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Abstract The purpose of the research presented in this
paper is to develop and implement an efficient method for
analytical gradient-based sizing optimization of a support
structure for offshore wind turbines. In the jacket structure
optimization of frame member diameter and thickness, both
fatigue limit state, ultimate limit state, and frequency con-
straints are included. The established framework is demon-
strated on the OC4 reference jacket with the NREL 5 MW
reference wind turbine installed at a deep water site. The
jacket is modeled using 3D Timoshenko beam elements.
The aero-servo-elastic loads are determined using the multi-
body software HAWC2, and the wave loads are determined
using the Morison equation. Analytical sensitivities are
found using both the direct differentiation method and the
adjoint method. An effective formulation of the fatigue gra-
dients makes the amount of adjoint problems that needs to
be solved independent of the amount of load cycles included
in the analysis. Thus, a large amount of time-history loads
can be applied in the fatigue analysis, resulting in a good
representation of the accumulated fatigue damage. A reduc-
tion of 40 % mass is achieved in 23 iterations using the
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CPLEX optimizer by IBM ILOG, where both fatigue and
ultimate limit state constraints are active at the optimum.
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1 Introduction

Wind energy is a rapidly growing source of energy. The
energy is both clean and sustainable. The advances in wind
energy research and development are still driving down
the cost of energy significantly. If wind farms are situ-
ated at high wind condition sites, the cost of energy can be
competitive or even better than conventional energy sources.

High wind condition sites are often located at near-
coastal or offshore areas. Near-coastal areas are occupied
and limited, while installing offshore wind turbines presents
not only high wind conditions, but also space for very
large wind farms. However, it will also lead to more expen-
sive installation and electric infrastructure. Moreover, it will
result in larger support structures due to increased water
depth, and harsh hydrodynamic and aeroelastic loading.

Today, the dominating type of support structure for off-
shore wind turbines is the monopile. Monopiles are rela-
tively easy to install and the production price is low. When
advancing to deeper waters, frame structures are considered
better than the monopile design with respect to both cost and
structural efficiency. Recent discoveries have also shed light
on many problematic issues with monopiles. To name a few,
these are buckling of the pile tip, grout connection failure,
and water ingress spots leading to corrosion. Consequently,
many developers are looking into frame support structures
for deep water sites.
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Two types of frame structures are generally considered
for offshore wind turbines; the tripod with three legs and
the jacket with four legs. Both types of support structures
are extensively used in the oil and gas industry. As a result,
much experience and know-how exist for the design and
production of frame support structures. However, support
structures for offshore wind turbines experience a much
more dynamic loading history, which may mean that some
of the design driving criteria are completely different.

The design of offshore support structures is a complex
and time-consuming task. Even more so, as final designs
need to be validated using many extremely large Design
Load Cases (DLC), representing both the Fatigue Limit
State (FLS) and Ultimate Limit State (ULS). By utilizing
modern optimization techniques in the early design phase,
the design engineers can achieve a good preliminary struc-
tural design, which has been throughmany numerical design
iterations. Thus, in the context of structural design of off-
shore support structures, it can prove very beneficial to
have reliable and efficient numerical optimization models.
Although there is an apparent advantage of such a design
tool, optimization of support structures for offshore wind
turbines is a relatively new field of study due to the large
scale of the load series.

Some of the earlier work in optimization of support struc-
tures for wind turbines was done by Uys et al. (2007).
They optimized an onshore monopile subjected to several
buckling constraints by varying the average thickness of
the shells, the amount of ring-stiffeners, and the dimen-
sions of the ring-stiffeners using a zeroth order search
algorithm. Thiry et al. (2011) used a genetic algorithm to
optimize an offshore monopile tower, achieving reduction
of mass by increasing the material grade and varying dif-
ferent structural parameters while enforcing both FLS, ULS
and frequency constraints. In their fatigue assessment they
calculated damage caused by wind and wave loads uncou-
pled. Separating wind and wave loads on support structures
has previously been investigated by Kühn (2001), who
showed that it can potentially lead to large and unacceptable
errors in the fatigue assessment.

Long et al. (2011) investigated offshore tripods and
jackets for ULS conditions. They used the NREL 5 MW
reference wind turbine described in Jonkman et al. (2009).
In the design loop of the support structures they ensured
that buckling and yielding criteria were satisfied while vary-
ing the bottom leg distance. They extended their work and
considered FLS conditions according to design standards
having wall thickness as design parameters, see Long and
Moe (2012). Their optimized design for fatigue was heav-
ier than their design for ULS. They furthermore presented
some general design guidelines based on indications of the

change in structural properties caused by certain design
alterations.

The jacket concept was extended by Zwick et al. (2012).
Here, the traditional turbine tower was replaced with a full
height frame structure. Both FLS and ULS constraints were
considered in their analysis, parametric study, and design
optimization of member thickness. In their fatigue assess-
ment, which was the design driving criterion, only one
time-history load was included. The loads were recalculated
in each design iteration which is a very time-consuming pro-
cess, especially if many time-history loads are included. For
this reason, they investigated how to simplify the fatigue
loads in Zwick and Muskulus (2015). Utilizing multivari-
ate statistical methods they reduced a set of 21 time-history
loads to 3, while only sacrificing a maximum of 6.4 % preci-
sion in the fatigue life estimation of their models with tuned
regression parameters.

Chew et al. (2015) used a Sequential Quadratic Pro-
gramming (SQP) optimizer, including both FLS, ULS and
frequency constraints in their optimization of the OC4 refer-
ence jacket, described in Vorpahl et al. (2011). They applied
two time-history loads in their optimization, where the ana-
lytical gradients were found using the direct differentiation
method. The gradients were compared to both central and
forward difference schemes where significant deviations in
especially extreme load and fatigue load constraints were
observed. Thus, they advised against using finite differ-
ence schemes to approximate the gradients. They achieved a
reduction of 52 % mass as compared to the original design.
Their design was driven by fatigue, but during the optimiza-
tion, also buckling and compressive constraints based on
NORSOK standards were active. For a more comprehensive
overview and review of structural optimization of support
structures for wind turbines see Muskulus and Schafhirt
(2014).

In this framework, the diameter and thickness of the OC4
reference jacket with the NREL 5 MW reference wind tur-
bine is optimized using analytical gradients and a Sequential
Linear Programming (SLP) optimizer. FLS, ULS, and fre-
quency constraints based on Det Norske Veritas (DNV) and
Eurocode 3 are included. The sensitivities of the fatigue
constraints are found using the adjoint method while the
ULS and frequency sensitivities are found by direct differ-
entiation. Twelve complete time-history loads are included
in the FLS analysis, while one time-history load is included
in the ULS analysis. As the computation of the time-history
loads is extremely time-consuming, they are not updated
throughout the optimization.

The main contribution of this research is to develop and
implement an effective method of determining the fatigue
gradients for preliminary design of jacket structures for
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offshore wind turbines. In other words, we present effi-
cient gradient calculations using the adjoint method for
problems with few design variables, many constraints, and
very large time-history loads. Using the adjoint method is
counter intuitive for this kind of problem as the direct dif-
ferentiation method is generally advised over the adjoint
method for problems with fewer design variables than con-
straints, see e.g. Tortorelli and Michaleris (1994). On the
other hand, it has previously been shown that using the
adjoint method can be efficient for problems with multiple
loads, see e.g. Akgün et al. (2001).

