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Abstract The reliability analysis approach based on com-
bined probability and evidence theory is studied in this paper
to address the reliability analysis problem involving both ale-
atory uncertainties and epistemic uncertainties with flexible
intervals (the interval bounds are either fixed or variable as
functions of other independent variables). In the standard
mathematical formulation of reliability analysis under mixed
uncertainties with combined probability and evidence theory,
the key is to calculate the failure probability of the upper and
lower limits of the system response function as the epistemic
uncertainties vary in each focal element. Based on measure
theory, in this paper it is proved that the aforementioned upper
and lower limits of the system response function are measur-
able under certain circumstances (the system response func-
tion is continuous and the flexible interval bounds satisfy cer-
tain conditions), which accordingly can be treated as random
variables. Thus the reliability analysis of the system response
under mixed uncertainties can be directly treated as probabil-
ity calculation problems and solved by existing well-
developed and efficient probabilistic methods. In this paper
the popular probabilistic reliability analysis method FORM
(First Order Reliability Method) is taken as an example to
illustrate how to extend it to solve the reliability analysis prob-
lem in the mixed uncertainty situation. The efficacy of the
proposed method is demonstrated with two numerical exam-
ples and one practical satellite conceptual design problem.
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Nomenclature
∅ Empty set
ℕ Set of natural numbers
ℤ Set of integers
ℝ Set of real numbers
ℝ Set ℝ∪{−∞}∪{∞}
ℝ

n
Set x ¼ x1;⋯ ; xnð Þ xi∈ℝ; 1≤ i≤n

��� �

1 Introduction

In engineering, it is important to analyze the reliability of the
product system performance under the effects of uncertainties
throughout its life cycle. The uncertainties generally include
both the aleatory type (objective uncertainty) arising from an
inherent randomness and the epistemic type (subjective uncer-
tainty) resulting from the lack of knowledge (Helton and
Johnson 2011; Helton and Pilch 2011). Due to the necessity
and importance of treating the aleatory and epistemic uncer-
tainties properly with corresponding mathematical methods
rather than simply using the traditional probabilistic methods
to treat all the uncertainties as random ones under strong as-
sumptions (Der Kiureghian and Ditlevsen 2009), there
emerges increasing literature in recent years to address the
reliability analysis problems under both aleatory and episte-
mic uncertainties, e.g. Fuzzy set theory (Zhang and Huang
2010; Li et al. 2014; He et al. 2015), random set theory
(Oberguggenberger 2015) and probabilistic bounding analysis
(Sentz and Ferson 2011), combined probabilistic and interval
analysis method (Jiang et al. 2013), combined probabilistic

* Wen Yao
yaowen@nudt.edu.cn

1 College of Aerospace Science and Engineering, National University
of Defense Technology, Changsha 410073, China

2 Faculty of Aerospace Engineering, Delft University of Technology,
Delft 2629HS, The Netherlands

Struct Multidisc Optim (2016) 54:1641–1652
DOI 10.1007/s00158-016-1509-z

http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-016-1509-z&domain=pdf


and evidence theorymethod (Du 2008; Eldred et al. 2011; Yao
et al. 2013b), and other numerical approaches such as double-
loop Monte-Carlo Simulation (MCS) (Du et al. 2009), pertur-
bation based method (Gao et al. 2010, 2011), encapsulation
based method (Jakeman et al. 2010; Chen et al. 2013), fami-
lies of Johnson distributions based probabilistic method
(Urbina et al. 2011; Zaman et al. 2011), etc. Among these
researches, one of the widely used methods is to model the
epistemic uncertainties with intervals and generally the inter-
val bounds are fixed. However in reality, the interval bounds
may be flexible and varies with different conditions or other
independent variables. For example, in municipal solid waste
management, the interval bounds of the unit transportation
cost are functions of the energy prices (He et al. 2009). In
satellite system design, the interval bounds of some subsystem
mass estimation coefficients are also variable as functions of
payload performance (as shown in section 4.3). Thus it is
motivated to study the reliability analysis approach under
mixed aleatory and epistemic uncertainties with flexible inter-
vals in this paper.

