given by (JTJ)-1σ2 according to ordinary least square estima-
tion (Cividini et al. 1983). Here J is the system sensitivity
matrix and JTJ the Fisher’s information matrix (FIM). The
minimisation of the variance of the parameters can be per-
formed considering different criteria (D-, L-, E-, A-, C-
Optimality) according to which specific scalar measure of
FIM is used, e.g. condition number (Artyukhin 1985), deter-
minant (Mitchell 2000), norm (Kammer and Tinker 2004),
trace (Udwadia 1994). The FIM is also utilised in the criterion
proposed by Xiang et al. (2003), where a method quantifying
the well-posedness of the inverse problem forms the basis for
the sensor design. Once the criterion for defining the “fitness”
of the sensor layout is chosen, the design turns into a combi-
natorial optimisation problem. In this respect, Yao et al. (1993)
adopted Genetic Algorithms (GAs, Goldberg 1989) to find the
optimum solution. The major drawback of these methods is
that the sensitivity matrix (and thus the FIM) is a local prop-
erty of the parameters, implying that the best sensor layout
depends upon the solution, which clearly is not known in

advance. To overcome this shortcoming, an integrated proce-
dure was proposed by Li et al. (2008), in which the parameter
identification and sensor placement design are carried out al-
ternately. However, in practical applications the sensor layout
is often defined before the test and should be optimal or near-
optimal for any admissible parameter set.

In this work, a novel method for sensor placement is pro-
posed. Instead of considering the sensitivity of the measured
data to the parameters in the choice of the optimal sensor
layout, which as stated above depends on the parameters
themselves, the proposed criterion considers the representa-
tiveness of the data with respect to the global displacement
field. The representativeness is defined as the ability of infer-
ring the global field from the actual data, and it is based upon a
previous Finite Element (FE) discretisation followed by re-
sponse reduction by means of Proper Orthogonal
Decomposition (POD, Liang et al. 2002). A similar approach
making use of POD to determine the optimal sensor place-
ment was proposed by Herzog and Riedel (2015) for
thermoelastic applications. The underlying reason for the su-
periority of this approach is that it allows distinguishing the ill-
posedness due to the test (global ill-posedness) from the data-
induced ill-posedness. The proposed method is aimed at solv-
ing this latter problem by defining a set of measurements
representative of the global response, and thus minimising
the error in the estimation due to the limited number of re-
sponse outputs recorded. The practicality of the approach is
demonstrated in this paper through numerical applications.
For simplicity, the discussion is limited to elasto-static prob-
lems and to displacements as measured data. Extensions to
other cases will be proposed in future work.

2 The inverse structural problem in elasto-statics

Let us consider a mechanical system of volumeB and bound-
ary ∂B defined by the position x in the reference configura-
tion. It is known that the equations governing the static behav-
iour of the system are of three different types: (i) equilibrium,
(ii) compatibility and (iii) constitutive relationships.

In direct (forward) problems, the aim is to obtain the vector
u representing the displacement field and, consequently, the
stress tensor field σ, by solving the system of Partial
Differential Equation (PDE) given by (i), (ii), (iii) subjected
to specific boundary conditions. The solution of such PDE
system is known in closed-form in a very few simple cases,
thus in realistic structural problems it is often calculated using
numerical techniques as the Finite Element (FE) method.

In identification problems, together with the previously
mentioned unknowns, the constitutive material and/or bound-
ary condition parameters p are to be sought. Clearly the prob-
lem becomes underdetermined, so some new conditions have
to be added. These new conditions may be obtained from
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experimental measurements taken during the tests. In the fol-
lowing, we suppose that only displacement measurements are
available.

Let us consider a mathematical model F(p,x) which, once
the geometry and the known material properties and boundary
conditions are fixed, gives the displacements as function of the
unknown parameters p:

u xð Þ ¼ F p; xð Þ ð1Þ

In the hypothetical case in which the full displacement field
ũ(x) is known, a necessary condition for the solution of the
inverse problem is the equality between the computed and the
reference fields:

F p; xð Þ ¼ ~u xð Þ inB ð2Þ

In globally well-posed inverse problems, condition
(2) is also sufficient and can be incorporated in a non-
linear system to be solved employing an optimisation
approach:

pG ¼ arg min
p

Z
B

~u xð Þ−F p; xð Þ
���

���
q

� �q

dV
� �

ð3Þ

where ‖ ⋅ ‖q, with 1 ≤ q ≤ ∞, is the weighted Lq-norm
measuring the discrepancy between the computed and
the reference displacement.

As (2) represents an overdetermined system, the solution is
exact only in the absence of noise in ũ(x); otherwise it is a
solution in an approximate sense. In the case of q = 2
(Euclidean norm), the solution is in a least-square sense.
This is the most common formulation for the inverse problem,
which can be derived directly from the assumption that all
variables follow a Gaussian probability distribution
(Tarantola 2005). Other interesting instances, only mentioned
here, occur when different probability distributions are as-
sumed for the observed data values. If a Laplace distribution
is considered (presence of outliers), the solution of the inverse
problem can be derived from (3), imposing q=1, i.e. the
Least-Absolute-Value criterion. Conversely, when boxcar
probability densities are used to model the input uncertainties,
the problem is solved using q=∞. This corresponds to the
minimax criterion, in which the maximum residual is
minimised.

