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Abstract The boom structure is a key component of giant
boom cranes, and the stability-ensured topology optimization
is critical to its lightweight design. The finite difference meth-
od, direct differentiation or adjoint method needs many time-
consuming nonlinear analyses for this problem with a large
number of design variables and constraints, and the last two
methods are difficult to implement in off-the-shelf softwares.
To overcome these challenges, this work first defines a global
stability index to measure the global stability of the whole
structure, and a compression member stability index to iden-
tify the buckling of compression members. Numerical and
experimental verifications of these two stability indices are
conducted by analyzing a simple three-dimensional frame.
Next, the anti-buckling mechanism of boom structures is an-
alyzed to develop the precedence order of freezing relative
web members. The stability indices and the freezing measure
are then utilized as a part of a novel Stability-Ensured Soft Kill
Option (SSKO) algorithm, built upon the existing Soft Kill

Option (SKO) method. The objective is to minimize the dis-
crepancy between structural volume and predetermined target
volume, while the global stability and stress are regarded as
constraints. Lastly, the SSKO algorithm with different scenar-
ios is applied to topology optimization problems of four-
section frames and a ring crane boom; in both cases the con-
sistent and stable topologies exhibit applicability of the pro-
posed algorithm.

Keywords Boom structures . Topology optimization .

Stability index . Stability-ensured soft kill option . Geometric
nonlinearity

1 Introduction

The use of giant boom cranes has gained an ever-increasing
popularity due to their superior handling abilities. As boom
structures are equipped on boom cranes for hoisting cargos,
lightweight design of a giant boom structure, which is usually
achieved by topology optimization, becomes critical in reduc-
ing the energy consumption of the whole crane and hence
draws much research attention recently. In topology optimiza-
tion of giant boom structures, geometrically nonlinear analysis
has been adopted to capture the accurate structural response. A
common issue is that the stiffness of some members keeps
decreasing during the optimization process, which is often a
generator of some slender struts leading to buckling issues.
Therefore, a stability-ensured topology optimization algo-
rithm for structural design is needed to maintain sufficient
stability of boom structures while reducing the weight and
manufacturing costs.

The stability performance is studied either as a constraint or
as an objective in topology optimization problems (Ohsaki
and Ikeda 2007). The most popular algorithms for topology
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optimization with stability considerations are gradient-based
methods utilizing sensitivity analysis of buckling load factors.
The evolutionary structural optimization (ESO) method was
extended to buckling problems, and a simple method not in-
volving variational calculus or Lagrangian multipliers was
presented for the optimum design of columns and frames to
enhance the elastic buckling resistance of structures
(Manickarajah et al. 2000). Kemmler et al. (Kemmler et al.
2005) considered the lowest critical load level as an inequality
constraint and conducted topology optimization of structures
including kinematics based on the sensitivities of the design
criteria. The design problem of maximizing the buckling load
factor of laminated multi-material composite shell structures
was investigated using the discrete material optimization ap-
proach, which solves discrete optimization problems using
gradient-based techniques and mathematical programming
(Lindgaard and Lund 2010, 2011; Lund 2009). Lindgaard
and Dahl (Lindgaard and Dahl 2013) investigated a range of
different compliance and buckling objective functions for
maximizing the buckling resistance of a snap-through beam
structure.

The gradient-based optimization methods have been wide-
ly used in topology optimization problems with a couple of
stability constraints, since sensitivities can be obtained effi-
ciently using the finite difference method, adjoint method or
direct differentiation (Tortorelli and Michaleris 1994). A fun-
damental premise of optimizing large-scale boom structures is
to capture their nonlinear behaviors accurately. Since the com-
putational accuracy usually can be ensured by an off-the-shelf
finite element analysis (FEA) software, resorting to a commer-
cial software is an appropriate way to realize our own optimi-
zation algorithms for large-scale structures. However, for a
problem with 1000 variables and 1000 constraints, 1000 eval-
uations will be required for the sensitivity analysis if the finite
difference method, direct differentiation or adjoint method is
applied, which are still extremely expensive due to 1000 times
of time-consuming nonlinear analyses. In addition, for com-
mercial softwares, the integration of adjoint method or direct
differentiation method for sensitivity analysis is not an easy
task, as the adjoint field with appropriate load and displace-
ment boundary conditions needs to be defined and solved
(tangent operator involved for geometrically nonlinear prob-
lems). Hence, these three methods are not applicable due to
huge computational cost and the adjoint method or direct dif-
ferentiation is difficult to implement in commercial softwares.
Furthermore, the large number of constraints can be collected
in a single constraint by smooth envelope functions or con-
straint aggregations like the p-norm or Kreisselmeier-
Steinhauser (K-S) functions (Duysinx and Sigmund 1998;
Rozvany and Sobieszczanski-Sobieski 1992; Sigmund and
Maute 2013), but for nonlinear bars structures, it becomes
rather complicated to compute buckling constraints for the
aggregation function, since the nonlinear stability levels and

buckling load factors are captured based on the equilibrium
path of each member. Besides, there are different aggregate
functions, and each aggregate function has different penalty
parameters. Whether these aggregate functions can be suc-
cessfully integrated into this highly nonlinear buckling prob-
lem is still unknown. Hence, we do not apply these constraint
aggregation techniques for our research problem. Lastly, only
a few efforts on reducing the computational cost associated
with topology optimization involving buckling can be found
in existing literature. Browne et al. (Browne et al. 2012) pro-
posed a fast binary descent method to reduce the number of
derivative calculations required in topology optimization of
linear elastic structures subject to compliance and buckling
constraints. Hjelmstad and Pezeshk (Hjelmstad and Pezeshk
1991) presented an optimization-based design procedure ca-
pable of improving the limit behavior of space frames without
resorting to nonlinear analyses, which enhances the inelastic
stability of a structure by maximizing its linearized buckling
eigenvalues.

In the presence of aforementioned inconvenience of pure
gradient-based methods, zero-order or hybrid methods are put
forward to provide a convenient way for topology optimiza-
tion of geometrically nonlinear boom structures. The Soft Kill
Option (SKO) method is a fully stressed topology optimiza-
tion method like the Evolutionary Structural Optimization
(ESO) method (Baumgartner et al. 1992; Eschenauer and
Olhoff 2001), and the fully stressed method usually converges
in dozens of iterations and does not depend on structure size
(Cheng 2012), so the SKO method is particularly applicable
for large-scale structures. Even though sensitivity analysis is
not used, the topology results obtained with the SKO method
are very similar to those by gradient-based methods using
OptiStruct (Harzheim and Graf 2005, 2006). Our previous
work (Li et al. 2013) has extended the SKO method into
topology optimization of linear bars structures which sets the
foundation for this research.

