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Abstract In this paper, we propose a unified aggregation
and relaxation approach for topology optimization with
stress constraints. Following this approach, we first refor-
mulate the original optimization problem with a design-
dependent set of constraints into an equivalent optimization
problem with a fixed design-independent set of constraints.
The next step is to perform constraint aggregation over
the reformulated local constraints using a lower bound
aggregation function. We demonstrate that this approach
concurrently aggregates the constraints and relaxes the fea-
sible domain, thereby making singular optima accessible.
The main advantage is that no separate constraint relax-
ation techniques are necessary, which reduces the parameter
dependence of the problem. Furthermore, there is a clear
relationship between the original feasible domain and the
perturbed feasible domain via this aggregation parameter.
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1 Introduction

Topology optimization of continuum structures has become
a popular design tool in industry due to the design free-
dom it provides. However, in most applications, topology
optimization is used in the early design phase, and there is
still a relatively large gap between the optimized design and
the final design for manufacturing. The topology optimized
design is generally followed by a number of post-processing
steps to make the design suitable for manufacturing and
meet relevant failure criteria, such as stress and buckling
constraints. Directly including stress constraints in topology
optimization has been an important field of study because
this reduces the gap between the optimized and final design.
However, several difficulties arise when including stress
constraints in topology optimization.

One of the major difficulties is that the correct optima
are often inaccessible to standard gradient-based optimiza-
tion techniques. These inaccessible optima are known as
‘singular optima’, and have been first observed in truss
optimization by Sved and Ginos (1968). They demon-
strated on a three-bar truss example that the optimum is
a solution in which one of the original members vanishes.
However, the stress constraint on that member prevented
eliminating this member by standard gradient-based opti-
mization. Kirsch (1989, 1990) investigated the characteris-
tics of singular optima, and demonstrated that these optima
are located in a lower dimensional subdomain of the feasi-
ble domain. In general, singular optima arise in optimization
problems that are of the type ‘mathematical programs with
vanishing constraints’ (MPVC’s) (Achtziger and Kanzow
2008). Stress-constrained topology optimization belongs to
this class of problems. For a detailed discussion on singu-
lar optima and its main characteristics, we refer to Rozvany
(2001a) and the references therein.
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Another fundamental difficulty is that the stress is a
local state variable, which leads to a large number of con-
straints. For other topology optimization problems with few
responses and many design variables, the sensitivities can
be calculated efficiently using an adjoint formulation. How-
ever, since for stress-constrained problems the number of
constraints design variables are of the same order, there is
no benefit in using an adjoint formulation. Consequently,
the potentially large number of local constraints leads to a
computationally expensive sensitivity analysis.

Several solutions have been proposed to tackle these dif-
ficulties. The most common approach is to subsequently
apply (i) constraint relaxation to make singular optima
accessible, and (ii) constraint aggregation to deal with
the large number of local constraints. Constraint relax-
ation techniques replace the original set of constraints by
smooth approximations. This operation perturbs the feasi-
ble domain, and makes singular optima accessible. Con-
straint relaxation techniques that have been applied are ε-
relaxation (Cheng and Guo 1997), the qp-approach (Bruggi
2008), and considering a ‘relaxed’ stress (Le et al. 2009).
Constraint relaxation is then generally followed by con-
straint aggregation. Following this approach, the relaxed
local constraints (or stresses) are lumped into a global con-
straint using an aggregation function that approximates the
maximum local function value. This transformation drasti-
cally reduces the computational costs of the adjoint sensi-
tivity analysis. Examples of aggregation functions that have
been applied in literature are the Kreisselmeier-Steinhauser
function (KS-function hereafter) (Kreisselmeier 1979; Yang
and Chen 1996), and the P -norm (Duysinx and Sigmund
1998). Recently, the authors have proposed an alternative
solution (Verbart et al. 2015).

The combined relaxation and aggregation approach intro-
duces two additional parameters: the relaxation parameter,
which controls the perturbation effect on the original feasi-
ble domain, and an aggregation parameter, which controls
the quality of the approximation of the maximum local func-
tion value. A difficulty is that the optimal choice for the
parameter values in computational practice is generally very
problem dependent, and therefore, difficult to determine a
priori. Furthermore, we demonstrate in this paper that the
feasible domain of the optimization problem with constraint
relaxation and aggregation depends in a non-trivial way on
the problem parameters.

In order to overcome these difficulties, this paper unifies
these two concepts of constraint relaxation and aggrega-
tion. The first step is to reformulate the original opti-
mization problem with a design-dependent set of stress
constraints into an equivalent optimization problem with a
design-independent set of constraints. Next, we apply con-
straint aggregation using a lower bound aggregation func-
tion without separately relaxing the local constraints. We

demonstrate that constraint aggregation using a lower bound
aggregation function perturbs the original feasible domain,
and makes singular optima accessible. Consequently, no
separate relaxation techniques are necessary. The main
advantage is that the optimization problem only depends on
a single aggregation parameter, which reduces the param-
eter dependence of the problem. Furthermore, there is a
clear relationship between the original feasible domain and
the perturbed feasible domain in terms of this aggregation
parameter.

The remainder of this paper is structured as follows.
Section 2 presents the general framework of density-based
topology optimization with stress constraints. Section 3
discusses relaxation and conventionally used aggregation
strategies, which are generally applied separately. Both
these solution strategies are unified in the novel approach
presented in Section 4. Section 5 discusses the results
obtained by testing the method on several design cases on
which we investigated the parameter- and mesh dependency
of the optimized designs. Finally, conclusions are drawn in
Section 6.

2 Stress-constrained topology optimization

This section presents density-based topology optimiza-
tion with stress constraints considering homogenous linear
elastic isotropic material following a SIMP formulation
(Bendsøe 1989).

2.1 SIMP model

We consider density-based topology optimization to find
the optimal distribution of a material domain Ωmat inside
a larger design domain Ω . Following this approach, the
design domain is discretized into finite elements, and a den-
sity variable ρ is assigned to each element. The density
design variables can then vary between zero and one, repre-
senting void and solid material, respectively. The governing
equations for static equilibrium in terms of the density
design variables are defined as

E(u(ρ), ρ) = K(ρ)u(ρ) − f = 0, (1)

where ρ = (ρ1, ρ2, ..., ρN)T denotes the vector with N den-
sity design variables, K denotes the global stiffness matrix,
u denotes the vector with nodal displacements, and f denotes
the design-independent load vector.