The hypothesis of a whole displacement field being known
is usually only satisfied for small specimens, specific loading
conditions and particular measurement equipment, i.e. Digital
Imaging Correlation (Hild and Roux 2006). In practice, the
most common case is the availability of a discrete number of
displacement measurements, usually obtained by extensome-
ters or transducers, hereinafter referred to as sensors.

When the full displacement field ũ(x) is not known,
and only a limited set of L data ũi is available, it is

common practice to replace problem (3) with the follow-
ing (assuming from now on that L2-norm is used):

pL ¼ arg min
p

XL
i¼1

~ui−F p; xið Þ
���

���2
 !

ð4Þ

or sometimes with other formulations having more com-
plicated forms involving weight matrices and/or
regularisation terms (as in the Bayesian framework). In
(4), xi is the position of the i-th sensor.

While the solution of (3) is the set pG which best fits the
global experimental response, nothing is known about its re-
lationship with the solution pL of (4), which only best fits the
data provided. It is intuitive that limL→þ∞pL ¼ pG, but, for
finite values of L, the difference in the solution Δp=pL−pG
is not only function of L, but also of the position xi, and there
is no guarantee that increasing the amount of data improves
the accuracy of the estimation, as shown by Balk (2013) with
reference to an inverse problem of gravity.

3 Model reduction and sensor design

3.1 Reducing problem size

Using the Finite Element Method, the domain can be
discretised into finite elements and the dependency of u on
the position x in the global reference system can be made
explicit using the relationship:

u ¼ F p; xð Þ ¼ Nu xeð Þ Te U pð Þ ð5Þ
where the subscript e indicates the element which the point P,
of global coordinates x and local coordinates xe, belongs to.
The matrix Nu(xe) collects the so-called shape functions,
which depend on the type of finite element considered. The
connectivity matrix Te transforms the global nodal displace-
ment vector U into the local reference system. Since both the
shape functions and the connectivity are known a priori, the
dependence of the full displacement field on the unknown
parameters is completely characterized by the knowledge of
the relationship U=U(p). Thus, from a theoretical point of
view, imposing the equality between the displacement fields,
e.g. the functional equality (2), is equivalent (neglecting a
weight term given by the shape function integration) to im-
posing the vectorial equality:

U pð Þ ¼ ~U ð6Þ
where Ũ is the N-sized vector collecting the displacements of
the nodes by which the structure is discretised. If we neglect
the possible error given by the shape functions used, the in-
verse problem is solved once a limited set of displacements,
i.e. the nodal displacements, is known, and the infinite-sized
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system (2) is replaced by the N-sized system (6).
In most cases, the choice of the nodal discretisation in the

domain is clearly distinct from the choice of the L nodes, the
displacements of which are recorded during the test; further-
more, N≫L. What we want to show, however, is that, once L
displacements ũi are available, it can be possible to express the
vector Ũ as a linear combination of them.

3.2 Inferring the global field from limited data

Let us suppose that it is possible to exploit the dependence of
U on p by simply choosing a convenient basis. In this work,
the selection of the new basis has been carried out by
analysing the behaviour of the field when p is randomly varied
by means of Proper Orthogonal Decomposition (POD). The
details are provided in Appendix.

The displacement field expressed in the new basis reads:

U pð Þ ¼
XK
j¼1

aj pð Þφ j ¼ Φ a pð Þ ð7Þ

where Φ is the N×K matrix representing the new basis, and
a(p) is a vector collecting K amplitudes. In this way, the de-
pendence on p is restricted to the amplitudes, while the basis is
fixed once and for all. If K=N, U is simply expressed in a
different equivalent basis; however, if the variation of the pa-
rameters p acts onU simplymodifying the relative importance
of a limited number K≪N of “shapes” φj, the advantages in
expressing U as in (7) become apparent.

In fact, let us consider a nodal displacement ui. From (7), it
can be written as:

ui ¼ Φi a pð Þ ð8Þ
where Φi is the 3×K matrix obtained choosing the rows of Φ
corresponding to the displacement ui. Consequently, if u is a
vector collecting L displacements ui, we can write:

u ¼ Φr a pð Þ ð9Þ

with:

Φr ¼
Φ1

…
ΦL

2
4

3
5 ð10Þ

On the other hand, a relative displacement Δuk between
two points (placed at xk,1 and xk,2) along the direction of the
line connecting them (as for transducers) can be expressed as:

Δuk ¼ uk;2−uk;1
� �T

ck ¼ ckT Φk;2−Φk;1
� �

a ð11Þ

where ck is the vector of the director cosines of the direction
considered. The matrix Φr now becomes:

Φr ¼
c1T Φ1;2−Φ1;1
� �

…
cLT ΦL;2−ΦL;1
� �

2
4

3
5 ð12Þ

It is herein underlined that the basis matrix Φ is evaluated
by considering the whole nodal displacement fieldU, and thus
the representation (7) should approximate the global structural
response. As an example, in Appendix it is shown that POD
minimises the average error of a set of models (snapshots).
The sensor displacements correspond to a subset of U (10),
possibly linearly combined (12), and thus Φr is evaluated by
extracting and combining rows of matrix Φ. No further anal-
yses on the snapshot set are thus required to evaluate Φr.