In this research, the aleatory uncertainties (random
variables) are handled with probability theory. The epi-
stemic uncertainties are handled with evidence theory, as
it is a more general method dealing with interval infor-
mation when very limited knowledge is available and
only several possible intervals can be given to roughly
describe the distribution of the epistemic uncertainty
(Helton and Johnson 2011). With combined probability
and evidence theory, the calculation of belief and plausi-
bility measures of failure (the lower and upper bounds of
the precise probability of failure) involves the probability
calculation of the lower and upper limits of the system
response function as the epistemic uncertainties vary in
each focal element (Du 2008; Yao et al. 2013a, b). These
calculations can be solved by nested MCS, nested opti-
mization, or other nested probabilistic and interval meth-
od, which are generally computationally expensive and
currently only applicable for fixed interval bounds. To
address this problem, an Extended Probabilistic method
for Reliability Analysis under mixed aleatory and episte-
mic uncertainties with Flexible Intervals (EPRAFI) is
proposed in this paper. Based on the measure theory, it
is proved that the upper and the lower limit functions in
the preceding mixed uncertainty analysis algorithm are
measurable under certain circumstances, e.g. the system
response function is continuous and the flexible interval
bounds satisfy certain conditions (the bound functions
are continuous or have countable values, either finite or
infinite, as the independent variables vary in Borel sets).
Then the upper and lower limits of the system response
function can be treated as random variables, and its prob-
ability calculation can be directly solved by existing
probabilistic methods.

2 Preliminaries

2.1 The Fundamentals of measure theory for aleatory
uncertainty

Let Ω be a nonempty set, and A a σ-algebra over Ω. (Ω,A) is
called a measurable space. μ : A→ℝ is called ameasure over
the space A if it satisfies: 1) μ(∅) = 0; 2) μ(a)≥0 for ∀a∈A; 3)
for every countable sequence of mutually disjoint events
{ai}i=1

∞ ⊂A, μ(∪i=1∞ ai) =∑i=1
∞ μ(ai). If μ(Ω) = 1, μ is called a

probability measure and denoted as Pr. The triple (Ω,A,μ)
is called a measure space and (Ω,A, Pr) is called a probability
space. For two measurable spaces (Ω1,A1) and (Ω2,A2), the
mapping f :Ω1→Ω2 is called a measurable mapping from
(Ω1, A1) to (Ω2, A2) if for ∀ a ∈ A2, f

− 1(a) ∈ A1, where

f− 1(a) ={ω1 : f(ω1)∈a,ω1∈Ω1}. Let B ℝ
� �

be the Borel alge-

bra ofℝ which is the σ-algebra over all the open (or closed, or
half closed half open, etc.) sets inℝ. The measurable mapping

from (Ω,A) to ℝ;B ℝ
� �� �

is called a measurable function.
Specifically the measurable function X= f(·) from the proba-
bility space (Ω, A, Pr) to (ℝ, B(ℝ)) is called a random
variable. The following important theorems which are rele-
vant to the research work in this paper are given and the
corresponding proofs are referred to (Halmos 1974; Athreya
and Lahiri 2006; Liu 2007).

Theorem 1: Any continuous function f : ℝ
m
→ℝ

n
is a

measurable function.

Theorem 2: If the function f : ℝ
m
→ℝ has countable

(either finite or infinite) values and can be formulated as
f(ω) =ak forω∈Ak(k=1,2,⋯), where Ak is a Borel set,
then f is a measurable function.
Theorem 3:The fundamental arithmetic operation (if it is
meaningful) of two measurable functions is also
measurable.
Theorem 4: Let g be a measurable mapping from the
measurable space (Ω1,A1) to (Ω2,A2), f a measurable
mapping from the measurable space (Ω2,A2) to (Ω3,
A3). Define (f∘g)(·) = f(g(·)). Then f∘g is a measurable
mapping from (Ω1,A1) to (Ω3,A3).
Theorem 5: Let {fi, i=1,2,⋯} be a measurable function
sequence from (Ω,A) to (ℝ,B(ℝ)). Then inf

1≤ i<∞
f i,

sup
1≤ i<∞

f i, liminf i→∞ f i, and limsupi→∞ f i are alsomeasur-

able functions. If lim
i→∞

f i exists, limi→∞
f i is also a measurable

function.
Theorem 6: Let the vector X= (X1 X2 ⋯ Xn) be an n-
dimensional random vector, and f :ℝn→ℝ a measurable
function. Then f(X) is a random variable.