The global stiffness matrix is composed out of the local
element stiffness matrices as

K =
∑

e∈Ωd

Ke(〈Ee〉). (2)
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Here, Ωd denotes the discretized design domain; i.e., set
of indices of all elements within the design domain. In this
paper, we use 〈.〉 to indicate homogenized quantities, there-
fore, 〈Ee〉 denotes the homogenized (i.e., effective) Young’s
modulus, which we define following the SIMP model as

〈Ee〉 = ρ
p
e E0, where p > 1. (3)

Here, E0 denotes the Young’s modulus associated with solid
densities (ρe = 1). The exponent p is chosen larger than
one, which makes intermediate density material unfavorable
in terms of stiffness to promote a black and white design.

The original SIMP model in (3) requires a small non-zero
lower bound on the design variables to prevent singularity
of the global stiffness matrix (0 < ρmin � 1). An alterna-
tive formulation, which allows the densities to vary between
zero and one, is the modified SIMP model (Sigmund 2007):

〈Ee〉 = Emin + ρ
p
e (E0 − Emin). (4)

Here, Emin is a lower bound to the Young’s modulus (e.g.,
Emin = 10−9E0). In this paper, we adopt this modified
SIMP formulation.

2.2 Problem formulation

First, we present the original topology optimization prob-
lem with stress constraints. Since the constraints are only
defined on material elements, this topology optimization
problem is known in literature as a topology optimization
problem with ‘design-dependent constraints’1 (Rozvany
2001a), also known as ‘vanishing constraints’ (Achtziger
and Kanzow 2008). Next, we reformulate the original opti-
mization problem as an optimization problem with a fixed
design-independent set of constraints.

2.2.1 Original optimization problem

The stress-constrained topology optimization problem in its
nested form is defined as

(P0) : min
ρ∈S

V = 1

V0

∑

e∈Ωd

ρeve,

s.t. gj = |σ j |
σlim

− 1 ≤ 0, ∀j ∈ Ωd
mat(ρ). (5)

Here, V0 denotes the total volume of the design domain,
ve denotes the volume (area in 2D) of a finite element, |σ |
represents a positive scalar-valued equivalent stress criterion
such as the Von Mises stress that depends on the symmet-
ric stress tensor σ . The equivalent stress is bounded by
the allowable stress σlim. The stress constraints gj are only
defined over the material domain:

Ωd
mat :=

{
j ∈ Ωd

∣∣∣ ρj > 0
}

, (6)

1The term design-dependent refers to set of constraints.

which in the discretized context is the set of indices of all
elements with a strictly positive density. Finally, the design
space in which we search for a solution is defined as

S :=
{

ρ ∈ R
N

∣∣∣ 0 ≤ ρ ≤ 1, E(u(ρ), ρ) = 0
}

. (7)

Here, E = 0 are the equations of static equilibrium defined
in (1). In other words, we only consider solutions where
static equilibrium is satisfied.

The reason that the constraints are only defined on the
material domain, Ωd

mat, is that physically the stress should
be zero in void regions. However, in density-based topol-
ogy optimization, one converts the topology optimization
problem in a continuum setting, into a sizing optimization
problem by modeling void as very compliant material. In
this model, the stress typically attains a finite value at zero
density (assuming finite strains), which corresponds with
the stress in an element with infinitesimal density. A simi-
lar phenomenon is known from truss optimization where the
stress in a member converges to a non-zero ‘limiting stress
value’ (Cheng and Jiang 1992) when a member vanishes
from the structure (again assuming finite strains). Conse-
quently, the model fails to represent the correct physics
when material vanishes.

2.2.2 Mathematical program with vanishing constraints

An alternative but equivalent formulation of the optimiza-
tion problem (P0) in (5) was first proposed by Cheng and
Jiang (1992). Later, Achtziger and Kanzow (2008) demon-
strated that such a reformulation is generally applicable to
the class of optimization problems known as mathematical
programs with vanishing constraints (MPVC’s) assuming
continuous differentiable functions. Topology optimization
with stress constraints belongs to this class of problems.

Following this approach, the design-dependent set of
constraints in (P0) is reformulated into a new design-
independent set of constraints defined over the entire design
domain. The reformulated optimization problem (P0) is
defined as

(P0) : min
ρ∈S

V = 1

V0

∑

e∈Ωd

ρeve

s.t. gj = ρjgj ≤ 0, ∀j ∈ Ωd. (8)

The new constraints gj are defined over the entire design
domain Ωd instead of the design-dependent set Ωd

mat. The
reformulated constraints are always satisfied when a mem-
ber vanishes; i.e., gj = 0 when ρj = 0. The optimization

problems (P0) and (P0) are equivalent in the sense that
their feasible domain is identical, and a minimizer ρ∗ to the
reformulated optimization problem (P0) is also a minimizer
to (P0).
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The advantage of formulation (P0) over (P0) is that the
set of constraints is design-independent, and therefore, suit-
able for standard gradient-based optimization techniques.
We note that this reformulation does not solve the difficulty
of singular optima, but relaxation techniques can be applied
to this reformulated optimization problem (P0).

2.3 Stress formulation

A difficulty in density-based topology optimization is that
the stress is non-uniquely defined for intermediate den-
sities. Assuming that the densities in SIMP represent a
porous microstructure, one can distinguish the stress at a
macroscopic- and microscopic level. Here, we briefly dis-
cuss the macroscopic stress, and the microscopic stress
commonly used in density-based topology optimization
(Duysinx and Bendsøe 1998).

2.3.1 Macroscopic stress

The macroscopic stress is based on the effective Young’s
modulus following the SIMP model in (3). If we assume
that intermediate density represents certain configurations
of a microstructure, we can interpret the macroscopic stress
as the stress based on the homogenized material properties
of the microstructure. The macroscopic stress tensor for an
element in Voigt notation is defined as

〈σe〉 = Ce(〈Ee〉) 〈εe〉 . (9)

Here, Ce(〈Ee〉) is the elasticity matrix based on the homog-
enized Young’s modulus in (3), and 〈εe〉 is the infinitesimal
strain tensor.

Unfortunately, the macroscopic stress is not suitable for
stress-constrained topology optimization, since it does not
correctly predict failure at the microscopic level for interme-
diate densities (Duysinx and Bendsøe 1998). Furthermore,
the macroscopic stress leads to an all-void design in topol-
ogy optimization (Le et al. 2009). A solution is to consider
the stress experienced at the microscopic level.