If rank(Φr) = K, it is possible to invert (9) in a least-squares
sense:

a ¼ Φr
† u ð13Þ

where Φr
† is the pseudo-inverse matrix1 ofΦr (Φr

†=Φr
− 1 ifΦr

is squared and full rank). From (7) and (13):

U ¼ Φ Φr
† u ¼ P u ð14Þ

A simple example may help clarify the concept. Let us
consider an cantilever Timoshenko beam of length l for which
we wish to identify elastic properties E and G, loaded by a
force F (assumed as knownwithout uncertainty) orthogonal to
its axis and applied on the free end. From the analysis of the
response at varying E and G, we infer that the displacement
field can be expressed as sum of two contributions, a cubic
shape φ1(x) and a linear shape φ2(x):

u E;G; xð Þ ¼ a1 E;Gð Þφ1 xð Þ þ a2 E;Gð Þφ2 xð Þ
¼ a1 E;Gð Þ x2 3l−xð Þ� � þ a2 E;Gð Þx ð15Þ

From Timoshenko theory we know that a1 E;Gð Þ ¼ F
6EI

and a2 E;Gð Þ ¼ Pχ
GA, with A, I and χ being area, second mo-

ment of area and shear factor of the beam cross section, but it
is herein assumed that this information is not explicitly known
(as for a generic structure). Let us now assume that we exper-
imentally recorded the displacements um and ue at the middle
and free end of the beam as effects of the force F. From (15),
they can be expressed as:

um ¼ a1
5

8
l3 þ a2

l
2

ue ¼ a12l3 þ a2l
ð16Þ

1 The Moore-Penrose inverse (or pseudo-inverse) of a rectangular matrix
A∈Rm�n is the unique matrix A†∈Rn�m satisfying the following four
matrix equations (Stewart and Sun 1990):

AA†A ¼ A; A†AA† ¼ A†; AA†
� �T ¼ AA†; A†A

� �T ¼ A†A
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and thus:

a1 ¼ −
8

3l3
um þ 4

3l3
ue

a2 ¼ 16

3l
um−

5

3l
ue

ð17Þ

From (15) and (17), the global field can be written as func-
tion of the known displacements:

u xð Þ ¼ −
8

3l3
um þ 4

3l3
ue

� �
x2 3l−xð Þ� �

þ 16

3l
um−

5

3l
ue

� �
x ð18Þ

This shows that the global displacement field can be
expressed as a function of the recorded displacements without
knowing the explicit relationship between these values and the
sought parameters (E and G in the example). The decomposi-
tion of the global field can be performed by means of tech-
niques as POD described in Appendix.

3.3 The optimal sensor layout

Expression (14) is a linear relationship between the nodal dis-
placement vector and a limited set of data (absolute displace-
ments (10), or relative displacements (12)). Thus, it is natural to
investigate how an error in u propagates into the global re-
sponse. When the noise in u can be assumed as a Gaussian
random variable with zero mean and variance σ2, the mean
square error (MSE) of the least square solution (13) is:

MSE â
	 


¼ â−a
���

���2
2
¼ σ2

XK
i¼1

1

λi
ð19Þ

where â is the perturbed solution and λi is the i-th eigenvalue of
the matrix Tr=Φr

TΦr. An interesting approach for the optimal
sensor placement in linear inverse problems is proposed by
Ranieri et al. (2014), which is defined by minimising (19).
Since the MSE presents many local minima, it is not actually
used; instead, the research effort is focused on finding tight
approximations that can be efficiently optimised.

Here, we disregard any assumptions about the noise distri-
bution and the approximation of MSE. Applying a perturba-
tion to u in (14) and subtracting the unperturbed expression,
we obtain:

δU ¼ P δu ð20Þ

Considering one of the basic equations for the norm
of a matrix:

δUk k≤ Pk k δuk k ð21Þ

it is clear that given an error in the measured data u
(usually not controllable), an upper bound for the error
in the vector U (and, consequently, in the global field)
is given by the norm of the matrix P. Hence, the most
informative (or representative) set of experimental data
is that providing a reconstructed field U characterised
by minimal error. Since P changes with changing sensor
locations X (through the term Φr

†), a rational approach
in the choice of the measurement data may be the
minimisation of the corresponding norm ‖P‖:

Find Xs ¼ xs1; …; xsL½ �
min P Xð Þk k ¼ Φ Φ†

r Xsð Þ�� ��
s: t: xsi∈ ~Bi ⊆ B i ¼ 1;…; L

8<
: ð22Þ

where xsi indicates the position of the i-th sensor (or the position
of the couple of points identifying the i-th transducer) belonging

to a subset ~Bi of its domainB. The objective function is repre-
sented by the norm of the matrix P =Φ Φr

†(Xs), which may be
evaluated for a trial sensor setup Xs by applying the relevant
formulation (10) or (12). Although difficult to express in an
analytical form, the optimisation problem (22) can be easily
treated by using meta-heuristics, such as Genetic Algorithms.