For a random variable X, its cumulative distribution func-
tion (CDF), probability density function (PDF), and other
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important definitions and theorems are referred to (Halmos
1974; Athreya and Lahiri 2006; Liu 2007). Given a measur-
able system response function g(X) with random uncertain
input vector X, g(X) is also a random variable (Theorem 6).
With the failure region F={x|g(x) <a}, the probability of fail-
ure is pf=Pr{X∈F}= ∫Fp(ξ)dξ, where p(·) is the joint proba-
bility density function of X (Melchers 1999). This integral is
generally difficult to calculate analytically and various ap-
proximate calculation methods have been developed, among
which FORM (First Order Reliability Method) is very popular
for its simplicity and efficiency (Hohenbichler et al. 1987;
Zhao and Ono 1999; Rackwitz 2001). In FORM, the random
vector X is first transformed into an uncorrelated Gaussian
random vector U in the standard normal space U by the trans-
formation U=T(X). The failure domain in the U space is
defined by g(X) =g(T− 1(U)) =G(U) <a. The Most Probable
Point (MPP) is searched through the following optimization:

min
U

Uk k s:t: G Uð Þ ¼ a ð1Þ

Denote the optimum as u* and define the reliability index
as β= ‖u*‖. Then pf can be estimated by Pf≈Φ(−β) if Pf≤0.5
or Pf≈Φ(β) if Pf>0.5.

2.2 The fundamentals of evidence theory for epistemic
uncertainty

Denote the epistemic uncertain variable as Y and describe its
distribution with a triple (2Ψ,ϒ,m), which is called the evi-
dence space. Ψ is the universal set containing all the finite
elementary propositions for the possible values of Y. The prop-
ositions can be intervals that are consonant or non-consonant
and continuous or discrete. 2Ψ is the power set of Ψ. m is the
basic probability assignment (BPA) function which maps 2Ψ

to [0,1]. It satisfies the following axioms: 1) ∀A ∈ 2Ψ,
m(A)≥ 0; 2) for the empty set ∅, m(∅) = 0; 3) for all the
A∈2Ψ, ∑m(A) = 1. The set Awhich satisfies m(A) >0 is called
a focal element. ϒ is the set of all the focal elements. For an
epistemic uncertain vector Y ¼ Y 1 Y 2 ⋯ YNy

� �
, its evi-

dence space (C,ϒ,m) is defined by the evidence space (Ci,
ϒi,mi) of each element Yi as

C ¼ C1 � C2 �…� CNy

¼ ck ¼ b1; b2; …bNy

� �
bi∈Ci; 1≤ i≤Ny
��� � ð2Þ

m ckð Þ ¼ ∏
i¼1

Ny

mi bið Þ; ck ¼ b1; b2; …bNy

� � ð3Þ

For a system response function g(Y) with the epistemic
uncertain input Y defined by (C,ϒ,m) and the failure region
defined by F={y|g(y) <a}, the precise probability of failure
pf=Pr{Y∈F} cannot be obtained due to the lack of knowl-
edge about the precise probability distribution of Y. In

evidence theory, the belief measure (Bel) and plausibility mea-
sure (Pl) are defined to bracket the precise pf as
Bel{Y∈F}≤pf≤Pl{Y∈F}, which are defined by

Bel Y∈Ff g ¼
X
AjA⊆F

m Að Þ; Pl Y∈Ff g ¼
X

AjA
T

F≠∅

m Að Þ ð4Þ

To calculate Bel and Pl, the extreme values [gmin(Y),
gmax(Y)] in each focal element should be calculated and com-
pared with the limit value a. To identify the response ex-
tremes, vertex method, sampling method, and optimization
based method can be used (Bae et al. 2004a, b). The relation
between the belief and plausibility measures is

Pl Ff g ¼ 1−Bel F
� �

, where F is the complement set of F.
As the information about Y increases, Bel{Y ∈ F} and
Pl{Y∈F} will gradually get close and finally converge to
Pr{Y∈F}. By varying the value of a, the cumulative belief
function (CBF) and cumulative plausibility function (CPF)
of g(Y) can be obtained as

CBF að Þ ¼ Bel g < af g CPF að Þ ¼ Pl g < af g ð5Þ

The fundamental knowledge of evidence theory which is
the basic to understand this paper is briefly introduced above.
For more detailed tutorials, readers are referred to (Shafer
1976; Oberkampf and Helton 2002).