In order to achieve a good representation of the fatigue
damage in the structure, a large number of time-history
loads should be included in the fatigue analysis and opti-
mization. However, the computational costs of conventional
methods for design sensitivity analysis scale very poorly
with the amount of time-history loads applied. To address
this, an efficient method for determining the fatigue sensi-
tivities has been implemented, where the computational cost
is much less sensitive to the amount of included time-history
loads.

By utilizing a linearity in the adjoint vector, it will be
shown that very few function evaluations are needed in this
framework using the adjoint method. This is achieved with-
out the use of aggregation functions such as the p-norm
method. Aggregation functions are often used to reduce a
large number of constraints, but leads to a loss in accu-
racy. In addition, it is achieved without using active set
strategies, where constraints that are of no or very small
importance are neglected. Because the gradients are eval-
uated efficiently, a relatively large amount of time-history
loads can be included in the optimization.

The structure of this paper is as follows. Initially the
modeling and simulation setup will be explained. This
includes details about loading conditions and modeling
assumptions. Next, all constraints and the derivation of
frequency and fatigue constraint sensitivities will be pre-
sented. Then the optimization problem is described, where
details about the optimizer, the convergence filter, and the
adaptive move limit strategy are given. Finally the optimiza-
tion results will be presented and analyzed, ending with a
conclusion stating the main outcome.

2 Structure and simulation setup

The OC4 reference jacket is located at the K13 deep water
site with a mean sea level of 50 m above the seabed, see
Fischer et al. (2010). The K13 deep water site is located in
the North Sea off the coast of the Netherlands. The tran-
sition between jacket and tower is located 70.15 m above

Mean sea level

K-joint

X-joint

T-joint

Piles

Seabed

Transition piece

Section 4

Section 3

Section 2

Section 1

20.15 m

0.00 m

-45.50 m

Fig. 1 The OC4 reference jacket

the seabed, where the transition of forces and moments is
ensured using a rigid concrete transition piece weighing
666,000 kg.

The support structure consists of interconnected circular
hollow frames. The members are joined together through
64 welded connections. More specifically, through 24 T/Y-
joints, 24 K-joints and 16 X-joints. These joints appear in
four very similar sections throughout the full height of the
jacket, see Fig. 1. The jacket is fastened to the seabed by a
grouted connection to piles penetrated into the seabed. The
grouted connection between the piles and the jacket ranges
from the seabed to 4.5 m above the seabed.

The tower and turbine are based on the NREL 5 MW
wind turbine, see Jonkman et al. (2009). Thus, the tower
is 68 m tall and the hub height is located 90.55 m above
mean sea level, see Vorpahl et al. (2011). The NREL 5
MW turbine has a cut-in speed of 3 m/s and a cut-out
speed of 25 m/s. The minimum rated rotor speed is 6.9 rpm
and the maximum rated rotor speed is 12.1 rpm, which is
achieved at wind speeds from 11.4 m/s to cut-out speed. The
rotor weighs 110,000 kg, the nacelle 240,000 kg, the tower
347,460 kg, and the jacket 673,718 kg.

2.1 Finite element model

The quasi-static structural analysis is performed using linear
finite element theory. The jacket is modeled using 3D beam
elements based on Timoshenko beam theory. Each element
consists of three nodes. One node at each beam end defines
the length of the beam and the local x-axis, and a third node
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Fig. 2 The 3D Timoshenko beam element showing all twelve degrees
of freedom and the local x-y-z coordinate system

is used to define the orientation in space by defining the
local x-y plane. The element has 12 degrees of freedom and
constant cross-sectional properties throughout the length,
see Fig. 2.

In the FLS and ULS analyses, the jacket is modeled using
104 elements. Each element spans from connection to con-
nection, except near the seabed and near transition piece,
where change in geometry demands additional elements.
The transition piece is simplified as a very rigid connection
using four elements. Each of the four elements are assigned
a fourth of the total transition piece weight.

In the frequency analysis, additional elements are added
to represent tower, nacelle, and rotor-nacelle assembly.
More specifically, eight elements are applied to model the
steel tower, and five elements are applied to model the
nacelle and hub. The turbine blades are not assigned any
elements, but the mass is included in the finite element rep-
resentation of the hub. Thus, in the frequency analysis, a
total of 121 elements are used.

The location and magnitude of the masses are modeled
according to Vorpahl et al. (2011). The rotor-nacelle assem-
bly and the nacelle are modelled with a very high rigidity,
while the rigidity of the transition piece is tuned to give
a lowest natural frequency of the structure of 0.31 Hz,
which is in accordance with Jonkman et al. (2012). In the
frequency analysis, consistent mass matrices are used.

In the structural analysis, the jacket is assumed fixed
at the grouted connection and free elsewhere. Damping
and geometric non-linearities are not included. Also, linear
elastic material behavior of the S355J2 steel is assumed.

In the current study unit loads have been applied at all
degrees of freedom and scaled with wind-, wave- and grav-
itational loads to efficiently find the structural response
for all time-steps by linear superposition. Thus, the inertia
and damping effects are ignored in the quasi-static analy-
sis approach. Alternatively, mode superposition could have

Table 1 Original values of the design variables in meters. Group
numbers refer to symmetry groups illustrated in Fig. 3

d(init) t (init)

Group 1, 3, 5, 7 & 9 0.8000 0.0200

Group 2 1.2000 0.0500

Group 4, 6 & 8 1.2000 0.0350

Group 10 1.2000 0.0400

been applied where the linear response can be calculated
from superposition of mode shapes.

2.2 Cost function

The jacket is optimized with respect to member diameter, d,
and thickness, t , to decrease the overall mass. Accordingly,
the objective function is given as

f (x) =
ne∑

j=1

ρjAj (x)lj (1)

Here x is the vector of design variables and ne is the total
number of elements. Each frame member is represented
using one element with constant cross-sectional properties.
ρj is the material density of element j . In like manner, Aj

and lj are the cross sectional area and the length of element
j , respectively.

The members have been divided into ten symmetry
groups. Within each symmetry group, all members are
assigned the same design variables. This is done for two
main reasons; firstly to produce a symmetric design, and
secondly to reduce the amount of different design variables.
Thus, the optimization problem is reduced to 20 design
variables. The initial design variables are shown in Table 1.

The lower part of the jacket legs connecting with the piles
is not included as design variables. Typically, standardized
piling equipment is used, and thus the original dimensions
remain. Naturally, the beam representation of the transition
piece is also omitted from the optimization. For this reason,
100 elements are assigned design variables. The symme-
try groups are shown with different colors in Fig. 3, where
the gray beams represent the jacket parts excluded from the
optimization.