Both global stability and member stability need quantita-
tive evaluation in the optimization process while the strength
status is indicated through a variety of stresses, e.g., vonMises
stress. A couple of member buckling judgment methods for
bars structures have been presented in recent years. Shen et al.
(Shen et al. 2007) proposed a middle plastic hinge model of
the member, assuming that the member is in a completely
elastic deformation condition before buckling, and that a plas-
tic hinge would appear in the middle of the member when the
internal force exceeds the bearing capacity of the member. Fan
et al. (Fan et al. 2012) adopted the curve of axial force-relative
deflection of the member and the energy method to judge the
member buckling of reticulated shell structures; however the
energymethod is only adequate for elastic structures. To better
monitor the stability of the structure, global stability index
(GSI) and compression member stability index (MSI) are de-
fined in this paper. The global stability status can be easily
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formulated by GSI, while member buckling of any compres-
sion member can be detected by MSI. The imperfection and
pre-buckling deformation always exist in actual engineering
structures, therefore limit-point, flexural or flexural-torsional
buckling of compression members are common; by contrast
bifurcation and torsional buckling rarely occur (Chen 2011).
The presented MSI is capable of detecting the limit-point,
elastic or elastoplastic, flexural or flexural-torsional buckling
of compression members only considering the end forces,
which will be verified by numerical analysis and physical
experiment later in this paper.

Apart from stability, the volume and stress should also be
taken into consideration in topology optimization of boom
structures so that the topology design is close to industrial
application. However, it is very difficult to find optimization
algorithms for discrete problems that can treat multiple non-
trivial constraints (Sigmund and Maute 2013). So far, only a
few papers have addressed the discrete topology optimization
problems with multiple (non-volume) constraints (Bojczuk
andMroz 1999; Pyrz 1990). The traditional volume constraint
always conflicts with global stability and stress constraints,
thus the predetermined target volume fraction may not be
achieved. Adaptive volume constraint algorithm is proposed
in Lin and Sheu (Lin and Sheu 2009) so that the maximum
stress in the optimal structural configuration is guaranteed to
be below the predefined stress limit. In this work, the tradi-
tional volume constraint is replaced by an objective function
of minimizing the discrepancy between structural volume and
predetermined target volume.

This paper proposes a Stability-Ensured Soft Kill Option
(SSKO) algorithm for topology optimization of boom struc-
tures that reduces the amount of material and makes them
close to the target volume fraction while simultaneously ac-
counting for the predetermined maximum stress limit. In
Section 2, GSI is stated to quantitatively express the global
stability constraint, while MSI is defined based on the axial
stiffness of a compression member. Subsequently we conduct
numerical and experimental verifications of these two stability
indices. Besides, the anti-buckling mechanism of boom struc-
tures is explained. In Section 3, the stability-ensured topology
optimization with volume and stress considerations is formu-
lated, and the proposed SSKO algorithm is described in detail.
Section 4 presents two illustrative examples by using different
optimization scenarios. Conclusions are outlined in Section 5.

2 Stability indices and anti-buckling mechanism

The concepts and physical meanings of two stability indi-
ces, the GSI and MSI, are presented hereafter. Numerical
and experimental verifications of these two stability indi-
ces are conducted by analyzing a simple three-dimensional
frame employing a dually (geometrically and materially)

nonlinear elastic static model. Although the stability indi-
ces are applied for boom structures in this paper, they can
also be used in other kinds of bars structures. In addition,
the anti-buckling mechanism of boom structures is ana-
lyzed based on the knowledge of bracing systems, and an
accompanying technique of “freeze” is proposed for stabil-
ity enhancement.

2.1 Global stability index

The overall stiffness of a structure reflects its global stability
status, and the change of overall stiffness can be used as a
judgment basis of global buckling. For a static structure, the
overall stiffness can be defined as the slope of load–displace-
ment curve of a certain position at the last convergence incre-
mental step, represented by Sg, which can be approximated by
calculating difference quotient easily. A positive Sg infers a
stable structure, while zero or a negative number value means
the structure is global buckling. In the process of topology
optimization, we need to quantitatively express the global sta-
bility status for monitoring the global stability constraint, and
the global stability index (GSI) is defined as

GSI kð Þ ¼ S kð Þ
g

.
S 0ð Þ
g ; k ¼ 0; 1;…; kmax ð1Þ

where k is the indicator of iteration number, k=0 means the
initial analysis of the structure, and kmax is the maximum
number of iterations. GSI(k) is the global stability index in k-
th iteration, and Sg

(k) denotes the overall stiffness of the struc-
ture in k-th iteration. GSI(0) is equal to 1 if the whole structure
is stable in the initial analysis.

The GSI is generally less than 1 in the optimization process
due to the decline of the overall stiffness. Similar to the overall
stiffness, a positive GSI infers a stable structure, while it de-
creases to zero or a negative number when the structure be-
comes global buckling. The GSI expresses the relative stabil-
ity compared to the initial structure, which can be easily fig-
ured out upon the results of geometrically nonlinear analysis
in common FEA software tools and can be applied in all kinds
of static structures.

Fig. 1 Deformation of a compression member
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2.2 Compression member stability index

Figure 1 shows the deformation of a compression member in
the global coordinate system O-XYZ. AB is the initial config-
uration before deformation and A′B′ is the configuration after
deformation. All non-end loads have been converted to end
loads, such as gravity load and wind load. Based on the
Eulerian description, the current configuration is taken as the
reference configuration then the end loads and end displace-
ments of a compression member can be easily formulated
(Mase and Mase 1999). Therefore, two local coordinate sys-
tems, the member coordinate system A′− xyz and the member
end coordinate system B′− xoyozo, are defined as follows. In

the member coordinate system: the direction of vector A
0
B

0��!
(pointing from A′ to B′) is defined as+ x direction, + y direc-
tion is parallel to plane XYand its angle with+Y is smaller than
or equal to 90°; in the case when axial x is parallel to axial Z,
axial y is defined to be parallel to axial Y. In the member end
coordinate system, the outward tangential direction at B′ is
defined as + xo direction, + yo direction is parallel to plane
XY and its angle with+Y is smaller than or equal to 90°; sim-
ilarly to the member coordinate system, when axial xo is par-
allel to axial Z, axial yo is defined to be parallel to axial Y. Both
local coordinate systems are right-handed and depend on the
configuration after deformation. The loading condition at the

end B′ is expressed in the member end coordinate system
(Fig. 1). They are three force components Fxo , Fyo , Fzo and
three bending moments M xo ,M yo ,M zo .

The axial vector of member AB after deformation is

a¼A0Β0��! ð2Þ

The three force components Fxo , Fyo , Fzo are projected onto
the axial vector, and the projection sum is the axial force of
member AB after deformation

Fa ¼ Fxo þ Fyo þ Fzo

� �
⋅a
.

ak k ð3Þ

where ‖‖ denotes the module of a vector, similarly hereinafter;
a positive value of Fa means tension while a negative value
means compression.