2.3 Reliability analysis under mixed aleatory
and epistemic uncertainties

When the system is affected by both aleatory and epistemic
uncertainties, the system response function can be denoted as
g(X,Y) with the aleatory uncertain input X defined by (Ω,A,
Pr) and the epistemic uncertain input vector Y described by
(C,ϒ,m) with NC focal elements. Denote the failure region as
F={(x,y)|g(x,y) <a}. The probability of failure pf=Pr{(X,
Y)∈F} cannot be precisely calculated due to the existence
of epistemic uncertainties Y, and its possible value range is
an interval instead. With combined probability and evidence
theory, pf are bounded by Bel and Pl which are derived as (Du
2006; Yao et al. 2013a, b)

Bel X;Yð Þ∈Ff g ¼
X
k¼1

NC

m ckð Þ⋅Belk X;Yð Þ∈Ff gð Þ
Belk X;Yð Þ∈Ff g ¼ Pr X ∀Y∈ck ; g X;Yð Þ < ajf g

¼ Pr Xj sup
Y∈ck

g X;Yð Þ < a
� �

ð6Þ

Pl X;Yð Þ∈Ff g ¼
X
k¼1

NC

m ckð Þ⋅Plk X;Yð Þ∈Ff gð Þ

Plk X;Yð Þ∈Ff g ¼ Pr X ∃Y∈ck ; g X;Yð Þ < ajf g
¼ Pr Xj inf

Y∈ck
g X;Yð Þ < a

� �
ð7Þ
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Belk and Plk are called the sub-belief and sub-plausibility of
the focal element ck(1≤ k≤NC). Traditionally the bounds of ck
are fixed, and the corresponding methods to calculate Belk and
Plk are studied by Du (Du 2008) and Yao (Yao et al. 2013b).
However in practical engineering, the bounds of ck may be
variable and the corresponding reliability analysis method has
not been studied yet. In this paper, it will be thoroughly stud-
ied in the following sections, where an Extended Probabilistic
method for Reliability Analysis under mixed aleatory and ep-
istemic uncertainties with Flexible Intervals (EPRAFI) is
proposed.

3 Extended probabilistic method for reliability
analysis under mixed uncertainties

The approaches to calculate Belk and Plk for each focal ele-
ment ck(1≤ k≤NC) are the same regardless of the focal ele-
ment index k. For simplicity, in the following discussion, we
directly eliminate the subscript k. The interval bounds of the
focal element are considered to be variable and assumed to be
the functions of the random variablesX in this paper. Then the
focal element is denoted as C(X). Thus in the following dis-
cussion, the fixed interval ck in (6) and (7) are replaced by the
variable interval C(X).

To calculate Pr Xj sup
Y∈C Xð Þ

(
g X;Yð Þ < ag in (6) and Pr

Xj inf
Y∈C Xð Þ

�
g X;Yð Þ < ag in (7), the method EPRAFI pro-

posed in this paper will be developed in two steps. First, it
will be proved that the upper and lower limit functions sup

Y∈C Xð Þ
g X;Yð Þ and inf

Y∈C Xð Þ
g X;Yð Þ are measurable functions from

the probability space (Ω,A, Pr) to (ℝ,B(ℝ)) under the follow-
ing conditions: 1) the system response function g is continu-
ous; and 2) the flexible interval bounds ofYare continuous or
can be formulated as equation (9). Then the limit function
responses can be treated as random variables. Second, since
sup

Y∈C Xð Þ
g X;Yð Þ and inf

Y∈C Xð Þ
g X;Yð Þ are random variables, then

(6) and (7) can be directly calculated with existing probabilis-
tic methods. In this paper, the extension of the popular reli-
ability analysis method FORM is explained for exemplifica-
tion. The preceding two steps will be elaborated in Section 3.1
and 3.2 respectively.