2.3 Loading conditions

Many load cases are needed to fully validate support struc-
tures for offshore wind turbines. To name some, these
could be load cases representing regular power production,
extreme weather conditions, emergency shut down, parked
and fault conditions, transportation, assembly, maintenance
and repair etc. However, in this framework focus is only
on two load cases, specifically DLC 1.2 and 1.3, see DNV
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Fig. 3 The finite element representation of the jacket. The colored
beams represent symmetry groups, wherein the design variables are
shared. The gray beams are not optimized

(2011) and IEC (2005). These are normally considered the
governing design load cases for the support structure. The
load cases represent normal operational conditions for FLS
and ULS, respectively.

According to common practice the aeroelastic loads are
determined using multibody simulation software. In this
framework, HAWC2 (Horizontal Axis Wind turbine simu-
lation Code 2nd generation) has been used, see DTU Wind
Energy (2016). The jacket and turbine used in the multi-
body simulation are also based on the OC4 reference jacket
and the NREL 5MW turbine. The forces and moments have
been extracted at the transition piece, such that they can be
applied directly to the finite element model.

The hydrodynamic loading is calculated using the Mori-
son equation, see Morison et al. (1950). The wave force per
unit length, fw, is given by

fw = ρwCmA(u̇ − Ẍ) + ρwu̇A

+ 1
2ρwCd

(
(u + uc) − Ẋ

) ∣∣(u + uc) − Ẋ
∣∣ (2)

Here ρw = 1025 kg/m3 is the density of seawater, A is the
effective cross sectional area of the beam, which for a circu-
lar tube equals the outer diameter when computing the force
per length. Cd and Cm are the drag and inertia coefficients,
respectively. u and u̇ are the horizontal particle velocity
and acceleration and uc is the wave-current velocity. The
member velocity, Ẋ, and acceleration, Ẍ, are set to zero as
the structural analysis is static. The wave forces are calcu-
lated for vertical members and then projected onto oblique
members. The hydrodynamic loading is calculated in 15
sampling depths. Buoyancy forces on oblique members are
disregarded in the analysis.

While the wind loads are easily added to the beam rep-
resentation of the transition piece, the hydrodynamic loads
have to be recalculated into nodal loads. This is done in
three steps; first, the loads are linearly interpolated from the
nearest sampling depths to the nodal positions of the sub-
merged element. Secondly the loads are recalculated into
normal loads, and lastly work-equivalent nodal loads are
established, see e.g. Cook et al. (2002).

DLC 1.2 is used for fatigue calculations, where the loads
correspond to normal operation under normal sea states and
atmospheric turbulence. The multibody simulations have
been performed using a normal turbulence model, where
the turbulence intensity and the standard deviation have
been calculated in accordance with IEC (2005) and IEC
(2009). According to IEC (2009), the random realizations
for the wave loads in both FLS and ULS are based on
the Joint North Sea Wave Observation Project (JONSWAP)
spectrum, see Hasselmann et al. (1973). According to IEC
(2005), multidirectional waves should be considered. How-
ever, in this framework all environmental loads are applied
aligned and acting from a constant angle.

DLC 1.3 is used for ultimate limit state calculations,
where the loads correspond to normal operation under nor-
mal sea states and extreme turbulence conditions. Thus, in
the multibody simulation, an extreme turbulence model is
used. In addition, a normal current model is added to the
wave loads according to IEC (2009). Due to both structural
and load modeling uncertainties, a partial safety factor of
1.35 is applied to all environmental loads in this framework.

The standards suggest to produce time-history loads in
samplings from cut-in to cut-out speed, i.e. from a mean
wind speed of 3 m/s to 25 m/s. This should be done in
intervals of 2 m/s with a total sampling time of 10 min-
utes in sampling intervals of 0.02 seconds. Moreover, yaw
misalignment of ± 8 degrees should also be accounted
for, and for each setting, six random realizations should be
included. This adds up to 216 time-history loads for each
of the two included load cases. As each time-history load
consists of 30,000 load time-steps, this results in a total
amount of 6,480,000 load time-steps in both the FLS and
ULS analysis. This amount of information is currently too
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much to consider in an optimization loop, thus the amount
of time-history loads included must be reduced.

The yaw misalignment is important for blade and nacelle
design. However, the support structure may not be affected
significantly by the misalignment. For this reason the yaw
misalignment is excluded from the analysis. Furthermore,
only one random realization is included. Thus, only one 10
minute time-history load for each mean wind speed is used
in DLC 1.2, adding up to a total of 12 time-history loads
with a total of 360,000 load time-steps. For DLC 1.3, it
is believed that the most critical loading of the jacket will
occur at the highest wind speed. Again, yawmisalignment is
excluded and only one random realization is used. In short,
only one time-history load is included for ULS with a total
of 30,000 load time-steps.

3 Fatigue limit state analysis

Fatigue failure of welded structures is prone to occur in the
welded details. Thus, the fatigue damage must be inves-
tigated in every welded connection of the jacket. In fact,
the damage should be evaluated in eight equally distributed
sampling points in the cross section of the welded detail on
both the chord and brace side of the weld, see DNV (2014).

Stresses in welds can be complicated to determine as
they can be many times higher than nominal stresses.
Mean stresses are difficult to determine due to effects
such as residual stresses from the welding procedure where
uneven contraction of material during the cooling process
can induce very high stresses. Thus, mean effects are not
included in the traditional sense when calculating fatigue
damage in the welded details. Also, the uneven geome-
try at a weld gives cause for stress concentrations. For
this reason the nominal stresses must be scaled with stress
concentration factors (SCF ) in order to get a more realis-
tic estimate of the actual stress state in the welds. These
upscaled stresses are in the following referred to as σHotSpot.
All fatigue calculations are done according to DNV (2014).

3.1 Hot spot stresses

To calculate the hot spot stress in all eight local sampling
points, four stress concentration factors must be determined;
the SCF for axial loading at the saddle, SCFAS , for axial
loading at the crown, SCFAC , for out-of-plane bending
moments, SCFMOP

, and for in-plane bending moments,
SCFMIP

. For definitions of chord, brace, and sampling
locations see Fig. 4. The SCF depend explicitly on many
geometric parameters, including the design variables of
both brace and chord, and the type of connection. In K-
connections, the SCF can even depend on the design

1
2
3

4
5

6
7
8

x y

z
N MIP MOP

crown

saddle

brace
chord

Fig. 4 The location of the eight hot spot stresses calculated from stress
concentration factors and the stress caused by the normal load, N , by
the in-plane bending moment, MIP , and by the out-of-plane bending
moment MOP

variables of the neighboring brace. In addition, the SCF

differ when evaluating the weld on the brace or chord side.
The aforementioned geometric parameters are converted to
geometric validity parameters that must lie within certain
intervals in order to give trustworthy stress states. These
validity parameters are explicit functions of the design vari-
ables and are included as constraints in the optimization
algorithm. The parameters are defined in Section 4.3.