Incidentally, as consequence of what has been said, it is
possible to determine some necessary conditions for the solu-
tion of the inverse problem, in terms of inequalities between
vector sizes:

L≥K≥Q ð23Þ
where L is the number of experimental data, K is the number
of significant modes of the reduced basis and Q is the number
of sought material parameters.

3.4 Considerations

If the Frobenius norm is considered in (21), it is possible to
give a physical meaning to ‖P‖. In fact, for the linear relation-
ship (14), considering u as a random vector with variance-
covariance matrix Var(u), U is also a random vector with
variance-covariance matrix:

Var Uð Þ ¼ P Var uð ÞPT ð24Þ

If we consider all errors in the experimental data as uncor-
related and with variance σi

2=σ2 equal for all components,
(24) reduces to:

Var Uð Þ ¼ σ2 P PT ð25Þ

Using the rules of the trace of a matrix, it gives:

tr Var Uð Þ½ � ¼ σ2 tr P PT
� � ¼ σ2 tr PTP

� � ¼ σ2 Pk kF

� �2 ð26Þ
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where ‖P‖F is the Frobenius norm of P. Under the hypothesis
of Gaussian uncertainty, MSE(x) = tr[Var(x)], so ‖P‖F repre-
sents the ratio between the root-mean-square-error (RMSE) of
the reconstructed field U and the standard deviation of the
measurements σ. This implies that if one compares two setups
1 and 2, characterised bymatrices P1 and P2 and measurement
standard deviation σ1 and σ2 respectively, the following equal-
ity holds:

RMSE U1ð Þ
RMSE U2ð Þ ¼

P1k kF

P2k kF

σ1

σ2
ð27Þ

where U1 and U2 are the reconstructed displacement field for
setup 1 and 2 respectively. Equation (27) means that, assum-
ing σ1=σ2, the relative quality of the reconstruction (repre-
sentativeness of the data) between two setups may be com-
pared by examining the ratio of the two norms, even though
the two setups consist of different number of measurements. It
is explicitly conjectured here that ‖P‖F can also be used as an
indicator of the accuracy of the inverse problem solution when
the inverse problem is globally well-posed. If it is not the case,
regularisation techniques are to be added to the formulation,
independently of the quality of the sensor setup. Even though
no formal proof is given here for this assumption, in the nu-
merical application described in the following section it seems
to be empirically confirmed. More detailed analyses on the
relationship between error in the reconstruction and error in
the inverse problem solution are planned in further research.

4 Numerical applications

The numerical applications described in the following regard a
mesoscale description for brick-masonry (Macorini and
Izzuddin 2011). According to this modelling strategy bricks
are modelled by 20-noded elastic solid elements, while mortar
and brick-mortar interfaces are lumped into a 16-noded co-
rotational interface element, in which the two faces, initially
coincident in the undeformed configuration, may translate and
rotate with respect to each other. Additional interface elements
are inserted in the middle vertical plane of each brick to model
possible crack inside the brick in the nonlinear stage. All
material nonlinearities of the model are thus accounted for in
such interface elements. Here, we are concerned about the
elastic behaviour only and so the reader is referred to
Macorini and Izzuddin (2011) for further discussion about
the post-elastic behaviour. In the elastic branch, the relation-
ship between displacements and stresses at the nodes is
expressed through the definition of uncoupled axial kN and
shear kV stiffnesses. This material model has been implement-
ed in the general FE code ADAPTIC (Izzuddin 1991).

4.1 Shear test on a masonry panel

The structure examined here is a 770×770 mm2, 120 mm-
thick masonry panel, made of 250 × 120 × 55 mm3 sized
bricks and 10 mm-thick mortar layers. A stiff element is set
on top of the panel allowing for a uniform load application.
More specifically, a vertical pressure equal to 1 MPa followed
by a horizontal monotonic load quasi-statically increasing
from 0 to 92.4kN is applied to the stiff top beam. Additional
kinematic constraints are applied to the stiff element forcing it
to remain horizontal during the application of the horizontal
load. The vertical load is modelled as a volume force in the
stiff element. This specific loading arrangement simulates a
common shear test for masonry panels (Fig. 1).

Here, the aim of the test is to estimate the elastic properties
of the constituents, brick and mortar, modelled as described
above. The elastic properties considered as variable are listed
in Table 1, together with the variation range. In the table, r
represents the ratio between head joint and bed joint elastic

properties. Hence, it is assumed that kN ;h j

kN ;b j
¼ kV ;h j

kV ;b j
¼ r.

In order to construct the POD basis and verify its accuracy,
150 samples (snapshot set) with different material properties
have been generated by using Sobol pseudo-random sequence
(Antonov and Saleev 1979). Subsequently, 100 additional
samples (validation set) have been generated randomly to ver-
ify the fitness of the basis and the approximation.

The analysis of the 150 samples by means of the procedure
described in the Appendix allows for the definition of the
POD basis. This is evaluated by applying (A.3) after choosing
the number of modes K. Clearly, the higher K the smaller
errors are given in the POD representation. Such errors are
evaluated by sequentially applying (A.5) and (A.1) to the FE
displacement fieldUFE. The errors s, associated with the POD
approximation and evaluated as in (A.7) and (A.8) for the
snapshot set and the validation set respectively, are shown in
Fig. 2 as a function of the number of modes K. They represent
a cumulative measure of the error due to the compact repre-
sentation given by POD.