2.3.2 Microscopic stress

Duysinx and Bendsøe (1998) proposed a stress model that
mimics the behavior of the ‘local stress’ in a rank-2 lay-
ered composite. Each density variable can then be expressed
in terms of the thicknesses of the layers. The microscopic
stress is the stress experienced in the layers. To mimic the
behavior of the stress in such material, the microscopic
stress in density-based topology optimization should be:
(i) inversely proportional to the density variable, and (ii)
converge to a finite stress value at zero density. The last con-
ditions follow from studying the asymptotic behavior of the

microscopic stress in the layers as the thickness of a layer
goes to zero. A definition consistent with condition (i) is

σ e = 〈σ e〉
ρ

q
e

= ρ
p−q
e Ce(E0) 〈εe〉 . (10)

The value of the exponent q should be chosen such that the
stress satisfies condition (ii). This condition is only satisfied
for q = p. Thus, the microscopic stress is defined as

σ e = Ce(E0) 〈εe〉 . (11)

This definition of the microscopic stress has been com-
monly used in stress-constrained topology optimization, and
will also be used in this paper.

2.4 Summarizing remarks

Summarizing, our aim is to find an optimum to the opti-
mization problem (P0) stated in (5), which is equivalent to
finding an optimum to the reformulated optimization prob-
lem (P0) in (8). We consider an equivalent stress criterion
based on the microscopic stress defined in (11).

As mentioned before, (P0) cannot be solved directly
because of singular optima, and the potentially large num-
ber of local constraints. Solution techniques have to be
applied to circumvent these difficulties. Before introducing
our new approach, we briefly discuss the common solution
techniques used to deal with these difficulties.

3 Constraint relaxation and aggregation

The presence of singular optima, and potentially large num-
ber of local constraints make it difficult to solve (P0)

directly. The most common approach is to subsequently (i)
relax the constraints to make singular optima accessible, and
(ii) apply constraint aggregation to deal with the large num-
ber of constraints. In this section, we discuss both solutions
independently and investigate the parameter dependence of
the combined approach in which constraint relaxation is
followed by relaxation.

3.1 Constraint relaxation

We demonstrate the effect of constraint relaxation on
the accessibility of singular optima using a two-bar truss
problem.

3.1.1 Two-bar truss optimization problem

We consider the two-bar truss example shown in Fig. 1
(Stolpe 2003). The optimization problem is to minimize its
mass subjected to an allowable stress σlim, which is equal
in tension and compression and bounds the absolute stress
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Fig. 1 Two-bar truss (Stolpe 2003). The optimization problem is to
minimize mass by varying the cross-sectional areas A1 and A2 without
exceeding the allowable stress

value |σe| in each member. The design variables are the
cross-sectional areas A1 and A2. Both members have a
Young’s modulus E, and ρe and Le denote the density and
the length of the e-th member, respectively. The stress in the
members is given by

σ1 = PL2

A1L2 + A2L1
, σ2 = − PL1

A1L2 + A2L1
. (12)

The original optimization problem with vanishing stress
constraints is defined as

(P0) : min
A∈S

m =
∑

e∈Ωd

ρeAeLe,

s.t. gj =
( |σj |

σlim
− 1

)
≤ 0, ∀j ∈ Ωd

mat(A),

0 ≤ A ≤ Amax1. (13)

Here, A = (A1, A2)
T denotes the vector with the cross-

sectional areas, S is the design space where all configu-
rations of A satisfy the equilibrium equations, and Amax

is the maximum allowable cross-sectional area, which is
assumed to be equal for all elements. In this example, we
used Amax = 2. Finally, Ωd

mat ⊆ Ωd is the set of indices of
members with a strictly positive cross-sectional area.

Because we use the absolute value of the stress, each con-
straint can be rewritten as a pair of constraints. However, for
this load case, the left member is always in tension and the
right member is always in compression. Consequently, two
of the four constraints become redundant and are therefore
not considered.

Figure 2a shows the design space of (P0). The gray lines
are the isocontours of the objective function. The red line
corresponds with the stress constraint in tension of the left
member, and the blue line corresponds with the stress con-
straint in compression of the right member. The blue open
circle in point F indicates that the constraint g2 is not
defined at A2 = 0 since the constraint vanishes together
with the structural member. The reason that stress con-
straints are removed from the problem at zero cross-section
is that the stress may be non-zero in the limit. In this exam-
ple, the stress in the right member exceeds the allowable
stress along D − F , and taking the constraint into account
at zero cross-section would therefore wrongfully qualify the
subdomain D − F as infeasible.

The set of constraints in (13) is design-dependent and
prevents direct use of standard gradient-based optimization
techniques. As discussed in Section 2.2.2, (P0) belongs to
the class of MPVC’s (Achtziger and Kanzow 2008), and can
be reformulated as

(P0) : min
A∈S

m =
∑

e∈Ωd

ρeAeLe,

s.t. gj =
(

Aj

Amax

)
gj ≤ 0, ∀j ∈ Ωd,

0 ≤ A ≤ Amax1. (14)

Here, the original constraints are premultiplied by the nor-
malized cross-sectional area of the members they belong
to. The new set of constraints is defined over the entire
design domain Ωd and thus design-independent. Notice that
normalization of the cross-sectional area is not strictly nec-
essary but ensures that the new set of constraints is also
dimensionless.

Figure 2b shows the design space for the reformulated
problem (P0). For reasons of clarity, we omit the isocon-
tours of the objective function. In this case, the constraint
represented by the blue line is also defined in point F .
The feasible domain for both formulations is the same
and is shown in Fig. 2c. Since the set of constraints is
design-independent standard gradient-based optimization
techniques can be applied to (P0).

Fig. 2 Design space for the two-bar truss problem in Fig. 1 for both formulations and the associated feasible domain, which is identical
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However, it has been demonstrated that for this type of
problems, true optima cannot be reached since they reside
in a lower-dimensional subdomain of the feasible domain
(Kirsch 1989, 1990). In this problem any standard gradient-
based optimizer will converge to point B located in AB =
(0, 1), where the mass is mB = 4/5. However, this is not
the true optimum. The true optimum is located in point
D at the left end of the one-dimensional subdomain D-
F . This subdomain is part of the feasible domain since the
cross-sectional area of the second member is zero. In point
AD = (1, 0) the mass of the structure is mD = 3/5. In com-
putational practice, the subdomain D-F , and therefore the
true optimum D, is inaccessible since it is of a lower dimen-
sion than the ‘main body’ of the feasible domain. Point D is
known in literature as a singular optimum (Kirsch 1989).

3.1.2 Constraint relaxation

In general, relaxation techniques, such as ε-relaxation
(Cheng and Guo 1997) and the qp-approach (Bruggi and
Venini 2008), are applied to tackle the difficulty of singu-
lar optima. Instead of the original set of constraints, a set
of relaxed constraints is considered. By relaxing the con-
straints, the original feasible domain is perturbed such that
singular optima become accessible.