As SCF can be defined as the ratio between the nominal
and maximum stresses, the hot spot stresses are calculated
by superposition and scaling of the nominal stresses caused
by axial loading, σN , by in-plane bending moments, σMIP

,
and by out-of-plane bending moments, σMOP

. Thus follow-
ing DNV (2014), the eight local stresses can be calculated
by

σHotSpot1 = SCFACσN + SCFMIP
σMIP

(3a)

σHotSpot2 = 1

2
(SCFAC +SCFAS)σN + 1

2

√
2SCFMIP

σMIP

−1

2

√
2SCFMOP

σMOP
(3b)

σHotSpot3 = SCFASσN − SCFMOP
σMOP

(3c)

σHotSpot4 = 1

2
(SCFAC +SCFAS)σN − 1

2

√
2SCFMIP

σMIP

−1

2

√
2SCFMOP

σMOP
(3d)

σHotSpot5 = SCFACσN − SCFMIP
σMIP

(3e)

σHotSpot6 = 1

2
(SCFAC +SCFAS)σN − 1

2

√
2SCFMIP

σMIP

+1

2

√
2SCFMOP

σMOP
(3f)

σHotSpot7 = SCFASσN + SCFMOP
σ

OP
(3g)

σHotSpot8 = 1

2
(SCFAC +SCFAS)σN + 1

2

√
2SCFMIP

σMIP

+1

2

√
2SCFMOP

σMOP
(3h)

For both SCFMIP
and SCFMOP

in X- and K-joints, the
loading condition is assumed as applied on one brace when
determining the SCF . This assumption is conservative for
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each iteration in this framework. A fixed gap between the
braces in all K-joints of 0.25 m is assumed. Also, all chords
are assumed long and slender and general fixity parameters
are chosen, as no investigative tests have been performed
on the fixity. A SCF of 3 is applied for fatigue sam-
pling points not in a T/Y-, X- or K-joint in all iterations.
This assumptions is made as there are too many unknowns
in determining stress concentration factors for the tubular
butt welds in the structure, such as the measure of out of
roundness, eccentricity of the connection etc.

In the considered model 2688 fatigue sampling points are
evaluated. 512 in tubular butt welded connections, 384 in
T/Y connections, 1024 in X connections, and 768 in K con-
nections. For the initial design, the SCF values span from
1.05 to 12.15 with a mean of 4.05. For full details on how to
calculate the SCF , see DNV (2014).

3.2 Fatigue damage

Fatigue damage is caused by cyclic loading, and the dam-
age is defined as a fraction of the structures overall life. In
this framework, the fatigue damage is calculated by relating
hot spot stress amplitudes, �σHotSpot, with S-N curves. S-N
curves relate the number of cycles to expected failure, Ni ,
at a given stress amplitude. The applied S-N curve is valid
for circular hollow tubes of S355J2 with cathodic protection
submerged in seawater, and is shown in DNV (2014). The
equation for the S-N curve is

logNi = log ā − m log
(
�σHotSpotT

k
c

)
(4)

Here log ā is the intercept of the logNi axis on the S-N
curve and m is the negative inverse slope of the curve. Since
the log-log S-N curve is piecewise linear, m and ā can vary
depending on the amount of cycles to failure. k is the thick-
ness exponent having a value of either 0.25 or 0.30, where
the higher value is chosen if the applied SCF has a magni-
tude larger than 10. As a conservative choice, k is set to 0.30
in all fatigue sampling points. Tc is a thickness correction
term given as:

Tc = max

{
t

tref
, 1

}
(5)

Here t is the thickness of the member under investigation,
and tref is a reference thickness of 32 mm.

3.3 Rainflow counting

S-N curves are derived from tests where sinusoidal stresses
are applied to a specimen. However, the jacket is subjected
to a complex, multiaxial, non-proportional loading history.
Determining the highest estimated fatigue damage under
such loading conditions would normally require multiaxial

rainflow counting techniques. However, as the fatigue dam-
age is determined using only the normal stresses, traditional
rainflow counting can be applied.

In rainflow counting, the full stress history is reduced
to a sequence of peaks and valleys. Next, stress half and
full cycles are identified. It is important that rainflow count-
ing is done separately in all fatigue sampling points in
order to capture the highest accumulated damage. To indi-
cate this dependence, a subscripted k will be added. For
instance, the hot spot stress and displacement amplitudes
are indexed as �σki and �uki , where k = 1, 2, ..., 2688
is the fatigue sampling point number where the counting
has been performed. i = 1, 2, ..., Nk,RF is the rainflow
counter for sampling point k, and Nk,RF is the amount of
rainflow counts. The displacement amplitude relates to the
vector of applied load amplitude, �P ki , by subtracting two
equilibrium states from each other

K�uki = �P ki (6)

In order to efficiently solve for the displacement amplitudes,
a direct solver is used where the stiffness matrix has been
subjected to LU factorization.

The rainflow counting must be done on the hot spot
amplitude stress, as shown in (4). The hot spot amplitude
stresses are determined using all 360,000 load time-steps.
Damage caused by different mean wind speeds are upscaled
differently depending on the probability of occurrence. Con-
sequently, stress amplitudes must not be identified across
loads representing different mean wind speeds. Therefore,
it is important to perform rainflow counting separately for
each mean wind speed, i.e. 30,000 load time-steps at a time.
Additionally, due to the multiaxial, non-proportional load-
ing, the amount of rainflows, Nk,RF , can vary for each
fatigue sampling point. In the established fatigue analysis,
the difference in the amount of rainflow counts can eas-
ily exceed 10,000 depending on which sampling point is
evaluated. The amount of rainflow counts and the positions
in time are recalculated in every design iteration for every
fatigue evaluation point.

3.4 Accumulated damage

The accumulated damage is calculated by Palmgren Miner’s
linear damage hypothesis, given as

Dk =
Nk,RF∑

i=1

pki

nki

Nki

≤ η, k = 1, 2, ..., 2688 (7)

HereDk is the accumulated damage in sampling point k. pki

is a probability factor used to scale the damage to represent
the full life time, i.e. 20 years of service. The probability for
each mean wind speed is taken from the weather data for the
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K13 deep water site described in Fischer et al. (2010). The
value of the probability factor depends on the mean wind
speed currently investigated and the total amount of rain-
flow counts. nki is the number of stress cycles, i.e. a half or
full cycle, and η is the usage factor. It is assumed that the
welds are located at an area that is not planned for inspec-
tion or reparation during operation, thus η is set to 1/3 in
accordance with DNV (2011).

Isolating the number of cycles to failure for a given stress
state in (4) and inserting it into (7) presents the fatigue
constraint equation for each damage sampling point, k

Dk =
Nk,RF∑

i=1

pki

nki

ā
(
�σkiT k

c

)−m
≤ 1

3
(8)

4 Ultimate limit state analysis

The included ultimate limit state criteria are all based on
EN (2005a) and EN (2005b) and are; buckling failure, chord
face failure, and punching shear failure.