The figure clearly confirms that a few modes are sufficient
to retrieve a very accurate response. It is also remarkable that
(A.7), valid only for the snapshots, gives an accurate estimate
of the error even for random samples. Thus, it can be used as
an error indicator for the choice of the number K of modes to
be used. According to Fig. 2, the compact POD representation
withK=5modes (shown in Fig. 3) gives errors less the 0.5 %,
which is a very accurate approximation.

The full displacement field is characterised by 5040 de-
grees of freedom (three components for 1680 nodal displace-
ments). In contrast, the reduced response consists of only 5
degrees of freedom, namely the amplitudes a1, a2,…, a5, that,
multiplied by the mode shapes shown in Fig. 3, provide the
response in terms of displacements.
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Once the minimum number of modes needed for a certain
level of accuracy, defined by (A.7), is selected, different sen-
sor layouts can be compared based on their ability in estimat-
ing the global field (14), namely their “representativeness” of
the global field. Five different setups will be compared: they
consist of vertical (z) and in-plane horizontal (x) displace-
ments measured for the different node sets displayed in
Fig. 4. Setups (a)-(c) consider 30 nodes, while setup (d) and
(e) 20 and 10 nodes respectively. In this example, the setups
are compared independently from the possibility to be the
optimal placements.

As shown in Section 3.4, the parameter ‖P‖F is an indicator
of the error expected in the reconstruction when a Gaussian
noise is applied to the known data. The value of ‖P‖F for the
five setups considered is reported in Table 2. As expected,
setups with more data (a–c) generally lead to smaller ‖P‖F
(greater representativeness). However, it can be noticed that
increasing the number of data not always gives substantial
benefit, as setups (a) and (d) have comparable ‖P‖F, even if
the latter has 33 % less data.

The accuracy of (26) is now investigated numerically. The
data for the five setups, which were extracted for each of the
models used as validation set, were perturbed with a Gaussian
random noise of zero mean and different values of standard
deviation: σ=0.001 mm, σ=0.005 mm, σ=0.01 mm and

σ=0.05 mm. For each error range and for each model, 10
samples were generated, thus each giving a perturbed data
set ujpert. This response was inserted in (14) to obtain a recon-
structed displacement field Uj

rec. The rooted mean square er-
ror of the reconstructed responses is evaluated as:

RMSE Uð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

P

XP
j¼1

U j
rec−U

j
FE

���
���2

vuut ð28Þ

where P is the number of samples for each error range (10
samples times 100 models) and UFE

j is the error-free nodal
displacement vector. The results are shown in Fig. 5.

Figure 5 confirms that the error estimation for the recon-
structed field calculated using (26) is in excellent agreement
with the numerical results for substantial data errors
(σ= 0.005–0.05 mm). For low levels of error in the data
(σ=0.001 mm), (26) underestimates the total error. In that
case, it is likely that the error due to the truncation of the
POD basis is of the same order of magnitude as the error
due to the data, and so it cannot be estimated by the procedure
described above.

An example of reconstruction error for setups (c) and (e)
when the error in the input data has standard deviation equal to
0.05 mm is displayed in Fig. 6. The superiority of setup (c) is

a b

Fig. 1 a Representation of the
shear test on a masonry panel and
b numerical model

Table 1 Variation range for the
elastic properties Parameter Symbol Lower bound Upper bound Step

Brick Young modulus Eb (N/mm2) 5000 40,000 1

Brick Poisson’s ratio νb 0.001 0.499 10−4

Bed joint axial stiffness kN,bj (N/mm3) 30 1000 0.1

Bed joint shear stiffness kV,bj (N/mm3) 10 500 0.1

Head joint-to-bed joint ratio r 0.001 1.0 10−4
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evident, as the maximum error in the reconstruction is less
than 0.05 mm, while using setup (e) it is amplified (maximum
error in the reconstruction equal to 0.15 mm).

The final step of this example concerns the estima-
tion of the material parameters. We want to investigate
the accuracy of the material parameter estimation when
the five setups displayed in Fig. 4 provide the input
data for the inverse problem. This will practically con-
firm that if a setup is representative of the displacement
field and the problem is globally well-posed, then the
setup will also provide an accurate solution to the in-
verse problem. To this aim, the model with properties
Eb= 10000MPa, νb= 0.15, kN,bj= 100N/mm

3, kV,bj= 40N/
mm3, r= 0.2 will be considered as “true” model, which
represents the model whose parameters we aim to esti-
mate. For each of the five sensor layouts, the data will
be evaluated by extracting the response from the “true”
model and adding a Gaussian perturbation of zero mean
and standard deviation σ= 0.01 mm to each measure-
ment. 20 perturbed instances for each sensor layout will
be considered; each corresponds to a series of “experi-
mental” data that will be used as input for the inverse

analysis. The unknown parameters will be estimated by
solving the optimisation problem (4), by means of a
Genetic Algorithm, implemented in the software
TOSCA (Chisari 2015) already used for the solution
of inverse problems (Chisari et al. 2015). The GA pa-
rameters for the algorithm are:

– Initial population size: 40 individuals;
– Following populations size: 30 individuals;
– Number of generations: 20;
– Crossover type: Blend-α;
– Crossover probability: 1.0;
– Mutation probability: 0.01;
– Scaling type: Linear ranking;
– Scaling pressure for linear ranking: 1.7;
– Elitist individuals: 1.