Here, we briefly discuss ε-relaxation since it has a clear
relationship to the original problem (P0). The idea is to relax
the original set of constraints in (14) by introducing a small
relaxation parameter 0 < ε � 1. The relaxed optimization
problem (Pε) is defined as

(Pε) : min
A∈S

m =
∑

e∈Ωd

ρeAeLe,

s.t. g̃j = gj − ε ≤ 0, ∀j ∈ Ωd,

0 ≤ A ≤ Amax1, (15)

where gj are the constraints as defined in (14).
Figure 3 shows the effect of relaxation on the feasible

domain for ε = 0.01. Relaxation makes the true optimum
D accessible by widening the subspace D-F . Solving the

Fig. 3 Design space of (Pε) for ε = 0.01. The dashed lines corre-
spond to the original constraints of (P0)

relaxed problem will give an optimal solution close to D,
where both constraints intersect. Cheng and Guo (1997)
demonstrated that the optimum solution A∗

ε of the relaxed
problem (Pε) converges to the optimum solution A∗

0 of (P0)

as the relaxation parameter tends to zero: i.e., ‖A∗
ε −A∗

0‖ →
0 as ε → 0. Therefore, ε-relaxation has been applied some-
times in a continuation strategy beginning with a relatively
large amount relaxation, and gradually decreasing the relax-
ation parameter during optimization (see, e.g., Duysinx and
Bendsøe 1998; Duysinx 1999).

However, Stolpe and Svanberg (2001) demonstrated that
the ’global trajectory’ may be discontinuous with respect to
the relaxation parameter. Here, global trajectory is defined
as the path of the global solution in the design space with
respect to the relaxation parameter; e.g., A∗

ε(ε). The global
trajectory A∗

ε(ε) with respect to (Pε) may suddenly jump
from location within the design space for arbitrary small
ε > 0. Consequently, following a sequence of solutions to
the ε-relaxed problem in a continuation strategy does not
guarantee finding the true optimum, even when the starting
point is a global optimum of the relaxed problem.

3.2 Constraint aggregation

The most common approach to deal with the large num-
ber of constraints is constraint aggregation. Following this
approach, the local constraints are lumped together into a
global constraint using an aggregation function. Instead of
many local constraints, only a single aggregated constraint
is considered, which drastically decreases the computational
costs of sensitivity analysis.

Several aggregation functions have been used in lit-
erature; e.g., the Kreisselmeier-Steinhauser (KS) function
(Kreisselmeier 1979; Yang and Chen 1996) and the P -
norm, and P -mean (Duysinx and Sigmund 1998; Le et al.
2009). These aggregation functions have in common that
they transform a set of local function values into a scalar
function. This scalar function depends on an aggregation
parameter P > 0, and converges in the limit to the
maximum local function value:

lim
P→∞ Ψ (f; P) = max(f1, f2, ..., fN). (16)

Here, f = (f1, f2, ..., fN)T denotes a vector in which the
entries are the local function values, and Ψ is the scalar
aggregation function.

Some aggregation functions approximate the maximum
local function value from above, and others from below.
Depending on this characteristic behavior the aggregation
function forms an upper- or lower-bound to the maximum
local function value. As will become clear later, this charac-
teristic is important for the proposed approach in this paper.
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First, we briefly discuss aggregation functions that have
been used in literature.

3.2.1 P -norm and P -mean

Under the assumption that the local function values in f
are non-negative, two aggregation functions that satisfy the
asymptotic behavior in (16) are the P -norm and P -mean,
which are defined as

Ψ U
PN =

(
N∑

i=1

f P
i

)1/P

, (17)

and

Ψ L
PM =

(
1

N

N∑

i=1

f P
i

)1/P

, (18)

respectively.
The difference between these two aggregation functions

is that the P -norm is an upper bound, and the P -mean is a
lower bound to the maximum local function value:

Ψ L
PM ≤ max(f1, f2, ..., fN) ≤ Ψ U

PN. (19)

We use superscripts U and L, to denote an upper and lower
bound aggregation function, respectively. The P -norm and
P -mean have been mostly used to aggregate non-negative
stress criteria, such as the Von Mises stress, into a global
stress function (see, e.g., Le et al. 2009; Holmberg et al.
2013).

3.2.2 KS-function and lower bound KS-function

Another aggregation function often used is the KS-function
(Kreisselmeier 1979; Yang and Chen 1996), which is
defined as

Ψ U
KS = 1

P
ln

(
N∑

i=1

ePfi

)
. (20)

Here, we used the superscript U to emphasize that the KS-
function forms an upper bound to the maximum local func-
tion value. For any P > 0, the KS-function overestimates
the maximum local function value.

The maximum difference between KS-function and max-
imum local function value fmax occurs when all local
function values are equal, and is defined as

1

P
ln

(
NePfmax

)
− fmax = 1

P
ln (N) . (21)

Subtracting this maximum difference of the original KS-
function gives a lower bound to the maximum local function
value defined as

Ψ L
KS = Ψ U

KS − 1

P
ln (N) = 1

P
ln

(
1

N

N∑

i=1

ePfi

)
. (22)

We will refer to Ψ L
KS as the lower bound KS-function, which

also has been used by some researchers (Parı́s et al. 2009;
Luo et al. 2012).

Similar to the P -norm and P -mean, the upper and lower
bound KS-function satisfy the asymptotic behavior of (16).
However, for the KS-function the local function values are
not restricted to non-negative values. Consequently, in con-
trast to the P -norm and P -mean, the KS-function is often
applied over the constraint functions (Parı́s et al. 2010; Luo
et al. 2013) in contrast to the relaxed stresses (Le et al.
2009).

3.3 Subsequent relaxation and aggregation

Finally, we consider the conventional approach of subse-
quently applying constraint relaxation followed by con-
straint aggregation. On the two bar truss example we show
that, in computational practice, the feasible domain of
this approximate optimization problem depends in a non-
trivial way on the problem parameters. First, we relax the
constraints by ε-relaxation, followed by constraint aggre-
gation using the upper bound KS-function in (20). The
approximate optimization problem is then formulated as
minimizing mass subject to a global constraint:

Ψ U
KS(g̃(A; ε); P) = 1

P
ln

(
N∑

i=1

eP g̃i

)
≤ 0, (23)

where g̃i are the ε-relaxed constraints defined in (15).
The global constraint depends on the relaxation param-

eter ε and aggregation parameter P . Fig. 4 shows the
constraint surface (Ψ U

KS = 0) represented by the green line.
The magenta color represents the original unperturbed fea-
sible domain, and point D denotes the true optimum. The
constraint surface is plotted for parameter values close to
their limits; i.e., a small relaxation parameter ε = 10−6, and

Fig. 4 The green line represents the constraint surface
(Ψ U

KS(A; ε, P ) = 0) for subsequent ε-relaxation followed by aggre-
gation using the upper bound KS-function. The aggregation- and
relaxation parameter were chosen as P = 106 and ε = 10−6,
respectively. The magenta color filled region represents the original
unperturbed feasible domain
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a large aggregation parameter P = 106. We observe that the
feasible domain of the approximate optimization problem
(i.e., the region to the right of the green line) approximates
the original feasible domain when approaching the limit of
both parameters.