4.1 Buckling analysis

A buckling analysis is carried out according to EN (2005a).
This is done at the element level. All elements except the
eight elements used for modeling the transition piece and
the grouted connection are included, resulting in buckling
analyses of 100 elements. Each individual element, e, under
combined bending and axial compression must satisfy the
following two constraints

Be = NED

χyNRK/γM1
+ kyy

My,ED

χLT My,RK/γM1
(9a)

+kyz

Mz,ED

Mz,RK/γM1
≤ 1, e = 1, 2, ..., 100

Ge = NED

χzNRK/γM1
+ kzy

My,ED

χLT My,RK/γM1
(9b)

+kzz

Mz,ED

Mz,RK/γM1
≤ 1, e = 1, 2, ..., 100

Here NED , My,ED and Mz,ED are the design compression
force and maximum moments about the local y − y and
z − z axis, respectively. Similarly, NRK , My,RK and Mz,RK

are the design characteristic resistance force and moments
of the critical cross section. γM1 is a partial safety factor
for the global stability, where the value of 1.2 is used, see
IEC (2005). χLT is a reduction factor due to lateral torsional
buckling. However, as circular hollow beams are not suscep-
tible to lateral torsional buckling, χLT is set to 1. kyy , kzz,
kyz and kzy are the interaction factors. They are calculated

using the alternative method 1, shown in Annex A of EN
(2005a). Due to the symmetric properties of the circular hol-
low cross section, kyy = kzz and kyz = kzy . χy and χz are
reduction factors due to flexural buckling. Again, because of
the circular hollow cross section they are equal. The flexural
reduction factors are calculated for each member by

χz = χy = min

[
1

� +
√

�2 − λ̄2
, 1

]
(10)

� = 0.5
[
1 + α(λ̄ − 0.2) + λ̄2

]
(11)

Here α is an imperfection factor, that for a circular hol-
low cross section using hot finished S355J2 steel is 0.21.
The cross section class is restricted to be of class 2 or bet-
ter in this framework. This is done to reduce the amount of
ultimate limit state constraints of the welded connections,
as will be explained in detail in the next section. The non-
dimensional slenderness, λ̄, is for class 1-3 cross sections
calculated for each element as

λ̄ =
√

Afy

Ncr

(12)

Ncr is the critical Euler force and fy is the material yield
strength. The critical Euler force is calculated under the
assumption that each member can be viewed as a column
with pinned ends. Thus, the lowest critical Euler force is
given by (see e.g. Gere and Goodno (2012))

Ncr = π2EI

L2
(13)

Here E is the Young’s modulus of elasticity, I is the
area moment of inertia and L is the length of the column
considered.

The jacket is also investigated for global buckling. Using
a geometric stiffness matrix that includes shear and bending
effects, a linear buckling analysis has been performed for
all 30,000 load time-steps included in the ULS load case.
Including the partial safety factor of 1.35 on the loads and
the partial safety factor on the buckling analysis of 1.2, no
load combination had a buckling load factor of less than
131. Since the jacket in its original topology is very safe
from failure due to global buckling, it is not included in the
optimization as a constraint. However, a linear global buck-
ling analysis is performed on the optimized design to insure
that this assumption is valid.

4.2 Chord face and punching shear failure analysis

The limit states of the welded connections are also cal-
culated using Eurocode 3, EN (2005b). If the investigated
members are of cross sectional class 2 or better, and under



Structural optimization of jacket structures for large offshore wind turbines 787

certain dimensional restrictions shown in Section 4.3, the
connections only need to be checked for chord face failure
and punching shear failure. Chord face failure, which can
be described as plastic failure of the chord face, is avoided
by satisfying the following constraint for all brace member
connections, l, that are subjected to combined bending and
axial force. There exists 24 brace members in the 24 T/Y-
joints, 48 brace members in the 24 K-joints, and 64 brace
members in the 16 X-joints. In short, there are 136 chord
face failure constraints in the analysis, given by following
equation

Cl = NED

NRD
+

[ |MIP,ED|
MIP,RD

]2 + MOP,ED

MOP,RD
≤ 1,

l = 1, 2, ..., 136
(14)

Here,MIP,ED andMOP,ED are the design in-plane and out-
of-plane moments, respectively. Accordingly, MIP,RD and
MOP,RD are the design value of the resistance of the joint
expressed in internal moments, while NRD is the design
value of the resistance of the joint expressed in internal axial
force. Note that for multiplanar joints reduction factors are
included. For full details of the analysis we refer to EN
(2005b).

Punching shear failure can be described as crack initia-
tion on the chord wall leading to complete failure. Punching
shear failure only needs to be checked if the brace diameter
is larger than the inner chord diameter, according to Table
7.2 and 7.5 in EN (2005b). If this is the case, then punching
shear failure is checked by

Sl = NED

NRDpunch

+
[ ∣∣MIP,ED

∣∣
MIP,RDpunch

]2

+ MOP,ED

MOP,RDpunch

≤ 1, (15)

l = 1, 2, ..., 136

The differences from the chord face failure analysis to
the shear punching analysis are the design values of the
resistance of the joints expressed in internal axial force,
NRDpunch

, in in-plane moment, MIP,RDpunch
, and in out-of-

plane moment, MOP,RDpunch
.

4.3 Validation constraints

For both FLS and ULS analysis, a series of validity param-
eters must be fulfilled according to the standards and
recommended practice, i.e. EN (2005a), EN (2005b), and
DNV (2014). The amount of validity parameters depends
on the topology of the structure and the design variables.
The amount of parameters have been reduced utilizing the

enforced symmetric design. The parameters are included as
design constraints and are as follows

4 ≤ αp ≤ 40, αp = 2Lp

Dp

, p = 1, 2, ..., 11 (16a)

0.2 ≤ βp ≤ 1.0, βp = dp

Dp

, p = 1, 2, ..., 11 (16b)

0.2 ≤ βB
r ≤ 1.0, βB

r = dB
r

Dr

, r = 1, 2, ..., 9 (16c)

8 ≤ γs ≤ 25, γs = Ds

2Ts

, s = 1, 2, ..., 8 (16d)

ζt ≤ 1.0, ζt = gt

Dt

, t = 1, 2, 3 (16e)

0.2 ≤ τr ≤ 1.0, τr = tr

Tr

, r = 1, 2, ..., 9 (16f)

ιw ≤ 70
235

fy

, ιw = dw

tw
, w = 1, 2, ..., 10 (16g)

Here d is the brace diameter, dB is the adjacent brace diam-
eter in K-joints, and D is the chord diameter. t is the brace
thickness and T is the chord thickness. L is the chord length
and g is the distance between the braces in K-joints. Note
that the γ -constraint is a combination of DNV (2014) and
EN (2005b). The lower bound on the ζ -constraint is not
included as it is always fulfilled. The same is true for the
angular constraint described in DNV (2014).

The amount of constraints for each validity parameter
is determined using the enforced symmetry conditions. For
instance, the amount of α-constraints has been determined
in the following way. 9 unique chord lengths exist in the
welded connections. Of these 9 unique chord lengths, 11
unique chord length to chord diameter relations can exist
with the chosen topology and design variables. Thus, 11 α-
constraints are needed in total. The ζ -constraint is required
in the SCF calculation of K-joints. As can be seen on Fig. 3,
3 levels of K-joints exist. All 4 K-joints in each level are
welded to a chord that share design variables, thus the total
amount of ζ -constraints is 3. Likewise, the total amount of
constraints ensuring a cross section class of minimum 2, the
ι-constraint, is 10. This is due to the simple fact, that 10
symmetry groups exist. In a similar manner, the remaining
amount of each validity constraint has been found. Thus,
only a total of 61 validity constraints are needed to ensure
that the entire jacket stays within the allowable validity
bounds.

5 Frequency analysis

The natural frequency of the support structure is determined
by the finite element formulation of a real, symmetric,
structural, eigenvalue problem, see Seyranian et al. (1994).