The reader is referred to the works by Chisari et al. (2015)
and Chisari (2015) for further explanation on the parameter
meaning and on the overall solution scheme.

Firstly, it has been noticed that the problem of esti-
mating the five parameters displayed in Table 1 is glob-
ally ill-posed for the proposed setup. It means that even
using the error-free global displacement field as refer-
ence in (4), the algorithm is likely to find a local opti-
mum. In order to consider a well-posed problem, the
number of variables has been decreased to two: kN
and kV. The problem is well-posed, as can be seen in
Fig. 7, where the solutions of the 20 perturbed problems
in the kN - kV plane are displayed, for the case in which
the full displacement field is used as input data. It is
possible to notice that the solution of the inverse prob-
lem is not too sensitive to the data perturbation.

The maximum variance σp,max
2 in the parameter space

(and its square root σp,max) can be used as a measure of the
expected error in the estimation (Chisari et al. 2015). The
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maximum variance has been chosen instead of the variance of
each parameter, since it is evident from Fig. 7 that uncorre-
lated errors in the data do not lead to uncorrelated errors in the
solution. A comparison between the five setups is shown in
Fig. 8a, while in Fig. 8b the data reported in Table 2 are
shown as column bars.

In the two figures, it can be observed that the qual-
itative trend is similar for σp,max and ‖P‖F: setups (b)
and (c) are the best of those considered in this example,
while, as expected considering the value ‖P‖F, setup (e)
leads to the largest errors in the inverse procedure.
Results obtained by using setups (a) and (d) are similar.
These results confirm that the sensor placement influ-
ences the solution of an inverse problem, and increasing
the number of data is not a guarantee for successful
parameter estimation. In fact, layouts (d) and (e), though
utilising less sensors than (a) give similar uncertainty in
the results.

It is clear that the representativeness of the data (defined by
‖P‖F) as proposed in this work should only be regarded as a

qualitative indicator for the expected error of the inverse prob-
lem σp,max, since the relationship between them is not linear
and not explicitly known. As seen in Fig. 8, the proportions
between the error in the reconstructed field and the error in
σp,max are not always respected.

4.2 Diagonal compression test

This example shows that an effective sensor placement
can be determined by assuming the parameter ‖P‖F as
indicator of the representativeness of the data with re-
spect to the global field. Using the material model de-
scribed before, a diagonal compression test on a mason-
ry panel has been simulated. This test is widely used in
practice (Corradi et al. 2003; Milosevic et al. 2013) for
the assessment of masonry shear strength; herein, it will
be considered for the estimation of the elastic parame-
ters of the mesoscale model.

The panel has dimensions 650 × 650 × 90 mm3, made
of 250 × 55 × 90 mm3 solid clay bricks, 10 mm thick
horizontal mortar joints and 15 mm thick vertical mortar
joints. Each brick has been discretised by eight 20-node
solid elements connected by stiff elastic 8-node inter-
faces (Fig. 9). Mortar joints were modelled by elastic
8-node interface elements, with vertical and horizontal
interfaces having different properties (Fig. 10a). The
two stiff angles of the loading apparatus at the top and
bottom of the panel were modelled using solid elements,
where the external nodes of the elements for the bottom
angles not in contact with the masonry specimen were

a b c

d e

Fig. 4 Different setups for the
solution of the inverse problem

Table 2 Comparison
among different setups Setup ‖P‖F

a 61.37

b 34.56

c 19.48

d 72.67

e 117.79
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fully restrained. Four vertical forces F00, F01, F10, F11,
184 and 90 mm spaced in X and Y directions respective-
ly, were applied on the top angle. Accidental eccentrici-
ties of the applied loading in X and Y directions were
represented by changing the relative magnitude of the
four point loads. Elastic interfaces with low tangential
and high normal stiffness were applied between the an-
gles and the panel to simulate a layer of plaster. The full
numerical model is displayed in Fig. 10b. In Table 3, the
parameters assumed as fully known are reported.

The parameters to be identified are the same de-
scribed in Table 1, plus the parameters representing
the load eccentricity in x-direction ex0 and y-direction
ey0. ex0 and ey0 parameterise the load application point

as the four forces shown in Fig. 10b are related to the
total force F by the expressions:

F00 ¼ ex0⋅ey0⋅F F01 ¼ ex0⋅ 1−ey0
� �

⋅F
F10 ¼ 1−ex0ð Þ⋅ey0⋅F F11 ¼ 1−ex0ð Þ⋅ 1−ey0

� �
⋅F ð29Þ

It is easy to verify that the sum of the forces is equal to F.
When ex0 = ey0=0.5 the load is perfectly centred; the consid-
ered variation range is [0.0; 1.0].

The exploration of the parameter space for building POD
basis has been performed by generating 200 samples by the
Sobol sequence. The analysis results show that the error in the
representation, given by (A.7), is about 1 % when using 7
modes. It means that, based on inequalities (23), at least 7
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experimental measurements are needed to solve the inverse
problem of estimating the unknown material elastic properties
and the two eccentricities.