3.1 Measurability of the upper and lower limit functions

Let the system response function g(X,Y) be a continuous

function g : ℝNxþNy→ℝ with the random uncertain input vec-
tor X= (Xi, 1≤ i≤Nx) and the epistemic uncertain input vector
Y= (Yi, 1≤ i≤Ny). The random vector X is defined on the

probability space (Ω,A, Pr). The value yi of each element Yi
is located in the interval Ci(X) = [ci_ min(X), ci_ max(X)], the
bounds of which are variable and functions with respect to
X. The interval can also be open or half closed half open.
Then the possible value set of Y can be defined by the
Cartesian product of Ci(X)(1≤ i≤Ny) as

C Xð Þ ¼ C1 � C2 �…� CNy

¼ ck ¼ b1; b2; …bNy

� �
bi∈Ci Xð Þ; 1≤ i≤Ny
��� � ð8Þ

Let ci_ * represent ci_min or ci_max. Two situations of the
variable bounds are considered in this paper. First, ci_ * is
continuous. Second, ci_ * has countable (either finite or infi-
nite) values and can be formulated as

ci * Xð Þ ¼ aik * ∀X∈Aik * k ¼ 1; 2;⋯ð Þ ð9Þ
where Aik_ * is a Borel set. In the aforementioned two variable
situations, from Section 2.1 we know that both ci_ min and

ci_max are measurable functions from ℝNx ;B ℝNx
� �� �

to (ℝ,
B(ℝ)). Obviously the fixed interval case can be regarded as a
special case of the variable interval wherein ci_ *(X)≡ai_ *.
Although only the preceding two situations are considered,
they can already cover a large application field. Other forms
of variable intervals will be studied in the future according to
the application needs.

For any integer n∈ℕ, define the variable

ηi ki Xð Þ ¼ ci min Xð Þ

þ ki
n

ci max Xð Þ−ci min Xð Þð Þ; 0≤ki≤n ð10Þ

Denote yk1k2⋯kNy
Xð Þ ¼ η1 k1 Xð Þ; η2 k2 Xð Þ;…; ηn kNy

Xð Þ
	 


where 0≤ki≤n and 1≤ i≤Ny. Denote the point set P as

P ¼ yk1k2⋯kNy
Xð Þ; 0≤ki≤n; 1≤ i≤Ny

n o
. It can be regarded

that the space C(X) is uniformly divided into nNy cubes and all
the corner points compose the set P. The subscript ki(1≤ i≤Ny)
represents the position index in each dimension. At each point of
P, the value of Yi(1≤ i≤Ny) is set as yi=ηi_ki(X)(0≤ki≤n), and

the function response is g X; yk1k2⋯kNy
Xð Þ

	 

. Since ci_min and

ci_max are measurable functions (in both situations) of X, each
element of yk1k2⋯kNy

Xð Þ is a random variable as it is defined by

the linear arithmetic calculation of ci_min and ci_max, as shown in
(10). Thus bothX and yk1k2⋯kNy

Xð Þ are random vectors defined

on the probability space (Ω,A,Pr) and the output of the contin-

uous function g X; yk1k2⋯kNy
Xð Þ

	 

is also a random variable

(according to Theorem 6).

Given n∈ℕ, denote gn sup ¼ sup
0≤ ki ≤n;1≤ i≤Ny

g X; yk1k2⋯kNy
Xð Þ

	 

and gn inf ¼ inf

0≤ ki ≤n;1≤ i≤Ny

g X; yk1k2⋯kNy
Xð Þ

	 

. According to
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Theorem 5, gn_ sup and gn_ inf are also measurable functions of
X. For the measurable function sequences {gn_ sup}n=1

∞ and
{gn_ inf}n=1

∞ , it is proved that lim
n→∞

gn sup ¼ sup
Y∈C Xð Þ

g X;Yð Þ and

lim
n→∞

gn inf ¼ inf
Y∈C Xð Þ

g X;Yð Þ as follows.
Proof:
Given n and X, denote the point y* which satisfies

g X; y*ð Þ ¼ sup
Y∈C Xð Þ

g X;Yð Þ. I n t h e p o i n t s e t P ¼

yk1k2⋯kNy
Xð Þ; 0≤ki≤n; 1≤ i≤Ny

n o
, denote the point nearest

to y* as yn
*. It is obvious that y* is located either at the point yn

*

or in the cube surrounded by yn
* and some other corner points

of this cube. Thus the distance between yn
* and y*, denoted as

‖yn
*−y*‖, must be no larger than the largest distance between

the two corner points of the cube, i.e.