Although the feasible domain of the approximate opti-
mization problem converges to the original feasible domain,
in computational practice, the problem parameters are cho-
sen far from these limits (e.g., P = 20 and ε = 0.01, Parı́s
et al. 2009). The reason is that a large value of the aggrega-
tion parameter may cause numerical instabilities, and a too
small value of the relaxation parameter does not provide suf-
ficient relaxation to make singular optima accessible. Next,
we investigate the effect of both parameters on the feasible
domain of the approximate optimization problem.

Figure 5a shows the constraint surface for increasing val-
ues of the aggregation parameter and a constant relaxation
parameter ε = 0.1. The arrow shows the effect of increas-
ing the aggregation parameter. We observe that increasing
the aggregation parameter for a fixed relaxation parame-
ter does not necessarily give a better approximation of the
true optimum. The global optimum of the approximate opti-
mization problem may deviate more from the true optimum
as the aggregation parameter is increased. Figure 5b shows
a similar result when decreasing the relaxation parameter
for a fixed value of the aggregation parameter P = 10.
We observe that as the relaxation parameter approaches its
limit, the global optimum of the approximated optimization
problem is not necessarily closer to the true optimum in D.

In conclusion, increasing the aggregation parameter for
a constant relaxation parameter may produce a feasible
domain in which the global optimum deviates more from
the true optimum. The same behavior occurs visa versa
when decreasing the relaxation parameter while keeping
the aggregation parameter constant. This non-trivial depen-
dence makes it difficult to choose optimal parameter val-
ues. In addition, these findings indicate that continuation
strategies applied to a single parameter while keeping the
other parameter constant may not lead to improved designs.
Next, we propose a novel unified approach, in which we
demonstrate that constraint relaxation is not necessary when

applying constraint aggregation. This reduces the previously
shown parameter dependence of the problem.

4 A unified aggregation and relaxation approach

In this section, we propose a unified aggregation and
relaxation approach. We demonstrate that aggregating the
constraints using a lower bound aggregation function simul-
taneously relaxes the feasible domain. Consequently, there
is no need for additional relaxation techniques and the
problem only depends on a single aggregation parameter.
Finally, we demonstrate that using a lower bound KS-
function can be considered as a special case of ε-relaxation
combined with constraint aggregation using the original
upper bound KS-function.

4.1 Problem formulation

Here, we present the approach in the context of truss opti-
mization, and apply it to the two-bar truss example of
Section 3.1.1. The approach consists of two steps: (i) refor-
mulate the original problem (P0) in (13) into an equivalent
optimization problem (P0) in (14), and (ii) aggregate these
reformulated constraints using a lower bound aggregation
function. The resulting optimization problem formulation
with a single aggregated constraint is

(PL
P ) : min

A∈S
m =

∑

e∈Ωd

ρeAeLe,

s.t. GL(Ψ L(g; P)) ≤ 0,

0 ≤ A ≤ Amax1, (24)

Here, GL denotes the global constraint function, which
depends on a lower bound aggregation function Ψ L, which
aggregates the reformulated constraints defined as

gj = Aj

Amax

( |σj |
σlim

− 1

)
∀j ∈ Ωd. (25)

Next, we use the P -mean
(
Ψ L

PM

)
and lower bound KS-

function
(
Ψ L

KS

)
, and demonstrate the effect of using this

Fig. 5 a) Isocontours of the
KS-function for increasing
values of the aggregation
parameter, P = 2.5, 5, 10, 40,
and a fixed value of the
relaxation parameter ε = 0.1,
and b) isocontours of KS-
function for decreasing values of
the relaxation parameter
ε = 1/4, 1/16, 1/64, 1/256 and
a fixed value of the aggregation
parameter P = 10
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formulation on the original feasible domain. When using the
lower bound KS-function, we aggregate directly over the
reformulated constraints in (25); i.e., we substitute fi = gi

in (22). Therefore, the global constraint is simply defined as
GL

KS = Ψ L
KS.

For the P -mean we first rewrite the set of original
constraints in (25) as

gj − gmin ≤ −gmin, ∀j ∈ Ωd. (26)

Here, gmin = −1, which is the minimum possible value that
the constraints in (25) can take. By subtracting this constant
we ensure that the left hand side of (26) is non-negative. The
P -mean can then be applied over the left hand side; i.e., we
substitute fi = gi +1 in (18). The global constraint function
in (24) based on the P -mean is then defined as

GL
PM =

(
1

N

N∑

i=1

(gi + 1)P

)1/P

− 1 ≤ 0. (27)

Figure 6 shows the design spaces for the problem formula-
tion (PL

P ) based on the P -mean, and KS-function. The green
lines represent the global constraint surface for different val-
ues of P ∈ ]0, ∞[. The arrow in both figures indicates the
effect of increasing the aggregation parameter. The magenta
color represents the original unperturbed feasible domain.

It is observed that the P -mean and KS-function have a
similar perturbing effect on the unperturbed feasible domain
as conventional relaxation techniques such as ε-relaxation
(cf. Fig. 3). For both aggregation functions, the perturbed
feasible domain converges to the original feasible domain as
the aggregation parameter tends to infinity. We notice that
the lower bound KS-function provides slightly more relax-
ation within the same range of the aggregation parameter.

The true optimal solution in D is accessible for all cho-
sen values of the aggregation parameter. Notice that the
constraint surface of both the P -mean and the KS-function
intersects with the optimal solution D for the different val-
ues of the aggregation parameter P . This is generally true

for stress-constrained problems under a single load case
with the same stress limits in tension and compression.
Since for this class of optimization problems, the optimum
is a fully stressed design (Rozvany 2001b), and all con-
straints g in (25) will be active at a minimizer. Consequently,
the global constraint value is equal to all local constraint val-
ues in that point. Next, we compare the result to the result
obtained when using an upper bound aggregation function.