The axial relative displacement between the ends of mem-
ber AB is written as

Δu ¼ ak k− AB
�!���

��� ð4Þ

Fig. 2 The frame model

Fig. 3 Dimensions of the frame

Fig. 4 True stress-ture strain curve of cold drawn round steel

Fig. 5 Load-deflection curve of the frame
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A positive value of Δu means elongation while a negative
value means shortening.

For any member AB in a frame structure, its axial stiffness
at time t can be approximated by calculating difference quo-
tient like the overall stiffness.

tSa ¼ t Fa−t−Δt Fa
� �. tΔu−t−ΔtΔu

� � ð5Þ

Here t −Δt is the time with a tiny time periodΔt difference
prior to time t.

In engineering structures, the buckling of a compression
member is identified as that when the axial compression force
begins to decline and the absolute value of the axial relative
displacement is still increasing. In other words, a compression
member is buckling when its tSa value changes from a positive
number to a negative number. Hence, capturing the changes of
axial stiffness can help judge whether a compression member
is unstable.

Fig. 6 Post-buckling stress contour of the frame

Fig. 8 Experiment scene

(a) The lower diagonal web member (b) The lower chord member

(c) The upper chord member

Fig. 7 Axial force-axial relative displacement curves of compression members
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In the optimization process, we can quantitatively evaluate
the compressionmember stability status by theMSI defined as

MSI kð Þ
jð Þ ¼ S kð Þ

a jð Þ
.
S 0ð Þ
a jð Þ; k ¼ 0; 1;…; kmax ð6Þ

where MSI(j)
(k) is the stability index of member j in the k-th

iteration. Sa(j)
(k) denotes the axial stiffness of member j in the

k-th iteration, which is determined in Equation (5). MSI(j)
(0) is

equal to 1 if member j is stable in the initial analysis. When
MSI(j)

(k) decreases to zero or a negative value, the compression
member j buckles.

2.3 Numerical and experimental verifications
of the stability indices

A simple three-dimensional frame structure (Fig. 2) is con-
structed and analyzed to verify the proposed stability indices.
This frame is welded by cold drawn round steel and hot rolled
plate steel. Figure 3 gives the overall dimensions of the frame
in millimeters wherein the cross sections of chord members
and web members are ϕ8(mm) andϕ4(mm) respectively. The
two 8 mm-thick steel plates are used to fix chord members and

transfer external loads. As shown in Fig. 2, the upper surface
of the top plate is fixed and a uniform pressure along+Y
direction is applied to the lower surface of the bottom plate
in tests. The engineering stress–strain curve of cold drawn
round steel has been experimentally determined and the true
stress–strain curve is shown in Fig. 4. The elastic limit is 483
MPa, the yield strength is 616 MPa, and the ultimate strength
is 705 MPa with Young’s modulus being 206,000 MPa.

Fig. 9 Observation areas of two Vic-3D systems

Fig. 10 The frame after unloading
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2.3.1 Numerical analysis

We apply theMulti-linear Kinematic Hardeningmodel to simu-
late the material property of the cold drawn round steel by
importing the true stress-true strain data into the FE package
ANSYS 13.0 (Lawrence 2011). The plates in this frame are
regarded as rigid bodies for simplification. Geometrically and
materially nonlinear buckling analysis of the frame is carried
out based on the incremental displacement method integrated
with the Newton–Raphson method (Li et al. 2015), and the ob-
tained load-deflection curve is shown in Fig. 5. The frame ar-
chives the limit-point buckling when the load reaches 55055N,
meanwhile the vertical displacement of the load-end (the lower
surface of the bottom plate) comes to 0.695 mm. Figure 6 indi-
cates the post-buckling von Mises stress distribution when+Y
displacement of the load-end is 4 mm. It also shows the lower
chord members and the lower diagonal web members bend sig-
nificantly along with torsional deformation.

ThepredefinedGSI, onlydependingon theoverall stiffness of
the structure, is used to distinguish global buckling of any static
structure ina structural optimizationprocess, so the correctnessof
GSI canbedemonstrated by investigating the effectiveness of the
overall stiffness. In addition, it should be noted that the overall
stiffnesscanbefiguredoutatanyloadingtimeaslongaswedefine
the time as the last convergence incremental step. As shown in
Fig. 5, the slopeof load-deflectioncurve changes frompositive to
negative which means that the overall stiffness of this frame re-
duces from positive to negative. The overall stiffness equals zero
at the limitpointof load-deflectioncurveand thus it canbeused to
detect global buckling effectively. Hence, the GSI is an accurate
global buckling indicator during the optimization phase.

Similarly, analyzing the validity of the axial stiffness will
certify the accuracy of MSI as the member buckling indicator.
Considering a peripheral symmetric configuration of the
frame, we take any set of lower diagonal web member, lower
chord member and upper chord member as the observed. The
axial forces and axial relative displacements are calculated
upon Equations (3) and (4), and their relation curves are
shown in Fig. 7. The slope of one curve is the axial stiffness

of corresponding member according to Equation (5). It should
be noted that the sign of the values shown in Fig. 7 has been
reversed for ease of viewing, similarly hereinafter.

At time step 21, the lower diagonal web member loses
stability since its axial stiffness becomes negative, mean-
while the axial relative displacement is −0.193 mm and the
axial force is −1073 N (Fig. 7a). The maximum stress of
the lower diagonal web member is 292 MPa which means
elastic buckling occurs in the lower diagonal web member.
At time step 36, the axial stiffness of the lower chord
member decreases to a negative number and its axial rela-
tive displacement and axial force are −0.465 mm and
−12800 N, respectively (Fig. 7b). The elastoplastic buck-
ling happens in the lower chord member with the maxi-
mum stress 554 MPa and the global buckling of the frame
happens at the same time. Subsequently, at time step 37,
the absolute values of axial relative displacement and axial
force begin to decrease while the axial stiffness remains
positive, therefore springback occurs in the upper chord
member and yet member buckling does not happen
(Fig. 7c).

2.3.2 Experimental analysis

The experiment scene is depicted in Fig. 8.Wemainly use a 300
KN electronic universal testing machine RGM-4300 (The elec-
tronic universal testing machine RGM-4300 2014), two non-
contacting measurement systems VIC-3D (The VIC-3D
System 2014) and a fill light in the buckling experiment. The
400 mm-height frame structure exceeds the measuring capacity
of oneVIC system, sowe use twoVIC systems tomeasure both
displacement and strain of the surfaces of three compression
members, as shown in Fig. 9. VIC system 1 and VIC system 2
capture data in the upper rectangular observation area and the
lower rectangular observation area, respectively. The loading
speed of the testingmachine is set to be 0.6mm/min and its sam-
pling frequency is 25 Hz. Besides, the maximum loading dis-
placement is set to be 15 mm and the sampling frequency of
twoVIC systems is 1 Hz.