In the following, we will focus on the problem of choosing
the best layout for 14 transducers, each measuring relative
displacements between two points. It is equivalent to solving
the optimisation problem (22) where xsi is the vector
collecting the coordinates of the end points of the i-th trans-
ducer. In this application, xsi may vary in the space of the N
nodes of the model, with the following limitations:

1) xs1 − 7 must lay on one side of the specimen, while xs8 − 14

are constrained to be symmetrical on the other side;
2) the nodes of the angles are excluded from the selection.

These limitations may be added as constraints to the
optimisation problem. Other constraints may be of prac-
tical interest. Thus, according to the type of constraint,
different analyses were carried out and will be described
in the following. To solve the optimisation problem, the
same GA software TOSCA described for the solution of
the inverse problem in Subsection 4.1 was utilised. The
GA parameters are described in the following list:

– Initial population size: 280 individuals;
– Following populations size: 280 individuals;
– Number of generations: 300;
– Crossover type: Blend-α;
– Crossover probability: 0.85;
– Mutation probability: 0.01;
– Scaling type: Linear ranking;
– Scaling pressure for linear ranking: 1.7;
– Elitist individuals: 14.

Option 1: In Fig. 11 some statistics of the optimisa-
tion analysis are displayed along with the optimal
layout found by the algorithm. The minimum solu-
tion is attained at around generation 200 and is
characterised by ‖P‖F= 340, remarkably lower than
the mean value in the first randomly-generated pop-
ulation ‖P‖F= 1400, which can be regarded as the
expected value of a random choice for the layout. It
is clear that the sensor placement is usually deter-
mined by the analyst’s intuition, thus never
completely random, but these results show that an
optimisation analysis can be beneficial.
Option 2: Looking at the solution displayed in Fig. 11b,
it is clear that some constraints should be added in order
to obtain a more practical solution, since many end nodes
of the transducers are placed on the interface between
mortar and brick, where it is not possible to glue the
instrument bases. To this aim, the space of the points that
can be chosen by the algorithm was decreased as in
Fig. 12a, by removing the point belonging to the brick
edges. The new optimal layout shown in Fig. 12b is
characterised by the objective value ‖P‖F=404. As intu-
itively expected, in both analyses the algorithm sets at
least one transducer (actually two in both cases) along
the principal diagonal, meaning that this is recognised
as the most important measurement to be processed.
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Option 3: Another practical constraint that must be
allowed for concerns the loading plates. Boundary
conditions are often difficult to properly model; in
the case of the diagonal compression test, it is very
difficult to define the material properties of the
plaster spreading the load transferred by the steel
plates. In the example, this thin layer was modelled
as an elastic interface and its material properties
were set as constant (Table 3), but the actual be-
haviour and the effect on the model response are in
fact unknown. In order to decrease the effect of
incorrect boundary condition modelling in the in-
verse estimation, one could avoid considering the
nodes close to the steel angles. For this reason, in
this analysis the node considered are those
displayed in Fig. 13a. The solution is characterised
by the transducer layout shown in Fig. 13b. Its
objective function value is ‖P‖F= 844, about twice
the minimum obtained in Option 1 and 2.

The procedure developed in this work allows for
the comparison of setups of different nature. As an
example, it is interesting to compare the use of 14
experimental data as the outcome of Analysis 3

with a full-field displacement monitoring obtained
by using Digital Image Correlation (DIC) for the
region identified in Fig. 13a as Zone Of Interest
(ZOI). By using all nodes on both sides (two cam-
eras), we obtain ‖P‖F= 41, 20 times smaller than
the solution of Option 3. It clearly shows the ad-
vantages of using full field acquisition systems with
respect to more common discrete instruments.

As last remark, it is worth pointing out that the
solutions displayed in Figs. 11, 12, and 13 may
depend on the GA run, because of the stochastic
nature of the optimisation algorithm. Different runs
could provide different solutions, and those
displayed have no presumption to be the global
optimum of the optimisation problem. If one wishes
to verify this, it is highly recommended to perform
more than one analysis before choosing the correct
setup, as usually suggested when applying Genetic
Algorithms. However, in the authors’ experience,
any solution of the sensor optimisation is always
to be “adjusted” in some way before being realisti-
cally applied, because of unavoidable practical is-
sues (superposition of the instruments, difficulty in
the application, etc.). Because of this, a near-
optimal solution as that given by the single GA
run can effectively represent a starting point and
the associated ‖P‖ is the reference for comparison
between the adjusted solution and the original com-
puted setup.

a b

Fig. 9 a Brick discretisation with
eight solid elements and b rigid
interfaces between them

F00

F01
F10

F11

a b
Fig. 10 a Arrangement of mortar interfaces and b view of the complete
model

Table 3 Constant parameters for the inverse analyses

Parameter Description Value

Er Angle Young modulus 3 ⋅ 105 N/mm2

νr Angle Poisson ratio 0.15

kN,pl Plaster axial stiffness 100 N/mm3

kV,pl Plaster shear stiffness 1 N/mm3

F Total vertical force 100 kN
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5 Conclusions

In this work a novel procedure is proposed for specifying the
optimal sensor layout for structural identification problems.
Unlike previous works in which the effectiveness of a sensor
layout was estimated based on the sensitivity of the response
to the unknown parameters, herein this is defined by the rep-
resentativeness of the experimental data with respect to the
global field. By means of FE discretisation and POD model
reduction, it is possible to express the global field as a linear
combination of the experimental data. It is shown that the
Frobenius norm of the linking matrix P is a measure of the
error expected in the reconstruction, and it is conjectured that
it can also be a qualitative measure of the expected error in the
inverse analysis when the problem is globally well-posed.