Kφj = λjMφj , λj = ω2
j , j = 1, 2, ... (17)
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Here K is the global stiffness matrix, M is the global
mass matrix, while λj and φj represent the eigenvalue and
corresponding eigenvector, respectively. ωj is the natural
frequency of the structure. Note that all eigenvectors have
been M-orthonomalized. Also, the index is in ascending
order with j = 1 as the lowest frequency.

The support structure is designed to lie within the soft-
stiff range, i.e. between the rotor frequency range (1P)
and the blade-passing frequency (3P). Since the opera-
tional speed can vary, the 1P and 3P frequencies are in fact
frequency bands. With a 10 % safety margin the lowest
eigenfrequency must be within the frequency range between
ω1P = 0.22 Hz and ω3P = 0.31 Hz for the NREL 5 MW
reference turbine, see Fischer et al. (2010).

In the original design, two eigenfrequencies are identi-
fied within this frequency band, effectively constituting two
constraints. In addition, the third and fourth lowest eigen-
frequencies are constrained to stay above the upper limit of
the 3P frequency band, i.e. above 3 · ω1P .

6 Design sensitivity analysis

The derivatives of the objective function and validity range
constraints are explicitly dependent on the design variables.
Consequently, determining the design sensitivities does not
require special techniques and only the sensitivity of the cost
function will be shown in this paper for completeness.

The sensitivities of the buckling constraints, chord face
failure constraints, and punching shear failure constraints
are also independent of the state variables, i.e. the displace-
ments of the jacket, as the loads are assumed independent of
the design variables. Thus, the derivation of the ULS con-
straint sensitivities will not be shown. It must be noted that
the ULS calculations include several equations that depend
on design variables that are not continuously differentiable,
e.g. (10).

To summarize, only the sensitivities of the objective
function, the fatigue constraints, and the frequency con-
straints will be derived.

6.1 Objective function sensitivity

The cost function defined in (1) depends explicitly on the
design variables through the cross sectional area of each
tubular member. The sensitivity is found by differentiating
the equation with respect to the design variable, xv

df

dxv

=
ne∑

j=1

(
ρj

dAj

dxv

Lj

)
(18)

6.2 Fatigue constraint sensitivity

The fatigue constraint, (8), is a function of the design vari-
ables and the state variables, which is also a function of the
design variables. To determine the analytical sensitivities of
such implicit functions two traditional approaches can be
used, either the direct differentiation method or the adjoint
method. In this section, an efficient sensitivity analysis is
derived using the adjoint method.

In the adjoint method, the computational demanding
expression for the solution of displacement sensitivities is
omitted using Lagrange multipliers. This is achieved by
using an augmented response function, F . This function is
given as

F =
Nk,RF∑

i=1

(
Dki − �T

ki (K�uki − �P ki)
)

(19)

Here �ki is a Lagrange multiplier, commonly known as the
adjoint vector. In order to obtain the sensitivity, the aug-
mented response function is differentiated with respect to
the design variable, xv

dF

dxv

=
Nk,RF∑

i=1

(
∂Dki

∂xv

+
(

∂Dki

∂�uki

)T
d�uki

dxv

−
(

d�ki

dxv

)T

(K�uki − �P ki) (20)

− �T
ki

(
dK
dxv

�uki + K d�uki

dxv
− d�P ki

dxv

))

In the differentiation, it is assumed that the amount of rain-
flow counts, Nk,RF , and the positions in time of the stress
cycles, are independent of small design changes. Utilizing
the static equilibrium equation, defined in (6), together with
the assumption that the loads are fixed, i.e independent of
design, and rearranging terms, the following expression for
the augmented response function sensitivity is obtained

dF
dxv

=
Nk,RF∑

i=1

(
∂Dki

∂xv
− �T

ki
dK
dxv

�uki

+
((

∂Dki

∂�uki

)T − �T
kiK

)
d�uki

dxv

) (21)

The adjoint vector is chosen such that the displacement sen-
sitivity vanishes. To do this, the adjoint vector is found by
solving the adjoint equation, given by

KT �ki = ∂Dki

∂�uki

(22)

As the global stiffness matrix is symmetric, the LU factor-
ized matrix used when solving for the displacement ampli-
tudes can be reused to efficiently solve the adjoint problem.
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After determining the adjoint vector, the full derivative of
the response function, which equals the fatigue constraint
function, can be determined by

dDk

dxv

= dF

dxv

=
Nk,RF∑

i=1

(
∂Dki

∂xv

− �T
ki

dK

dxv

�uki

)
(23)

The adjoint problem shown in (22) must be solved for each
fatigue sampling point and for every rainflow count. Thus,
the computational demanding part, i.e. solving the adjoint
problem, scales with the amount of rainflow counts for the
adjoint method. However, the number of adjoint problems
to solve can be reduced as described in the following.

Extending the adjoint problem using the chain rule of
differentiation gives

K�ki = ∂Dki

∂�σki

∂�σki

∂�uki

(24)

Realizing that the partial derivative of stress with respect
to displacement does not change over load cycles for the
applied linear elastic formulation, a reference adjoint vector
can be solved for each fatigue sampling point. The reference
adjoint vector at a fatigue sampling point, �ref

k , is given by

K�
ref
k = ∂�σk1

∂�uk1
, k = 1, 2, ..., 2688 (25)

The reference adjoint vector can be calculated for any equi-
librium state, here done for the first rainflow count i = 1.
The adjoint vectors for the remaining rainflow entries can
then be found by scaling the reference adjoint vector with
the partial derivatives of the fatigue constraint with respect
to the stress amplitudes

�ki = ∂Dki

∂�σki

�
ref
k (26)

The partial derivatives of the fatigue constraints with respect
to the stress amplitudes are determined analytically. By this
method, the computational demanding part of the design
sensitivity analysis no longer scales with the amount of rain-
flow entries but only with the number of fatigue sampling
points. For this reason, a large amount of load time-steps can
be included in the analysis. Note that the proposed method
is also valid when the loading is design dependent.

For the problem at hand, the amount of adjoint equations
that must be solved for a traditional approach in the initial
design is 35,448,659, whereas only 2,688 adjoint equations
need to be solved when exploiting the linear relationship.

6.3 Frequency constraint sensitivity

The eigenvalue sensitivity is found using the direct dif-
ferentiation approach, that is, differentiating (17) with

respect to a design variable, xv . Simple eigenvalues are
assumed.

dK

dxv

φj + (K − λjM)
dφj

dxv

= dλj

dxv

Mφj + λj

dM

dxv

φj (27)

By premultiplying (27) with φT
j , utilizing (17), and that the

eigenmodes have been M-orthonomalized, the sensitivity
has been shown, by e.g. Courant and Hilbert (1953) and
Wittrick (1962), to be

dλj

dxv

= φT
j

(
dK

dxv

− λj

dM

dxv

)
φj (28)

The derivative of the global mass matrix with respect to the
design variables has been determined analytically.

6.4 Central finite difference validation

All sensitivities have been verified using a central finite dif-
ference scheme with a fixed perturbation. For the central dif-
ference verification of the fatigue sensitivity, only two mean
wind speeds with a third of the load time-steps were inclu-
ded due to the high computational time, while the ULS sen-
sitivities have been verified using the full time-history load.