4.2 Lower bound vs. upper bound aggregation function

Here, we consider the same optimization problem in (24),
but instead of lower bound aggregation functions, we con-
sider upper bound aggregation functions: the original upper
bound KS-function Ψ U

KS(g; P), and the P -norm Ψ L
PN(g +

1; P). For the P -norm, we aggregate similarly as for the
P -mean over the left hand side of (26).

Figure 7 shows the constraint surfaces of both upper
bound functions for different values of P ∈ ]0, ∞[. We
observe that in contrast to the lower bound aggregation
functions, the upper bound functions cut off the lower
dimensional subspace in which the true optimum D is
located. In fact, this lower dimension subspace will never be
a part of the feasible domain for any P ∈ ]0, ∞[. Conse-
quently, in numerical practice, the true optimum can never
be reached following this approach and additional relaxation
techniques are necessary to make singular optima acces-
sible. As a result, in literature, constraint aggregation is
typically applied to the relaxed local stress constraints (see
e.g., Duysinx and Sigmund 1998; Le et al. 2009).

In conclusion, we have demonstrated that aggregating
the local constraint using a lower bound aggregation func-
tion, concurrently relaxes the feasible domain for any P ∈
]0, ∞[. Therefore, no additional relaxation procedures are
necessary, and the approximated problem only depends on
a single parameter P . As the aggregation parameter tends to
infinity the relaxed feasible domain approximates that of the
original unperturbed problems: (PL

P ) → (P0) as P → ∞.

Fig. 6 Design space for the problem formulation in (24) with a single
global constraint based on the (a) lower bound KS-function and (b) P -
mean. The green lines represents the constraint surface (GL = 0) for

different values of the aggregation parameter: P = 4, 16, 32, 256. The
arrow indicates the direction of the constraint surface for increasing
values of P . The magenta color represents the original feasible domain
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Fig. 7 Design space for the problem formulation in (24) with a sin-
gle global constraint based on the (a) upper bound KS-function and (b)
P -norm. The green lines represents the constraint surface for different

values of the aggregation parameter: P = 4, 8, 16, 32. The arrow indi-
cates the direction of the constraint surface for increasing values of P .
The magenta color represents the original feasible domain

Furthermore, for the class of problems where the optimal
design is a fully stressed design, the lower bound KS-
function gives an exact approximation in the true optimum
of the maximum local function value for any value of the
aggregation parameter. Note that this exact approximation
in the true optimum does not imply that the global opti-
mum in this formulation coincides with the true optimum
for every value of the aggregation parameter.

4.3 A special case of aggregation and ε-relaxation

Next, we demonstrate that the proposed approach using a
lower bound KS-function turns out to be a special case of
subsequently applying ε-relaxation and constraint aggrega-
tion by the original KS-function. Consider the optimization
problem in which aggregation and relaxation are imple-
mented separately:

min
A∈S

m =
∑

e∈Ωd

ρeAeLe,

s.t. Ψ U
KS(g̃; P) ≤ 0,

0 ≤ A ≤ Amax1, (28)

Here, Ψ U
KS(g̃; P) is the upper bound KS-function over the

ε-relaxed set of constraints, which is defined as:

g̃j (A; ε) = gj − ε ≤ 0, ∀j ∈ Ωd. (29)

The relaxation parameter ε is assumed to be equal for all
local constraints. Aggregating the local relaxed constraints
using the KS-function gives

Ψ U
KS(g̃; P) = 1

P
ln

(
N∑

i=1
eP g̃i

)

= Ψ U
KS(g; P) − ε (30)

We observe that the KS-function over the relaxed con-
straints can be written in terms of the KS-function over the
original constraints minus a relaxation parameter ε.

Comparing (30) with (22), we conclude that using the
lower bound KS-function is a special case of aggregat-
ing ε-relaxed constraints by the original upper bound
KS-function, and using an adaptive relaxation parameter
defined as ε(P ) = ln(N)/P .

4.4 A unified relaxation and aggregation approach
in density-based topology optimization

Here, we briefly summarize the unified approach for
density-based topology optimization. First, we reformulate
the original topology optimization problem with a design-
dependent set of constraint, as the equivalent optimization
problem:

(P0) : min
ρ∈S

V = 1

V0

∑

e∈Ωd

ρeve,

s.t. gj = ρj

(
σj

σlim
− 1

)
≤ 0, ∀j ∈ Ωd. (31)

Here, σj (σj ) represents an equivalent stress criterion (e.g.,
Von Mises stress) based on the microscopic stress (Duysinx
and Bendsøe 1998) of Section 2.3.2, defined as

σ e = Ce(E0) 〈εe〉 . (32)

Instead of solving (31) directly, we solve an approximate
optimization problem in which the local constraints in (P0)

are aggregated by a lower bound aggregation function. We
consider the lower bound KS-function and the P -mean. In
case of the KS-function, the constraints are replaced by the
following global constraint:

GL
KS = Ψ L

KS = 1

P
ln

(
1

N

N∑

i=1

ePgi

)
≤ 0. (33)

For the P -mean, we follow the procedure as described in
Section 4.1, in which the minimum possible local constraint
value gmin = −1 is subtracted from both sides of the orig-
inal set of constraints in (31). Following this approach, the
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P -mean can be applied over the non-negative left hand side
and is defined as

Ψ L
PM =

(
1

N

N∑

i=1

(gi + 1)P

)(1/P )

, (34)

and we consider the single constraint:

GL
PM = Ψ L

PM − 1 ≤ 0. (35)

Next, we present the results obtained in density-based
topology optimization in which we parameterized the
design following the modified SIMP model as described in
Section 2.1.

5 Results and discussion

This section discusses the results that were obtained by
applying the proposed approach described in Section 4.4
on the design cases shown in Fig. 8. In order to focus pri-
marily on the effect of the proposed formulation and study
its parameter and mesh-dependency, optimizer settings have
not been tuned to achieve the fastest convergence but were
set to conservative values; i.e., tight move-limits and a strict
convergence criterion. Unless stated otherwise, we use the
settings listed in Table 1. All values are in SI units.

Section 5.1 discusses the design-dependency on the
aggregation parameter value. Subsequently, Section 5.3 dis-
cusses the effect of mesh-refinement on the optimized
designs. Both studies are performed for the lower bound
KS-function and the P -mean aggregation function.

5.1 Effect of the aggregation parameter

Here, we discuss the effect of the aggregation parameter
value on the optimized designs for both aggregation func-
tions. This effect is studied considering the cantilever and
L-bracket design cases shown in Fig. 8. The design domains
are discretized using square elements of dimension 1 × 1,
which results in 5000 and 6400 elements for the cantilever

Fig. 8 Design cases

Table 1 General settings

Option Setting/Value (All values are in SI units)

Model

Model Plane stress

Element type Q4

Mesh Fixed regular mesh in which every
element has the same dimensions.