The frame after unloading is shown in Fig. 10. The lower
chordmembers and lowerdiagonalwebmembersbenddramat-
ically with slight torsional deformation, and the upper chord
members almost revert to original straight shape. The load-
deflection curve of the frame recorded by the testing machine
is given in Fig. 11.When the vertical displacement of the load-
end reaches 1.752mm,globalbucklinghappens and the critical
load equals 53157N. The relative error in simulating the buck-
ling loads compared with the experiment is −3.45%, so the
accuracy of the numerical simulation is proved. In addition,
experimental deflection at the buckling point is 1.752 mm,
about 1mm larger than numerical result, due to the assembling
gap, imperfections and deformation of weld joints.

Fig. 11 Load-deflection curve in the experiment
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Figure 12 shows the axial load-axial relative displacement
relations of three compression members (denoted as①,② and
③ inFig. 9), and the red lines arepolynomial fitting results based
on the real testing data (square green points). According to the
fitted curve in Fig. 12a, at loading time 102 s, member① (the
lower diagonal web member) gets buckling with the axial force

being −292 N and the axial relative displacement being −0.131
mm.Atloadingtime180s,member② (the lowerchordmember)
becomes instable, meanwhile its axial force and axial relative
displacement are −3285 N and −0.392 mm, respectively
(Fig. 12b). Figure 11 denotes that the frame gets global buckling
when the vertical displacement of the load-end reaches 1.752

(a) Compression member 

(b) Compression member

(c) Compression member  

Fig. 12 Axial load-axial relative
displacement diagrams of
compression members
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mm, namely at loading time 175 s. Considering the errors intro-
duced in the data collecting and curve fitting process, it is sug-
gested that global buckling and member ② buckling happen
simultaneously. In Fig. 12c, at loading time 181 s, member ③
(theupperchordmember)begins tobeofspringbackwhilemem-
berbucklingdoesnothappen.Therefore, theexperimental results
of member buckling are consistent with the numerical analysis
results, thereby the correctness of the axial stiffness is certified.

Numerical and experimental analysis results demonstrate that
the overall stiffness and the axial stiffness can be directly used to
quantify structural stability and determine global buckling and
compression member buckling effectively. This frame example
also indicates that the axial stiffness is capable of detecting the
limit point, elastic or elastoplastic, flexural or flexural-torsional
buckling of compression members considering only the end
forces.Furthermore, thepredefinedGSI isequivalent to theover-
all stiffness in quantifying the stability of a static structure during
optimizationprocess,because theoverall stiffnessof initial struc-
ture is a constant in Equation (1). Similarly, the proposedMSI is
equivalent to the axial stiffness in quantifying the stability of a
compression member during optimization process based on
Equation (6). Consequently, the proposed stability indices are
adequate to evaluate the structural stability quantitatively and

the MSI is applicable to determine the limit point, elastic or
elastoplastic, flexural or flexural-torsional buckling of compres-
sionmembers considering only the end forces.

2.4 Anti-buckling mechanism

The boom structure is a special large scale three-dimensional
frame. The design strength obtained for each column in a story
of a frame should be viewed only as a contribution to the total
sway buckling strength of the story, and the structure will sway
buckle when the total load on the story exceeds the sum of the
individual column contributions (Yura 2006). The actual load
distribution on each column does not significantly affect the
elastic buckling load, which is the so-called ∑P concept (Yura
2006).Hence, theglobalbucklingwill not happenas longaswe
ensure that all the columns of the frame are in the stable state.

Bracing systems can effectively resist buckling of columns,
beams and frames, and the design recommendations cover four
general types of bracing systems: relative, discrete, continuous,
and lean-on (Galambos 1998). The relative bracing system
((AISC) 2010) is the most common bracing system applied in
largescale three-dimensionalframestructures,especiallyinboom
structures. Figure 13 shows the initial structures of two typical

(a) Type A (b) Type B

Fig. 13 Initial structrues of
standard sections

(a) Type A (b) Type B

Fig. 14 Exterior relative
members of a chord member
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standard sections of boom structures, which are composed
of chord members and web members, and web members
can be dived into two parts: exterior web members and
interior web members. The exterior web members are lo-
cated at the six outer surfaces of a standard section, and
the other web members are interior web members. The
main effect of web members is to enhance the stability
of their relative chord members. In order to reinforce the
buckling chord members identified though MSI, we pres-
ent a technique of “freeze”, which means that Young’s
modulus is set to the true value of the real material and
cannot be modified. Considering the convenience of
manufacturing, the exterior web members are easier to
be welded on chord members than the interior web mem-
bers. In the process of topology optimization, when a
chord member is judged to be buckling we will first
freeze itself and its exterior relative members (Fig. 14),
then in the following iteration if the chord member is
judged to be buckling again we will freeze its interior
relative members (Fig. 15).

3 Optimization procedure

The topology optimization problem of geometrically nonline-
ar boom structures is expressed mathematically in this section.
The formulation of the optimization problem is first presented
where the objective function is defined as the discrepancy
between the actual structural volume and predetermined target
volume. Subsequently, the existing SKO method for bars
structures is briefly introduced. Next, the proposed SSKO
algorithm is presented in detail for each of the three stages.

3.1 Formulation of the optimization problem

The stability-ensured topology optimization of boom struc-
tures with volume and stress considerations can be formulated
as follows:
find E ¼ E1;E2;⋯;Enð ÞT

min
Xn

j¼1

vo jE j

.
Emax

� �
−Vo � vf target

�����
����� j ¼ 1; 2;⋯; nð Þ

s : t : GSI > 0
MSI jð Þ > 0 j ¼ 1; 2;⋯; nð Þ
σmax≤ σ½ �
Emin≤E j≤Emax j ¼ 1; 2;⋯; nð Þ

ð7Þ

Where Ej is the Young’s modulus of member j (j=1, 2,

⋯,n), voj is the initial volume of member j; ∑
n

j¼1
vo jE j=Emax

� �

denotes the total volume of design domain, Vo is the total vol-
ume of initial structure in a design domain and vftarget is the

(a) Type A  (b) Type B

Fig. 15 Interior relative members
of a chord member

Fig. 16 The E-T relationship
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predetermined target volume fraction. GSI is the global sta-
bility index defined in Equation (1),MSI(j) is member stability
index of member j, σmax is the maximum stress, and [σ] is the
allowable stress. Emin and Emax are the lower and upper
bounds of Young’s modulus, respectively.