y*n−y
*

�� ��≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i¼1

Ny 1

n2
ci max Xð Þ−ci min Xð Þð Þ2

vuut ð11Þ

Since g(X,Y) is a continuous function, given ∀ ε> 0,
∃ δ>0 satisfies

Y1−Y2k k < δ⇒ g X;Y1ð Þ−g X;Y2ð Þk k < ε ð12Þ

Thus if n >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
i¼1

Nx 1

δ2
ci max Xð Þ−ci min Xð Þð Þ2

s
,

y*n−y
*

�� �� <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i¼1

Nx 1

n2
ci max Xð Þ−ci min Xð Þð Þ2

vuut < δ ð13Þ

From (12) we have ‖g(X, yn
*)− g(X, y*)‖< ε, thus g(X,

y*)− ε<g(X,yn*). Because for any n in the process n→∞,
we always have

g X; y*n
� �

≤ sup
0≤ ki ≤n;1≤ i≤Ny

g X; yk1k2⋯kNy
Xð Þ

	 


¼ gn sup≤g X; y*
� � ð14Þ

Denote N δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
i¼1

Nx 1

δ2
ci max Xð Þ−ci min Xð Þð Þ2

s
. Therefor

given ∀ ε>0, ∃n>Nδ satisfies

g X; y*
� �

−ε < g X; y*n
� �

≤gn sup≤g X; y*
� �

< g X; y*
� �þ ε

⇒ gn sup−g X; y*
� ��� �� < ε

ð15Þ

Thus the limit of the sequence {gn_ sup}n=1
∞ exists and lim

n→∞

gn sup ¼ g X; y*
� � ¼ sup

Y∈C Xð Þ
g X;Yð Þ. With the similar process

it can be proved that lim
n→∞

gn inf ¼ inf
Y∈C Xð Þ

g X;Yð Þ. □

According to Theorem 5, the limit of the measurable func-
tion sequence (if it exists) is also a measurable function. Thus
sup

Y∈C Xð Þ
g X;Yð Þ and inf

Y∈C Xð Þ
g X;Yð Þ are measurable functions

of X, i.e. the functions response limits sup
Y∈C Xð Þ

g X;Yð Þ and

inf
Y∈C Xð Þ

g X;Yð Þ are random variables. Thus the belief and

plausibility measures in (6) and (7) can be obtained directly
by the probability calculation of these random variables,
which can be formulated as follows:

Bel ¼ Pr Xj sup
Y∈C Xð Þ

g X;Yð Þ < a

( )
¼ Pr sup

Y∈C Xð Þ
g X;Yð Þ < a

( )

Pl ¼ Pr Xj inf
Y∈C Xð Þ

g X;Yð Þ < a
� �

¼ Pr inf
Y∈C Xð Þ

g X;Yð Þ < a
� �

ð16Þ

3.2 The extension of the probabilistic method to mixed
uncertainty problem

The function sup
Y∈C Xð Þ

g X;Yð Þ can be reformulated as

sup
Y∈C Xð Þ

g X;Yð Þ ¼ g X;Y*� �
; Y* ¼ arg max

Y∈C Xð Þ
g X;Yð Þ ð17Þ

It is obvious that only the vector X is independent vari-
ables. Thus we can denote gsup Xð Þ ¼ sup

Y∈C Xð Þ
g X;Yð Þ. For

the random variable gsup(X), the traditional probabilistic reli-
ability analysis method can be directly applied to calculate
Pr(gsup(X) <a). In the rest of this section, the efficient proba-
bilistic reliability analysis method FORM will be taken as an
example to illustrate how to extend it to solve the reliability
analysis problem under mixed uncertainty situation.

Replace the function g(X) in the FORM method
(Section 2.1) as gsup Xð Þ ¼ sup

Y∈C Xð Þ
g X;Yð Þ, then in the U

space the failure domain is defined by

gsup T−1 Uð Þ� � ¼ sup
Y∈C T−1 Uð Þð Þ

g T−1 Uð Þ;Y� � ¼ sup
Y∈C T−1 Uð Þð Þ

G U;Yð Þ < a ð18Þ

Then (1) can be reformulated as

min
U

Uk k
s:t: sup

Y∈C T−1 Uð Þð Þ
G U;Yð Þ ¼ a ð19Þ

According to (17), (19) can be reformulated as

min
U

Uk k
s:t: G U;Y*� � ¼ a; Y* ¼ arg max

Y∈C T−1 Uð Þð Þ
G U;Yð Þ

ð20Þ
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Denote the optimum of (20) as umax
* and define β= ‖umax

* ‖.