Thickness 1

Young’s Modulus E0 = 1

Young’s Modulus voids Emin = 10−9E0

Poisson’s ratio ν = 0.3

Equivalent stress criterion Von Mises stress based on the microscopic
stress tensor in (11), and evaluated at the
centroid of each element

Allowable stress σlim = 1

Distributed loads All loads are distributed over a length of 5

Optimization parameters

Density filter Linear hat filter (Bruns and Tortorelli
2001) with radius r = 2 (absolute value)

Initial density distribution Uniform density field: ρ = 1

Optimizer settings

Optimizer MMA (Svanberg 1987) using the
default settings + an external move-limit

External move-limit 0.1 (maximum absolute distance between
an asymptote and the design variable)

Stop criteria ‖�ρ‖∞ < 0.001

and L-bracket, respectively. The Von Mises stress used in
the analysis is based on the microscopic stress tensor in (32)
evaluated at the centroid of each element. For interpretation
of the optimized designs, we consider the Von Mises stress
only in ‘material elements’, which we define as all elements
with a density value ρ ≥ 1/2. The reason to neglect lower
density elements when plotting is that the microscopic stress
is non-zero at zero densities, and therefore, distracting large
stress values arise in zero densities making design interpre-
tation difficult. This phenomenon is well-known from truss
optimization where the stress converges to a non-zero ’lim-
iting stress’ value (Cheng and Jiang 1992) for members with
zero cross-sectional area (assuming finite strains).

5.1.1 Cantilever design case

First, the cantilever design problem was solved using the
lower bound KS-function for different values of the aggre-
gation parameter. Figure 9a shows the different optimized
designs and the corresponding stress plots. It is observed
that increasing values of the aggregation parameter result in
designs with more uniform stress distributions. This effect
is especially noticeable in the lower range of values for P .
For example, consider the optimized designs for P = 4,
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Fig. 9 Optimized cantilever designs using the (a) lower bound KS-function and (b) P -mean aggregation function for different values of
aggregation parameter P . On top the density distribution and below the Von Mises stress plotted for material elements (i.e., ρ ≥ 1/2)
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and P = 12 in Fig. 9a. The optimized for P = 4 has
two peak stresses at the corners of the design domain of the
fixed boundary condition. Although the optimized design
for P = 12 has the same topology the two diagonal mem-
bers closest to the fixed boundary moved slightly into the
direction of the corners. Consequently, the peak stress of
this design was reduced by approximately 23%, while the
volume fraction only increased by approximately 1%.

Next, the cantilever design was solved using the P -mean
aggregation function. Figure 9b shows the optimized design
and associated stress plots versus the aggregation parameter
value. A similar behavior is observed as for the lower bound
KS-function. Increasing values of the aggregation parameter
lead to designs with a more uniform stress distribution, but
eventually also to an increased number of iterations.

Figure 10 shows the data of the optimized designs
for both aggregation functions versus P ∈ {4, 8, ..., 60}.
Figure 10a shows that the maximum stress becomes closer
to the allowable stress (σlim = 1) as the aggregation param-
eter increases. As mentioned before, in the case of a single
load case, in theory all constraints are active in the true
optimum, and therefore, the maximum stress should exactly
match the allowable stress at an optimum. However, in com-
putational practice, a significant amount of local constraints
are inactive, which introduces an error between the global
constraint value GL (defined by (33) or (35)) and the maxi-
mum local constraint value gmax. Figure 10b shows the error
for both aggregation functions and shows that it decreases
for increasing P .

Figure 10c shows the volume fractions of the optimized
designs versus the aggregation parameter. In contrast to the
maximum stress, which smoothly decreases as P increases
for both aggregation functions, the volume fraction shows
less predictable behavior. Compare for example the opti-
mized designs obtained using the lower bound KS-function
for P = 44 and P = 52 in Fig. 9a. These designs have
approximately the same maximum stress value, however,
the volume fraction for P = 52 is approximately ≈ 16%
larger. The same effect, but less pronounced, is observed for
the P -mean comparing the optimized design for P = 52
and P = 60 in Fig. 9b. The maximum stress value is
approximately equal for both designs, but the volume frac-
tion increased with ≈ 6% from P = 52 to P = 60.
From this result, we conclude that increasing the aggrega-
tion parameter further does not necessarily lead to more
optimal designs.

Figure 10d shows the number of iterations versus the
aggregation parameter. For both aggregation functions, we
observe a trend of an increasing number of iterations as
P increases, which is especially noticeable in the range
of larger values P > 28. The increased number of iter-
ations may be explained by the increased nonlinearity of
the constraint function as the aggregation parameter value
increases. Figure 11 shows some convergence histories of
the cantilever designs in Fig. 9. For both aggregation func-
tions, it is observed that the convergence histories show
more fluctuation as P increases, which coincides with
slower convergence.

Fig. 10 Data of the optimized
cantilever designs for both the
lower bound KS-function and
P -mean for different values of
the aggregation parameter
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Fig. 11 A selection of convergence histories of the cantilever designs in Fig. 9 for increasing values of the aggregation parameter for both the
lower bound KS-function (LBKS) in (a-c) and P -mean in (d-f)

For larger values of P > 60 for both aggregation func-
tions, the designs did often not converge, or converged
to designs containing large areas of intermediate densi-
ties. These large regions of intermediate densities can be
attributed to the fact that as P increases, the feasible domain
approximates the feasible domain of the original unper-
turbed optimization problem. It is well-known that the orig-
inal optimization problem contains singular optima, which

prevent convergence to a black and white design (Duysinx
and Bendsøe 1998).

5.2 L-bracket design case

The same study was performed on the L-bracket design
case. Figure 12 shows a selection of optimized designs for
the L-bracket using the P -mean. It is observed that the

Fig. 12 Optimized designs using the P -mean, and different values of the aggregation parameter P . On top the density distribution, and below the
Von Mises stress plotted for material elements (i.e., ρ ≥ 1/2)



A unified aggregation and relaxation approach 677

optimized design for P = 16 contains a peak stress in the
reentrant corner. Increasing the aggregation parameter value
leads to designs with a more uniform stress distribution. For
example, in contrast to the optimized design for P = 16,
the optimized designs for P ≥ 24 have a rounded shape in
the reentrant corner, which is desired to effectively prevent a
peak stress. However, increasing the aggregation parameter
value further does not necessarily lead to improved designs.
Compare for example the optimized designs for P = 40
and P = 32. Although the optimized design for P = 40
has a maximum stress value of approximately 1% lower,
the volume fraction increased with approximately 6%. This
result confirms what was found for the cantilever design
case, that further increasing the aggregation parameter does
not necessarily gives improved designs. In general, the same
dependence of the optimized designs on the aggregation
parameter was found as for the cantilever design case.