Using a fixed perturbation size of xv · 5e−7, very precise
results were achieved. In fact, the highest mean absolute per-
centage error of all the fatigue constraints is only 0.54 %.
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Fig. 5 Deviation from analytical sensitivities when approximating the
fatigue sensitivities with a central finite difference scheme using a
fixed perturbation. It is seen that the perturbation size that yields accu-
rate results for one sensitivity, will yield inaccurate results for the other.
Both fatigue sampling points are on the chord side in a welded X con-
nection, where sampling point 2908 belong to symmetry group 9 and
sampling point 2134 belong to symmetry group 3. x8 is the diameter
in symmetry group 8
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This is a strong indication that the analytical gradients are
implemented correctly. However, a few gradients deviates
significantly which is studied in the following.

By investigating the behaviour of the finite difference
approximated sensitivities at different sampling points, it
is found that a severe perturbation size dependency exists.
In Fig. 5 two different fatigue sensitivities are shown with
varying perturbation size. It can clearly be seen that the
perturbation size that yields accurate results at one sam-
pling point, will yield inaccurate results at the other. To
conclude, great care must be taken if using finite difference
approximations as the gradients can vary greatly in magni-
tude, and more alarmingly in sign, depending on the applied
perturbation.

7 Optimization problem

Having defined the objective function, the constraint func-
tions, and enforcing design variable bounds ranging from
50 % to 200 % of initial values, denoted xv and xv ,
respectively, the optimization problem can be written as:

min.
x

f (x) (mass)

s.t. Dk ≤ 1/3, k = 1, 2, ..., 2688 (f atigue)

Be ≤ 1, e = 1, 2, ..., 100 (buckling)

Ge ≤ 1, e = 1, 2, ..., 100 (buckling)

Cl ≤ 1, l = 1, 2, ..., 136 (c. f ace)

Sl ≤ 1, l = 1, 2, ..., 136 (punch)

ω2
1P ≤ λj ≤ ω2

3P , j = 1, 2 (f req.)

(3ω1P )2 ≤ λj j = 3, 4 (f req.)

4 ≤ αp ≤ 40, p = 1, 2, ..., 11 (validity)

0.2 ≤ βp ≤ 1, p = 1, 2, ..., 11 (validity)

0.2 ≤ βB
r ≤ 1, r = 1, 2, ..., 9 (validity)

8 ≤ γs ≤ 25, s = 1, 2, ..., 8 (validity)

ζt ≤ 1, t = 1, 2, 3 (validity)

0.2 ≤ τr ≤ 1, r = 1, 2, ..., 9 (validity)

ιw ≤ 70235
355 , w= 1, 2, ..., 10 (validity)

xv ≤ xv ≤ xv, v = 1, 2, ..., 20 (bounds)

The optimization problem is solved using the Sequential
Linear Programming (SLP) method. More specifically, by
using the CPLEX optimizer by ILOG IBM. The reason
behind the choice of optimizer is twofold. Firstly, the opti-
mizer can robustly and efficiently handle the very large
number of non-linear constraints. Secondly, there are many
conditions that can switch during optimization, e.g. thick-
ness correction and material terms in the S-N curve, flexural
reduction factors for buckling etc. These functions are not
continuously differentiable, which can lead to significant
changes in the Hessian during optimization using a Sequen-
tial Quadratic Programming (SQP) optimizer. However, it
must be stated that the problem is not restricted to SLP
optimizers.

Every constraint has been reformulated into less than or
equal to inequality constraints, and then scaled with respect
to the right hand side. A vector containing all constraints,
excluding design variable bounds, can thus be written as

gf (x) ≤ 0, f = 1, 2, ..., 3267 (29)

The subscript f refers to the constraint number.

7.1 Merit functions

In order to ensure that the linearized problem is always
feasible, the constraint function is reformulated into a so-
called merit function, previously applied and described in
e.g. Sørensen et al. (2014). The merit function is given by

�f = gf (x) − yf ≤ 0, ∀f (30)

Here yf is an artificial optimization variable, sometimes
referred to as a slack variable, that can always close the
gap when one or more of the real constraints are infeasi-
ble. However, to ensure that the optimizer will try to reduce
the value of the artificial optimization variable, it is added
as a penalty term to the objective function. This penalized
objective function, or merit objective function, is given by

�0 = f (x) + a

3267∑

f =1

(
cyf + 1

2

(
yf

)2
)

(31)

Here c is a positive penalization constant set to 100, and a is
a scaling constant set to unity. Because all constraints have
been scaled with their respective right hand side, any pos-
sible constraint violation is penalized equally no matter the
type of constraint. Consequently, all constraints are treated
as equally important, and thereby a single penalization
parameter can be applied for all constraints.

Having shown the merit objective and constraint func-
tion, the optimization problem solved using the SLP method
can be formulated as

min.
x

�0(x) (32a)

s.t. �f (x) ≤ 0, ∀f (32b)

x(n)
v ∈ ML, ∀v (32c)

yf ∈ [0, ∞[, ∀f (32d)

In (32c) the set ML constitutes the design variable
bounds. These bounds are not static as they are updated
in each design iteration (n) using an adaptive move limit
strategy based upon the response of a convergence filter.
The design variables are still constrained within the original
bounds.

7.2 Global convergence filter

A global convergence filter by Chin and Fletcher (2003)
is applied to assist in a stable convergence of the SLP
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optimizer. The convergence filter can be described as a
line search method. The search method utilizes the cur-
rent design value, a linear prediction, and possible con-
straint violations in determining if a new iterate should be
accepted. If a new design is accepted, the move limits are
increased. However, if the design is rejected, the move lim-
its are decreased. The parameters applied in the filter are
taken from Fletcher et al. (1998). Using the notation from
Chin and Fletcher (2003), they are γ = 104, β = 1 − γ ,
σ = 2γ , and δ = γ .

7.3 Adaptive move limit strategy

To control the progression of the SLP optimizer, the adap-
tive move limit strategy adjusts the bounds of each indi-
vidual design variable. The variable limits are updated
by

x(n+1)
v ∈

[
max

(
x(n)
v − �(n+1)

v , xv

)
,min

(
x(n)
v + �(n+1)

v , xv

)]

(33)

Here �
(n+1)
v is the new allowable change. Effectively, the

algorithm is set to increase the default limits by 15 % if a
design is accepted by the global convergence filter. How-
ever, if a design variable changes non-monotonically, i.e. in
an oscillating manner, the move limit is decreased by 50 %.
Furthermore, if the new design is rejected, the move limits
are reduced by 50 % for all design variables. The linearized
problem is again presented to the optimizer, but now with
reduced move limits. The new design is then reevaluated
by the global convergence filter. This procedure is repeated
until either the design is accepted or a convergence criterion
is reached. In this work, the optimization is set to stop when
either one of the two following criteria is satisfied

||x(n) − x(n−1)||
|| x − x || <10−4 or

√(
�

(n−1)
0 − �

(n)
0

)2
< 0.01

(34)

The initial allowable change is set to 10 %. At any optimum,
1 % infeasibility of any constraint is allowed.