Then Bel X;Yð Þ∈Ff g ¼ pf min ¼ Pr sup
Y∈C Xð Þ

(
g X;Yð Þ < ag

can be estimated by pf_ min ≈Φ(−umax
* ) if pf_ min ≤ 0.5 or

pf_min≈Φ(umax
* ) if pf_min>0.5.

Similarly, replace the function g(X) in the FORM method
as ginf Xð Þ ¼ inf

Y∈C Xð Þ
g X;Yð Þ, it can be derived that the plau-

sibility measure Pl X;Yð Þ∈Ff g ¼ p f max ¼ Pr inf
Y∈C Xð Þ

�
g

X;Yð Þ < ag can be estimated by pf_ max≈Φ(−umin
* ) if pf_ -

max≤0.5 or pf_max≈Φ(umin
* ) if pf_max >0.5, where umin

* is the
optimum of the following optimization problem.

min
U

Uk k
s:t: G U;Y*� � ¼ a; Y* ¼ arg min

Y∈C T−1 Uð Þð Þ
G U;Yð Þ

ð21Þ

When the interval is fixed as C(T− 1(U))=C(X)≡Cfix, then
(20) is

min
U

Uk k
s:t: G U;Y*� � ¼ a; Y* ¼ arg max

Y∈Cfix

G U;Yð Þ ð22Þ

And (21) can be stated as

min
U

Uk k
s:t: G U;Y*� � ¼ a; Y* ¼ arg min

Y∈Cfix

G U;Yð Þ ð23Þ

The formulations of (22) and (23) are totally the same with
the FORM based unified uncertainty analysis method
(FORM-UUA) proposed by Du under mixed random and ep-
istemic uncertainties with fixed focal elements (Du 2008) and
the probability-interval (with fixed bounds) hybrid reliability
analysis method proposed by Jiang (Jiang et al. 2013). Thus
the research work in this paper also provides a strict mathe-
matical proof for the correctness of the proposed methods in
(Jiang et al. 2013)and (Du 2008).

3.3 The EPRAFI algorithm

To sum up, the EPRAFI method for mixed aleatory and epi-
stemic uncertainties with flexible intervals is as follows.

Step 0: Initialization. Denote the failure region as
F={(X,Y)|g(X,Y) <a} and denote the focal element in-
dex k=1.
Step 1: Conduct a global optimization to find the mini-
mum function response gmin(X,Y) for X ∈Ω and
Y∈Ck(X). If gmin≥a, Ck is fully contained in the safe

region and Belk{(X,Y)∈F}=Plk{(X,Y)∈F}=0; go to
Step 5. Otherwise go to Step 2.
Step 2: Conduct a global optimization to find the maxi-
mum function response gmax(X,Y) for X ∈Ω and
Y∈Ck(X). If gmax<a, Ck is fully contained in the failure
region and Belk{(X,Y)∈F}=Plk{(X,Y)∈F}=1; go to
Step 5. Otherwise go to Step 3.
Step 3: If gmin≤a≤gmax, check whether the two condi-
tions to apply EPRAFI are satisfied. If g(·) is continuous,
and the flexible interval bounds of Ck are continuous
functions of X or can be formulated as (9), then the
EPRAFI method can be applied. Go to Step 4.
Step 4: Select the probabilistic analysis method to be
extended to solve the reliability analysis problem under
mixed uncertainties. Replace the original response func-
tion g(X) in that probabilistic method with the upper and
lower limit functions sup

Y∈Ck Xð Þ
g X;Yð Þ and inf

Y∈Ck Xð Þ
g

X;Yð Þ respectively. Directly run the probabilistic analy-
sis process by treating sup

Y∈Ck Xð Þ
g X;Yð Þ and inf

Y∈Ck Xð Þ
g

X;Yð Þ as random variables, and calculate Belk

X;Yð Þ∈Ff g ¼ Pr sup
Y∈Ck Xð Þ

(
g X;Yð Þ < ag a n d Plk

X;Yð Þ∈Ff g ¼ Pr inf
Y∈Ck Xð Þ

�
g X;Yð Þ < ag. For example,

if FORM is selected, then Belk and Plk can be obtained by
solving (20) and (21). Go to Step 5.
Step 5: If k<NC, k= k+1 and go to Step 1. If k=NC,
calculate Bel{g < a} and Pl{g < a} with (6) and (7)
respectively.