Two examples relating to a meso-scale model for masonry
structures are described. The first example, representing a
shear test on a small single-leaf panel, considers the estimation
of the stiffness of the interfaces modelling the mortar joints.
Different setups are compared based on the parameter ‖P‖F
and the error in the inverse procedure solution σp,max. The
analysis confirms the above assumption, and the trend of
‖P‖F with the setup is similar to that of σp,max. It means that
‖P‖F can be effectively used as a parameter to estimate the
effectiveness of a setup. This is the basis for the optimisation
analysis utilising Genetic Algorithms described in the second
example which considers a diagonal compression test. It is
shown that different constraints can be embedded into the
procedure; furthermore, the comparison between the optimal
sensor layout and the full-field displacement acquisition by
means of DIC confirms the superiority of the latter system,
which is thus highly recommended for inverse problems.

The advantages of the procedure arise from the possibility
of defining the effectiveness of a sensor layout independently
from the inverse problem solution. Furthermore, different pos-
sibilities can be readily assessed by comparing the associated
‖P‖F value, and the optimisation procedure may be enriched
with several kinds of constraints in order to make it useful for
practical applications. If the representativeness of the data is
not adequate, the proposed method can suggest the need for
changing the setup, or adding regularisation in the inverse
problem formulation. It is here underlined that the methodol-
ogy deals with the choice of the optimal sensor placement
given a test, but does not address the problem of assessing if
the test is sufficient to estimate parameters. In this, it helps
discriminating the case where the inverse problem is ill-posed
due to the intrinsic nature of the test, or due to the bad choice
of measurements.

Although the exposition and the examples described in this
work relate to elasto-static problems and sensors measuring
displacements, the procedure can be easily extended to non-
linear static and dynamic problems and other quantities of
interest. Further research aimed at elaborating the relationship

between the quality of reconstruction and the error in the in-
verse estimation is currently ongoing.
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Appendix. Proper Orthogonal Decomposition

Changing the basis for U means that it will be expressed as

U pð Þ≈
XK
i¼1

ai pð Þφi ¼ Φa pð Þ ðA:1Þ

with K≪N. In (A.1), it is underlined that only the principal
component ai is dependent on the material parameter p, while
the basis, expressed by the matrix Φ, whose columns are the
modal shapes φi, is fixed and evaluated once and for all.
Defining the modal shapes φi and choosing the number of
significant modes K is the core of the procedure.

Let Uj denote the j-th (with j=1,…,M) observation (called
snapshot in the POD jargon), i.e. the value assumed by the
vector U for a given choice of the material parameter pj. The
modal shapes φi are obtained as the basis minimising the
approximation error for the M snapshots. In other words, giv-
en a numberK ofmodal shapes, these are obtainedminimising
the average error:

E ¼
XM
j¼1

U j−
XK
i¼1

ai pj
� �

φi

�����
�����
2

ðA:2Þ

where ‖ ⋅ ‖ is the Euclidean norm of a vector. Calling “snap-
shot matrix”Ū, theN×Mmatrix collecting theM snapshots as
columns, and defined the M×M modified correlation matrix
D= ŪTŪ, it is possible to prove (Buljak 2011) that the modal
shape matrix Φ is:

Φ ¼ ŪVZ ðA:3Þ
where:

& V is the M×K matrix whose columns are the first K ei-
genvectors of matrix D;

& Z is the diagonal K×K square matrix whose elements zii
are defined as:

zii ¼ λ−1=2
i ðA:4Þ

with λi being the i-th eigenvalue of matrixD. One of the main
features of the POD basis is its orthonormality, which means
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that ΦTΦ= I. Given a computed displacement field UFE,
thanks to the orthonormality of the basis, the reduced repre-
sentation in terms of amplitudes can be evaluated inverting
(A.1) by the expression:

a ¼ ΦTU FE ðA:5Þ
As regards the choice of the number K of significant modes, it
is also possible to prove that the overall error E may be
expressed by the relation:

E ¼
XM
j¼1

U j
�� ��2−X

K

i¼1

λi ðA:6Þ

and so, dividing by ∑j=1
M ‖Uj‖2 and taking the square root, we

obtain the root-mean-square error of the snapshots ssnapshots in
a non-dimensional form:

ssnapshots ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

X K

i¼1
λiXM

i¼1
λi

vuuut ðA:7Þ

where the equality∑j=1
M ‖Uj‖2 =∑i=1

M λi comes from (A.6) con-
sidering that, for the M samples considered, taking all modes
means expressing the M displacement fields in just another
different basis, leading to E=0.

For a different set ofP samples, the expression for s (A.7) is
not applicable, and so:

ssamples ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX P

j¼1
U j−Φa
�� ��2

X P

j¼1
U j
�� ��2

vuuuut ðA:8Þ
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