3.2 SKO method for bars structures

The SKO method has been used to obtain the optimized de-
sign of linear bars structures (Li et al. 2013). Using this meth-
od, once the maximum stress and reference stress of bars are
obtained after finite element analysis, the temperature index of
each bar is calculated by Equations (8)-(10) (Baumgartner
et al. 1992; Li et al. 2013). The temperature index has no
definite physical meaning, which is an intermediate variable
bridging the stress to the Young’s modulus.

T kð Þ
j ¼ ~T

k−1ð Þ
j −s kð Þ

j σ k−1ð Þ
j −σ kð Þ

re f jð Þ
� �

ð8Þ

~T
k−1ð Þ
j ¼

100 ~T
k−1ð Þ
j ≥100

0 ~T
k−1ð Þ
j ≤ 0

~T
k−1ð Þ
j otherwise

8>>><
>>>:

ð9Þ

s kð Þ
j ¼ T 0

.
σ kð Þ
re f jð Þ ð10Þ

where σj
(k− 1) is the maximum stress of member j in the (k-1)-th

iteration, and σref(j)
(k) is the reference stress of member j in the

k-th iteration. The reference stress equals either the average
stress of all bars or the average stress of member j and its
adjacent bars in a design domain. In general, the optimization
process converges faster by using the latter one as the refer-
ence stress, which is thus applied in this paper. sj

(k) is the step
factor of member j in the k-th iteration. Tj

(k) denotes the tem-
perature index of member j in the k-th iteration, which has a
linear relationship with the Young’s modulus (Fig. 16).
Tj
(0) = 0 andT0=100.
According to Equations (8)-(10) and Fig. 16, if σj

(k− 1) is
higher than σref(j)

(k) , the temperature index of member j will be
reduced and its Young’s modulus will be increased; otherwise,
the Young’s modulus of member j will be reduced. When
Tj
(k − 1)≤ 0,E=Emax is the real material Young’s modulus.

When Tj
(k− 1)≥100,E=Emin =Emax/1000 (Baumgartner et al.

1992). The SKOmethod has a natural penalization feature due
to the polarization of reference stresses of members during an
optimization process. Based on Equations (8)-(10) and
Fig. 16, the stress of a member will approach its reference
stress. As a result, the temperature indices and the Young’s
modulus of members also exhibit polarization during the op-
timization process. Besides, the termination criteria require
that the Young’s modulus of each member converges to an

Fig. 17 Flow chart of the SSKO
algorithm

Stability-ensured topology optimization of boom structures with volume and stress considerations 503



invariant (Equation (11)). Thus, the convergent result has no
bars with an intermediate Young’s modulus. Lots of bench-
mark examples and industrial applications solved by the SKO
method have demonstrated this point (Baumgartner et al.
1992; Harzheim and Graf 2005, 2006; Li et al. 2013).

3.3 Stability-ensured soft kill option (SSKO) algorithm

In order to realize topology optimization and guarantee global
stability of boom structures, this paper proposes a novel
SSKO algorithm based on the SKO method for bars struc-
tures, stability indices and anti-buckling mechanism. The
SSKO algorithm is a fully stressed topology optimization
method with volume and stress considerations. The method
is divided into three stages: initial analysis, preliminary opti-
mization, and stability-ensured optimization, shown in
Fig. 17. Superior to other algorithms, SSKO detects the buck-
ling chord members through MSI and subsequently freezes
them and their relative web members during the stability-
ensured optimization stage. A growth factor of the reference

stress is introduced as a step function with respect to the iter-
ation number to adjust the speed of optimization. All details
will be explained in the following.

In the initial analysis stage (STEPs 1–2), this algorithm
defines an initial finite element model and conducts geomet-
rically nonlinear analysis, then calculates the overall stiffness
Sg
(0) and the axial stiffness of each compression member

(Equation (5)). Frj=0 means that member j is not frozen,
and Frj=1 means member j is frozen. In the preliminary op-
timization stage (STEPs 3–4), the Young’s modulus of each
member is modified by the SKO Equations (8)-(10) directly,
then the finite element analysis of the structure is carried out.
Afterwards, the overall stiffness, the axial stiffness of com-
pression members, GSI, MSI and the total volume change
are calculated as the references of the subsequent optimization
iterations. The stability-ensured optimization stage is the key
part of SSKO algorithm, and the detailed procedure from
STEP 5 to STEP 13 is provided in the following.

STEP 5: If any of the following criteria (Equations
(11)-(14)) is met, stop the procedure. Otherwise, move to
STEP 6.

ΔV k−1ð Þ ¼ V k−1ð Þ−V k−2ð Þ�� ��≤εandΔV k−2ð Þ

¼ V k−2ð Þ−V k−3ð Þ�� ��≤ε ð11Þ
vf k−1ð Þ≤vf target andΔV k−1ð Þ≤ε ð12Þ
σ k−1ð Þ
max ≥ σ½ � ð13Þ

k > kmax ð14Þ

In Equation (11), the tolerance of total volume change ε is a
sufficently small positive real number. The total volume
change among the last three iterations should be lower than
ε. The volume fraction in the last iteration reaches the target
volume fraction and the total volume change in the last itera-
tion is lower than the tolerance, as shown in Equation (12).
Generally, the total volume change is required to be equal to
zero in order to get a topology with the steady distribution of
Young’s modulus. The maximum stress in the last iteration is
greater than the allowable stress (Equation (13)). The maxi-
mum iteration number kmax is a sufficently large positive in-
teger. If the iteration number k becomes larger than kmax, the
procedure terminates.

STEP 6-STEP12: Check all members in a design domain
one by one, and update the Young’s modulus of each member.
STEP 8 is to judge whether chord j is buckling by Equation
(6), and STEP 9 is to freeze chord j and its relative web mem-
bers according to the anti-buckling mechanism discussed in
Section 2. If member j is not frozen, the procedure goes to
STEP 11 and the Young’s modulus of member j can be mod-
ified by the SKO Equations (8)-(10). The reference stress
σref(j)
(k) in the SKO equations should be raised by Equations

(15)-(17) to make the structure to be close to the target volume

Fig. 18 A four-section frame
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fraction if the total volume change in the last iteration is lower
than ε.

σ kð Þ
re f jð Þ ¼ σ kð Þ

re f jð Þλ
kð Þ ð15Þ

λ kð Þ ¼ λ k−1ð Þ þΔλ kð Þ ð16Þ

Δλ kð Þ ¼ 1−vf k−1ð Þ

1−vf target
Δλmax ð17Þ

Here, λ(k) denotes the growth factor of the reference stress,
and λ(0) = 1.Δλ(k) means the increment of the growth fact, and
Δλmax is the maximum increment of the growth fact in each
iteration, such as Δλmax=0.15. When the volume fraction of
the structure becomes closer to the target volume fraction, the
increment of the growth factor gets larger.