8 Optimization results

The optimization problem is solved very efficiently using
the proposed procedure. In only 23 iterations the conver-
gence criteria are fulfilled, and the mass is reduced by 40 %
while all constraints are satisfied. Only 36 function evalu-
ations of the finite element model are needed in total. The
obtained design values are shown in Table 2. The optimized
jacket contra the original jacket is illustrated on Fig. 6.

Table 2 Original and optimized design variables in meters

d(init) d(opt) t (init) t (opt)

Group 1 - Dark Blue 0.8000 0.5034 0.0200 0.0126

Group 2 - Red 1.2000 0.9266 0.0500 0.0315

Group 3 - Yellow 0.8000 0.5941 0.0200 0.0149

Group 4 - Green 1.2000 0.9266 0.0350 0.0223

Group 5 - Cyan 0.8000 0.5795 0.0200 0.0145

Group 6 - Blue 1.2000 0.7854 0.0350 0.0220

Group 7 - Magenta 0.8000 0.5801 0.0200 0.0145

Group 8 - Dark Red 1.2000 0.7546 0.0350 0.0255

Group 9 - Dark Yellow 0.8000 0.5680 0.0200 0.0154

Group 10 - Dark Green 1.2000 0.9661 0.0400 0.0256

Colors refer to symmetry groups illustrated in Fig. 6

The optimized design variables are not directly applica-
ble, as members are not mass produced with these dimen-
sions. Thus, the real mass reduction of the jacket is less if
rounding to available diameters and thicknesses is performed.

During the optimization, one fatigue constraint became
active in just 4 iterations. At this stage in the optimization
process, the mass reduction is 35.1 %. However, the opti-
mization continues to reduce the mass in a stable and robust
manner, to a total of 39.9 % as compared with the initial
design.

Original Design

Z
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m
]

Y [m] X [m]

Optimized Design
Z
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Y [m] X [m]

Group 1

Group 2

Group 3
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Section 1

Section 2
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Fig. 6 Original and optimized jacket structure. Light gray beams are
not optimized
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Fig. 7 Objective function and constraint function value evolution dur-
ing optimization. First y-axis refers to the objective function, while the
second y-axis refers to all constraint values. A constraint is considered
active at a value of zero or higher

In Fig. 7, the evolution of the objective function and the
highest constraint value of all types of structural constraints
can be seen.

Several constraints are active at the optimum. Three
validity constraints are active, two of (16a) and one of (16d).
While active validity constraints may not represent real
structural integrity issues but rather measurements of the
modeling credibility, they directly affect the obtained design.

As the fatigue constraints behave highly non-linear,
fatigue constraints within 5 % of the constraint limit will in
the following be considered active. Obviously, this consid-
eration is only an assessment made from a structural design
engineers point of view. With this definition, 17 fatigue
constraints are active at the optimum. The active fatigue
constraints are located at a variety of locations.

In Section 1 there is two active fatigue constraints. One
is located in a T/Y connection and the other is located in
an X connection. There are seven active fatigue constraints
in Section 2, where three are located in X connections and
four are located in K connections. Moreover, five fatigue
constraints in X connections and one constraint in a K
connection are active in Section 4. Lastly, two fatigue con-
straints are located at butt welded connections near the
transition piece. The active fatigue constraints belong to
beam elements in symmetry groups 3, 5, 9, and 10. All
active fatigue constraints in connections are active on the
chord side of the weld.

Two ULS constraints are active at the optimum. Specif-
ically, a chord face failure constraint of an element in a K
connection in Section 3 is active and a chord face failure
constraint in a T connection in the frame below Section 1
is active. No other ULS constraint are within 20 % of being
active. However, due to the highly non-linear behaviour of
the ULS constraints, some may actually be very close to
becoming active. For instance, the first active chord face
failure constraint increases from a normalized constraint
value of -0.33 to being active due to a change in objective

function value of only 2.8 %. The active ULS constraints
belong to beam elements in symmetry groups 1 and 7.

No local member buckling constraint becomes active
during the optimization. Furthermore, the linear global
buckling analysis showed a minimum buckling load fac-
tor of 42 for all 30,000 ULS load time-steps. While linear
buckling analyses may be nonconservative, a buckling load
factor of 42 is well beyond the safe limit.

No frequency constraints become active during the opti-
mization. It must be noted that the original design conve-
niently has lower natural frequencies very near the upper
bound of the allowable frequency band between the 1P and
3P frequencies, see Jonkman et al. (2012). This allows much
freedom in the optimization loop, as a decrease in overall
stiffness occurs during the optimization.

In this framework, it is clear that a multitude of struc-
tural details are governing for the sizing design of this
jacket topology. This is true as both vertical members and
X-, K-, and T-welded connections affect the optimized
design, where both FLS and ULS are important. Also, the
active constraints are widely spread throughout the struc-
ture. Although this means that a large number of non-linear
constraints must be considered, the optimization process, at
least for this topology, is very robust and efficient.

No assessment has been made on the accuracy of the
loading conditions when the design changes. The maxi-
mum horizontal jacket top displacement during the entire
ULS analysis has increased by 0.08 m at the optimized
design when compared to the initial design. As the stiff-
ness decreases, the dynamic effects on the aerodynamic and
hydrodynamic loading increase. However, the turbine, the
tower, and the site conditions remain unaltered. This is still
deemed governing for the aerodynamic loading conditions
in this optimization problem. Furthermore, to support the
validity of the preliminary design, the wave and gravita-
tional loads become increasingly conservative as the outer
diameters and overall mass of the beam members decrease
during the optimization, respectively.

9 Conclusion

In this work, an efficient method of determining analyt-
ical design sensitivities of finite-life fatigue constraints
has been presented. The method is efficient for optimiza-
tion problems with many more fatigue constraints than
design variables. The effectiveness has been demonstrated
on the OC4 reference jacket, where also ultimate limit
state and frequency constraints have been included. All
design constraints are based on international standards. The
optimization has been solved in just 23 iterations and the
obtained design has a decrease in overall mass of 40 % as
compared to the initial design. The optimization is solved
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using Sequential Linear Programming where handling the
very large number of non-linear constraints has been done
in an efficient and robust manner.

A large number of time-history loads representing hydro-
dynamic and aerodynamic loading have been applied in
the fatigue analysis. This is possible due to the proposed
method, where the amount of adjoint problems to be solved
in the design sensitivity analysis of the fatigue constraints,
is independent of the amount of applied load time-steps.

The optimization results indicate that the OC4 jacket is
designed overly conservative. Also, the results indicate that
the design of a jacket structure is indeed a complex task, as
different types of constraints are active at the optimum. As
the proposed optimization problem is a non-convex prob-
lem, a global optimum can not be guaranteed. However, the
active constraints are located in a variety of places which
indicates a good optimum.

In conclusion, the optimization can be efficiently used
to obtain optimized preliminary jacket designs for offshore
wind turbines subjected to wind- and wave loads. The
optimization considers fatigue, buckling, failure in welded
details, and eigenfrequencies, when optimizing member
diameter and thickness, such that mass minimized jacket
structures are obtained.
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