5.2.1 Concluding remarks

In general, we have found that both the Lower-bound
KS-function and the P -mean produce similar designs and
have a similar dependence of the aggregation parameter.
Two trends were observed. First, increasing the aggrega-
tion parameter value initially leads to improved designs,
which have a more uniform stress distribution. However, for
increasingly large values of the aggregation parameter, the
number of iterations increases and the optimizer is prone to
convergence to inferior local minima. Eventually, too large
values of the aggregation parameter lead to numerically
unstable behavior and no convergence at all.

For the used optimizer settings in Table 1, well-
performing designs, both in terms of structural performance
and number of iterations, were found in the range P ∈

[20, 40]. Consequently, the value of P should be chosen as
a trade-off between a large enough value to prevent peak
stresses, but not too large value in order to prevent numerical
instabilities and large number of iterations. This may offer
opportunities for continuation strategies, but this aspect has
not been explored in this paper.

5.3 Effect of mesh refinement

Next, we study the effect of mesh refinement where the L-
bracket design for the P -mean with P = 32 of Fig. 12c
is used as a reference design. The mesh of the reference
design contains N = 6400 equally sized quadrilaterals:
100 × 100 elements along the longest edges. We solved
this optimization problem under 4 different levels of mesh
refinement.

Figure 13 shows the optimized designs and associated
data obtained under mesh refinement. We observe that
the gap between the maximum stress and the allowable
stress (σlim = 1) increases with mesh refinement. How-
ever, the aggregation function does produce fully stressed
designs and successfully prevents peak stresses by forming
a rounded shape in the reentrant corner for all mesh sizes.
The gap between the maximum stress and allowable stress
can be dealt with using adaptive normalization techniques
to scale the allowable stress during optimization (Le et al.
2009).

Although the resulting optimized designs show a clear
black and white design, we observed that density fluctu-
ations occur in void regions under mesh refinement. In
order to make this effect more visible, the optimized design
in Fig. 13d is plotted again but with the greyscale col-
ormap rescaled from a density range of [0, 1] to a range
of [0, 0.05]; i.e., every density value ρ ≥ 0.05 is depicted

Fig. 13 Mesh refinement applied to the L-bracket using the P -mean function for P = 32 in Fig. 12c
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Fig. 14 (a) Cross-section of Fig. 13d shows fluctuation densities in the void region, (b) shows the optimized design and cross-section after
aggregating only local constraints with density ρ > 0.04

as black. The result is shown in Fig. 14a. Cross-section
A − A′ shows fluctuating intermediate densities inside the
void region.

A possible explanation for this behavior is that in the
proposed approach a local constraint becomes active as
the density approach zero, since gj = ρjgj → 0 as
ρj → 0. Consequently, low-density elements can poten-
tially have an important contribution in the aggregation
function, and therefore, new search direction. The afore-
mentioned hypothesis is confirmed by only aggregating the
local constraints of elements with a density above a small
threshold value: ρ > 0.04. Figure 14b shows that except
for the void regions, this result is equivalent to the previous
result in Fig. 14a indicating that these density fluctuations
are indeed numerical artifacts associated with lower density
elements.

We notice that the densities in the void regions in Fig. 14b
converge to a lower bound of approximately ρ = 0.015. The
reason for this is currently unknown and is a topic of future
research. This phenomenon was not observed for simple
compliance minimization under mesh refinement for which
the densities in void regions converged to a value closer
to zero (≈ 3 · 10−5). However, it was also observed using
other approaches for stress-constrained topology optimiza-
tion; e.g., the damage approach (Verbart et al. 2015) and the
conventional approach of constraint relaxation followed by

Fig. 15 Cross-section for optimized design using qp-relaxed Von
Mises stress (σ̃e = ρ

1/2
e σe), and P -norm aggregation with an aggrega-

tion parameter of P = 32

aggregation. For example, Fig. 15 shows a result obtained
by considering qp-relaxed stresses aggregated into a single
P -norm constraint (Le et al. 2009).

6 Conclusions

In this paper, we proposed a new approach that unifies
constraint aggregation and relaxation in stress-constrained
topology optimization. We demonstrated on an elementary
two-bar truss example, that aggregating the local constraints
using a lower bound aggregation function simultaneously
relaxes the feasible domain. In contrast to the conven-
tional approach of subsequently relaxing and aggregating
the local stress constraints, no additional constraint relax-
ation techniques are necessary. It was also found that using
an upper bound aggregation function makes singular optima
inaccessible (at least for the two-bar truss). This explains
the need of constraint relaxation before aggregation in the
conventional approach.

The main advantage of the proposed approach is that the
problem only depends on a single aggregation parameter
which reduces the parameter dependency of the problem,
which is non-trivial in the conventional approach as also is
demonstrated on the two-bar truss. Furthermore, in contrast
to the conventional approach, there is a clear relation-
ship between the original feasible domain, and the relaxed
feasible domain in terms of this aggregation parameter.

We tested the proposed approach on a cantilever and
L-bracket design case and studied the effect of the aggre-
gation parameter. Both the lower bound KS-function and
the P -mean are suitable for this approach and produced
similar results. Both aggregation functions show the same
dependency on the aggregation function. Increasing the
aggregation parameter initially gives better results, how-
ever, for large values of the aggregation parameter the
constraint function becomes increasing nonlinear and the
optimizer may converge to inferior local minima. Further-
more, large values of the aggregation parameter lead to an
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increased number of iterations. In general, best results were
obtained with moderate values of the aggregation parameter
P ∈ [20, 40].

Finally, the effect of mesh refinement was studied. It was
observed that the gap between the maximum stress and the
allowable stress increases under mesh refinement. However,
the optimized designs remain fully stressed under mesh
refinement and contain a rounded shape along the reen-
trant corner thereby preventing a peak stress. The increasing
gap between the maximum stress and the allowable stress
can potentially be dealt with using adaptive normalization
strategies as was shown in (Le et al. 2009). Numerical arti-
facts were observed in low-density regions. It was found that
only aggregating stress values of elements above a certain
threshold effectively circumvent these numerical artifacts.
Future work focuses on finding the exact cause of these
numerical artifacts.
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