The modified reference stress may be larger than the allow-
able stress sometimes, so this procedure records the original
reference stress σref

(k) =σref(j)
(k) λ(k), then adjusts the reference

stress and the growth factor by Equations (18)-(19).

σ kð Þ
re f jð Þ ¼ σ½ � ð18Þ

λ kð Þ ¼ σ½ �
.
σorigin
re f ð19Þ

At last, Ej
(k) is updated in STEP 12. If member j is frozen,

Ej
(k) will be set to the Young’s modulus of the real material;

otherwise, Ej
(k) will be set to the computing result from STEP

11. Meanwhile, vj
(k) is updated by vj

(k) = vojEj
(k)/Emax.

STEP 13: Execute FEA, then calculate Sg
(k),Sa(j)

(k) ,GSI(k),
MSI(j)

(k)(j=1,2,⋯n) andΔV(k). Reset j=1, go back to STEP 5.

4 Illustrative examples

4.1 Four-section frames

We studied two four-section frames to compare optimization
effectiveness of the existing SKO method and the proposed
SSKO algorithm. One four-section frame is composed of type
A standard sections (Fig. 13a), and the other is composed of
type B standard sections (Fig. 13b). As shown in Fig. 18, a
four-section frame is a column structure stacked by four stan-
dard sections which is modeled in the FE package ANSYS
13.0. All bars are rigidly connected at nodes and the beam189
element, a 3-D quadratic three-node beam element, is selected
to simulate the bars. The dimensions are shown in Fig. 19, and
the Young’s modulus is 206GPa. The four bottom points of

(a) Type A (b) Type B

Fig. 19 Dimensions of standard
sections

Table 1 The performances of
SKO method and SSKO
algorithm in four-section
problems

Methods Scenario vftarget Δλmax [σ] GSI Volume
fraction

Max.
stress

Number of
iterations

SKO A-1 — — — buckling 0.6692 350.47 4

B-1 — — — buckling 0.6396 475.93 2

SSKO A-2 0.80 0.15 500 0.9728 0.7913 385.20 32

A-3 0.60 0.15 500 0.9728 0.7913 385.20 35

A-4 0.60 0.60 500 0.9728 0.7913 385.20 27

A-5 0.60 1.00 500 0.9728 0.7913 385.20 24

B-2 0.80 0.15 600 0.9798 0.8426 304.02 12

B-3 0.60 0.15 600 0.9798 0.8426 304.02 12

B-4 0.60 0.30 600 0.9798 0.8426 304.02 12

B-5 0.60 0.90 600 0.9798 0.8426 304.02 12
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frame are fixed, a vertical force of 8000KN is applied down-
ward (−Y) at each top point, and a horizontal force of 10KN is

applied rightward (+X) at each end point of left-side chord
members. The gravitational load is also included in this study.

(a) A-1 (b) B-1

Fig. 20 Optimization history of the SKO method in four-section frame problems

(a) 

(b) 
Fig. 21 Optimization results of four-section frames by using the SKO
method a Type A b Type B

(a) 

(b) 
Fig. 22 Optimization results of four-section frames by using the SSKO
method a Type A b Type B
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The mechanical model of the four-section frame is a
geometrically-nonlinear elastic static model, and the structures
are analyzed by the incremental loadmethod and the Newton–
Raphson method.

The results obtained by the SKO method and the SSKO
algorithm are listed in Table 1. Several scenarios with different
target volume fractions and maximum increments of the
growth fact are employed in these benchmark examples. The
optimization histories and topologies of SKO method are
depicted in Figs. 20 and 21. The topologies and convergence
histories of SSKO algorithm by four scenarios are shown in
Figs. 22, 23 and 24. It should be noticed that in convergent
topologies all the reserved bars have the maximum Young’s
modulus and all the removed bars have the minimum Young’s
modulus (Fig. 22), but there are some bars with intermediate
Young’s modulus in the unsuccessful optimization results
while their removed bars have the minimumYoung’s modulus
(Fig. 21).

The optimization process fails at the beginning due to
global buckling when the SKO method is applied.
Figure 21 are stress distribution of the buckling models,
which contain two parts: the left half part is the XY plane
view, and the right half part is the YZ plane view. It shows
that a lot of members are removed from the four-section

frames as a result of not considering stability. The volume
fractions reduce significantly while GSIs decrease sharply
(see Fig. 20).

Figure 22 shows the stress distribution of the topologies
obtained by SSKO algorithm. Whatever scenario is adopted
in SSKO algorithm, the optimization result of each type of
frame is the same, which shows that the proposed SSKO al-
gorithm is steady and reliable. However, the convergence his-
tories of the SSKO algorithm by different scenarios are not
consistent with each other (see Figs. 23 and 24).

The SSKO algorithm guarantees the global stability of the
frame in the optimization process which is reflected through
the GSI curve shown in Figs. 23 and 24. For the type A frame,
the target volume fraction vftarget is set to 0.8 in scenario A-2,
and the volume fraction becomes lower than 0.8 in the 2nd
and the 3rd iterations and after the 18th iteration, but the op-
timization procedure does not stop because there is still a
remarkable total volume change in these iterations (Equation
(12)). Similar situations occur in optimization processes by
using scenario B-2. The growth factor of the reference stress

λ is a step function of iteration number, and the maximum
increment of the growth factor Δλmax is set to be different
values within scenarios A-3, A-4 and A-5. The larger the
maximum increment of the growth factor is, the faster the

(a) (b)

(c) (d)

Fig. 23 Convergence histories of SSKO algorithm in type A frame problem by scenarios a A-2 b A-3 c A-4 d A-5, respectively
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convergence is. Nonetheless, the optimization process con-
verges at the same iteration as for the type B frame because
this type of frame has less web members and they are freezed
quickly when buckling chord members are detected. Besides,
Δλmax cannot be unrestrictedly large which will cause severe

instability of optimization. This will be discussed later in
Section 4.2 with the boom structure problem. The allowable
stress is selected appropriately to be greater than themaximum
stress of the initial structure, and the variation of the maximum
stress is not large from the 3rd iteration (see Figs. 23 and 24),

(a) (b)

(c) (d)

Fig. 24 Convergence histories of SSKO algorithm in type B frame problem by scenarios a B-2 b B-3 c B-4 d B-5, respectively

Fig. 25 45.5m boom structure Fig. 26 Finite element model of 45.5m half-boom
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so the stress constraint can be always satisfied in this case
studies.

4.2 Boom structure

A 45.5m-long combined boom of 2500-tonne ring crane (see
Fig. 25) is studied as an example of complex structure system.
All the twelve standard sections are replaced by tpye A stan-
dard sections (Figs. 13a and 19a). Considering the symmetry
of the combined boom, only half structure is analyzed.

Figure 26 shows the finite element model of the half-boom
in ANSYS 13.0. The left part of Fig. 26 is the view of the
luffing plane (XY plane), and the right part is the view of the
swing plane (YZ plane). The bars of the combined boom are
steel circular pipes and they are rigidly connected at nodes.
The beam189 element, a 3-D quadratic three-node beam ele-
ment based on Timoshenko beam theory, is selected to simu-
late the bars of the combined boom. The range of the boom is
10m (“range” refers to the horizontal distance between the
center of boom foot pins and boom tip pins), a lifting load
FQ=14320000N is applied at the lifting point, and a+X di-
rection wind load FW=26778N is uniformly distributed on
end points of chord members of standard sections. The me-
chanical model of the boom is geometrically nonlinear elastic
static model, and the structure is analyzed by the incremental
load method and the Newton–Raphson method.

In order to improve the calculation efficiency, the plate
structures at the ends of the boom are simplified as rigid bars,
which belong to non-design domain. At the top of boom, only
the Z-axis rotational and Y-axis translational degrees of free-
dom are released. At the bottom of boom, only the Z-axis
rotational degree of freedom is released. At the symmetry
plane of the whole combined boom, the Z-axis translational
degree of freedom is constrained.

Three scenarios are applied in the topology optimization of
this boom structure, and their performances are listed in
Table 2. Based on the experience from the previous case study,
we make Δλmax equal a large number in scenario C-1, inten-
tionally to get a fast convergence speed, but it turns out not to
be the case. Figure 27 is the optimization results using scenar-
io C-1 (The layout of Figs 27 and 29 is the same as Fig. 26). It
is obvious that this topology is not the optimal solution be-
cause the stress of most retained members is lower than
380MPa and the maximum stress which is above 500MPa
happens at a local connection area (see Fig. 27a). Figure 28
shows that the maximum stress begins to fluctuate divergently
from the 40th iteration and goes beyond the allowable stress in
141st iteration resulting in termination of optimization pro-
cess. The GSI decreases to a minimum of 0.5465 in 139th
iteration but the structure still keeps stable. The volume frac-
tion also begins to fluctuate divergently from the 40th iteration
as a result of the growth factor of the reference stress λ ex-
ceeding 2.5. When the growth factor becomes large, the ref-
erence stress gets an enormous growth at each step that leads
to a sharp decrease of the volume fraction (Equation (8)). It

Table 2 The performances of
SSKO algorithm in boom
structure problem

Methods Scenario vftarget Δλmax [σ] GSI Volume
fraction

Max.
stress

Number of
iterations

SSKO C-1 0.5 0.90 500 0.8969 0.8163 571.14 141

C-2 0.5 0.30 500 0.9860 0.7823 173.68 84

C-3 0.5 0.15 500 0.9860 0.7823 173.68 129

(a)

(b)

Fig. 27 Optimization results of boom structure by scenario C-1 a von
Mises stress b displacement
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means that a considerable portion of material is softened
which usually causes the occurrence of stress concentration
(see Fig. 27a). The maximum stresses of many members be-
come higher than the reference stress in the subsequent itera-
tions, so the volume fraction increases after its significant
decrease. It has also been demonstrated by other case studies
we conducted that under most circumstances λ should not be
larger than 2.5 in order to ensure the stability of optimization.

The maximum increment of the growth factor is reduced in
scenarios C-2 and C-3 to make the optimization process more
stable. The optimization results (see Fig. 29) are the same by
either scenario C-2 or C-3, which justifies the proposed SSKO
algorithm. Figure 30 shows the convergence histories of the
SSKO algorithm in boom structure problem by strategies C-2
and C-3 respectively. The procedures converge after several
step growths of λ, and the scenario C-2 has a higher optimi-
zation efficiency than the scenario C-3. The anti-buckling
mechanism works well since the GSI keeps at around 1. The
volume fraction decreases to 0.7823 and the maximum stress
becomes 173.68MPa eventually. Same as the example of four-
section frames in Section 4.1, we should notice that in conver-
gent topologies all reserved bars have the maximum Young’s
modulus and all removed bars have the minimum Young’s
modulus (Fig. 29), but there are some bars with intermediate
Young’s modulus in the unsuccessful optimization results
while their removed bars have the minimumYoung’s modulus
(Fig. 27).

The SSKO algorithm works well in topology optimization
of boom structures as long as we select an appropriate maxi-
mum increment of the growth factor. The algorithm reduces
the total volume significantly and gives a stable optimized
design with the maximum stress being lower than the
predetermined stress limit. These examples also demonstrate
applicability and practically efficiency of the SSKO algorithm
since it converges to the same result through only a few
dozens of iterations.

Fig. 28 Optimization history of
SSKO algorithm in boom
structure problem by scenario C-1

(a) 

(b) 

Fig. 29 Optimization results of boom structure by either scenario C-2 or
C-3 a von Mises stress b displacement
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5 Conclusions

This paper presents a Stability-Ensured Soft Kill Option
(SSKO) algorithm for structural topology design of geometri-
cally nonlinear boom structures including volume and stress
considerations. This algorithm is developed for large-scale
boom structures by employing the proposed compression
member stability index (MSI) and the knowledge of bracing
systems for resisting buckling of columns. The MSI can be
used to distinguish limit-point buckling of various kinds of
compression members and has been applied for judging the
buckling of compression chord members in this work. The
global stability is guaranteed through orderly freezing the rel-
ative web members of any buckling chord member found, and
the proper freezing order of relative web members should be
developed according to the specific initial structure. Besides,
the global stability index (GSI) is defined to evaluate global
stability status of the whole structure quantitatively and we
conducted numerical and experimental verifications of two
stability indices through nonlinear buckling analysis of a sim-
ple frame.

The SSKO algorithm contains a growth factor of the refer-
ence stress which is a step function of the iteration number. Its
sole purpose is to further remove materials from the optimized
structure. The volume fraction is optimized to be as close as
possible to the predefined target volume fraction subject to
stability and stress constraints. Incorporating both stability
and stress constraints is important to ensure the feasibility of
final topology designs.

Two examples are studied by using different scenarios to
investigate performances of the proposed SSKO algorithm.
The results of the four-section frame problems exhibit its
stability-ensured effect and practically acceptable conver-
gence speed. The boom structure problem indicates that an
appropriate maximum increment of the growth factor plays a
crucial role in converging to the optimized design. The con-
sistent optimization results in different scenarios demonstrate

the potential of the SSKO algorithm to be generally
applicable.

This paper extends the fully stressed SKO method to the
stability-ensured SKO algorithm by integrating GSI and MSI
which are verified by numerical analysis and physical exper-
iment. It is demonstrated that they are capable of detecting
buckling of various kinds of nonlinear static bars structures.
In addition, despite that our research focuses on multi-section
frames and boom structures, the SSKO algorithm can be eas-
ily modified for topology optimization of other types of large-
scale bars structures, such as truss tower, reticulated structure,
truss bridge, etc. Specifically, the anti-buckling mechanism
(freezing relative web members for boom structures) can be
modified to fit the specific class of structure, meanwhile the
buckling can still be identified by tracing changes of GSI and
MSI. Furthermore, the SSKO approach is easy to implement
in commercial software, thus it is suitable for topology opti-
mization of complex large-scale engineering applications.
Consequently, the proposed SSKO algorithm has a great po-
tential of becoming a general stability-ensured topology opti-
mization method for large-scale bars structures.

Acknowledgments Funding for this research was provided by the
National Natural Science Foundation of China (NSFC) under award num-
ber 51375345. Financial support for the first author, Wenjun Li, was
provided in part by the China Scholarship Council. The views expressed
are those of the authors and do not necessarily reflect the views of the
sponsors.

References

American Institute of Steel Construction (AISC) (2010) Specification for
structural steel buildings ANSI/AISC 360–10. AISC, Chicago, USA

Baumgartner A, Harzhem L,Mattheck C (1992) SKO (Soft Kill Option) -
the biological way to find an optimum structure topology. Int J
Fatigue 14(6):387–393

(a) (b)
Fig. 30 Convergence histories of SSKO algorithm in boom structure problem by scenarios a C-2 b C-3, respectively

Stability-ensured topology optimization of boom structures with volume and stress considerations 511



Bojczuk D, Mroz Z (1999) Optimal topology and configuration design of
trusses with stress and buckling constraints. Struct Optim 17(1):25–
35

Browne PA, Budd C, Gould NIM, Kim HA, Scott JA (2012) A fast
method for binary programming using first-order derivatives, with
application to topology optimization with buckling constraints. Int J
Numer Methods Eng 92(12):1026–1043

Chen J (2011) Stability of steel structures theory and design. Science
Press, Beijing, Fifth Edition edn [In Chinese]

Cheng G (2012) Introduction to optimum design of engineering struc-
tures. Dalian University of Technology Press, Dalian [In Chinese]

Duysinx P, Sigmund O (1998) New developments in handling stress
constraints in optimal material distribution. Paper presented at the
7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary
Analysis and Optimization, St. Louis, MO

Eschenauer HA, Olhoff N (2001) Topology optimization of continuum
structures: a review. Appl Mech Rev 54(4):331–390

Fan F, Yan J, Cao Z (2012) Stability of reticulated shells considering
member buckling. J Constr Steel Res 77:32–42

Galambos TV (1998) Guide to stability design criteria for metal struc-
tures, 5th edn. Wiley, USA

Harzheim L, Graf G (2005) A review of optimization of cast parts using
topology optimization - I - topology optimization without
manufacturing constraints. Struct Multidiscip Optim 30(6):491–497

Harzheim L, Graf G (2006) A review of optimization of cast parts using
topology optimization - II - topology optimization with manufactur-
ing constraints. Struct Multidiscip Optim 31(5):388–399

Hjelmstad KD, Pezeshk S (1991) Optimal design of frames to resist
buckling under multiple load cases. J Struct Eng ASCE 117(3):
914–935

Kemmler R, Lipka A, Ramm E (2005) Large deformations and stability
in topology optimization. Struct Multidiscip Optim 30(6):459–476

Lawrence KL (2011) ANSYS tutorial release 13. Stephen Schroff,
Mission

Li WJ, Zhou QC, Zhang XH, Xiong XL, Zhao J (2013) Topology opti-
mization design of bars structure based on SKO method. Applied
Mechan Mat 394(1):515–520

Li WJ, Zhao J, Jiang Z, Chen W, Zhou QC (2015) A numerical study of
the overall stability of flexible giant crane booms. J Constr Steel Res
105:12–27

Lin C-Y, Sheu F-M (2009) Adaptive volume constraint algorithm for
stress limit-based topology optimization. Comput Aided Des
41(9):685–694

Lindgaard E, Dahl J (2013) On compliance and buckling objective func-
tions in topology optimization of snap-through problems. Struct
Multidiscip Optim 47(3):409–421

Lindgaard E, Lund E (2010) Nonlinear buckling optimization of compos-
ite structures. Comput Methods Appl Mech Eng 199(37–40):2319–
2330

Lindgaard E, Lund E (2011) A unified approach to nonlinear buckling
optimization of composite structures. Comput Struct 89(3–4):357–
370

Lund E (2009) Buckling topology optimization of laminated multi-
material composite shell structures. Compos Struct 91(2):158–167

Manickarajah D, Xie YM, Steven GP (2000) Optimisation of columns
and frames against buckling. Comput Struct 75(1):45–54

MaseGT,Mase GE (1999) Continuummechanics for engineers, 2nd edn.
CRC Press, New York

Ohsaki M, Ikeda K (2007) Stability and optimization of structures gener-
alized sensitivity analysis. Springer, New York

Pyrz M (1990) Discrete optimization of geometrically nonlinear truss
structure under stability constraints. Struct Optimiz 2(2):125–131

Rozvany GIN, Sobieszczanski-Sobieski J (1992) New optimality criteria
methods: forcing uniqueness of the adjoint strains by corner-
rounding at constraint intersections. Struct Optimiz 4(3):244–246

Shen Z, Su C, Luo Y (2007) Application of strut model on steel spatial
structure. Building Struct 37(1):8–11 [In Chinese]

Sigmund O, Maute K (2013) Topology optimization approaches - a com-
parative review. Struct Multidiscip Optim 48(6):1031–1055

The electronic universal testing machine RGM-4300. (2014) REGER.
http://www.reger.com.cn

The VIC-3D System. (2014) Correlated Solutions, Inc. http://www.
correlatedsolutions.com

Tortorelli DA, Michaleris P (1994) Design sensitivity analysis: overview
and review. Inverse Prob Eng 1(1):71–105

Yura JA (2006) Five Useful Stability Concepts. Paper presented at the
Proceedings of the 2006 Structural Stability Research Council
Annual Stability Conference, San Antonio, Texas

512 W. Li et al.

http://www.reger.com.cn/
http://www.correlatedsolutions.com/
http://www.correlatedsolutions.com/

	Stability-ensured topology optimization of boom structures with volume and stress considerations
	Abstract
	Introduction
	Stability indices and anti-buckling mechanism
	Global stability index
	Compression member stability index
	Numerical and experimental verifications of the stability indices
	Numerical analysis
	Experimental analysis

	Anti-buckling mechanism

	Optimization procedure
	Formulation of the optimization problem
	SKO method for bars structures
	Stability-ensured soft kill option (SSKO) algorithm

	Illustrative examples
	Four-section frames
	Boom structure

	Conclusions
	References