4 Numerical examples

4.1 Example 1: a simple numerical example

First a simple numerical example is used to exemplify the
proposed method. Define a continuous function as

g X ; Yð Þ ¼ Y−0:5ð Þ2−X þ 0:5 ð24Þ
where the single random variable X is subject to the uniform
distribution within the range [−1, 1], denoted as U(−1, 1). The
BPA of the single epistemic variable Y is defined as

C ¼ −1; 0½ �;X < 0
0; 1½ �;X ≥0

�
; m Cð Þ ¼ 1 ð25Þ

It is obvious that Y has only one focal element, and its lower
and upper bounds vary with the value of X. Define the failure
region as F = {(X, Y)|g(X, Y) ≤ 0}. The function response
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distribution of g(X,Y) with respect to X and Y is presented in
Fig. 1. The failure region boundary is described with a solid
line.

According to (6), the belief of failure Bel{(X,Y)∈F}
can be calculated by integrating the probability density
function of X over the regions where the response g(X,
Y) is fully contained in the failure region for any value
of Y in the focal element C. From Fig. 1 it is obvious
that when X≥ 0.75, g(X,Y)≤ 0 for any Y∈C. Since the
random variable X is subject to U(−1, 1), thus

Bel X ; Yð Þ∈Ff g ¼ 1−0:75
1− −1ð Þ ¼ 0:125 ð26Þ

According to (7), the plausibility of failure Pl{(X,
Y)∈F} can be calculated by integrating the probability
density function of X over the regions where the re-
sponses of g(X, Y) are fully or partially contained in
the failure region when Y varies in the focal element
C. In Fig. 1 it is shown that when X≥ 0.5, there exists
Y∈C such that g(X,Y)≤ 0. Thus

Pl X ; Yð Þ∈Ff g ¼ 1−0:5
1− −1ð Þ ¼ 0:25 ð27Þ

Next, a more complicated situation with a refined
BPA description of Y is considered, which is defined
as follows:

C1 ¼ −1;−0:7½ Þ;X < 0
0; 0:3½ Þ;X ≥0

�
; C2 ¼ −0:7;−0:3½ Þ;X < 0

0:3; 0:7½ Þ;X ≥0

�

C3 ¼ −0:3; 0½ �;X < 0
0:7; 1½ �;X ≥0

�
m C1ð Þ ¼ 0:3 ; m C2ð Þ ¼ 0:3 ; m C3ð Þ ¼ 0:4

ð28Þ

In Fig. 1 it is shown that when 0.5≤X≤0.54, C2 is partially
in the failure region. When 0.54≤X≤0.75, C2 is fully in the
failure region, and C1 and C3 are partially in the failure region.
When X≥0.75, all of C1, C2, and C3 are fully in the failure
region. Thus

Bel X ; Yð Þ∈Ff g ¼ 1−0:54
1− −1ð Þ m C2ð Þ þ 1−0:75

1− −1ð Þ m C1ð Þ þ m C3ð Þð Þ ¼ 0:1565

Pl X ; Yð Þ∈Ff g ¼ 1−0:5
1− −1ð Þ m C2ð Þ þ 1−0:54

1− −1ð Þ m C1ð Þ þ m C3ð Þð Þ ¼ 0:236

ð29Þ

The Bel and Pl calculations above are directly based
on the standard reliability analysis formulation under
mixed uncertainties. The obtained results are accurate
theoretical analysis values and can be used as the
benchmark to verify the accuracy of the proposed
EPRAFI method. In this test, the response function
g(X,Y) is continuous, and the variable bounds of the
focal elements of Y can be formulated as (9). Thus the
two conditions to apply EPRAFI are satisfied. In
EPRAFI, the probabilistic method FORM is used.
Belk{(X,Y)∈F} and Plk{(X,Y)∈F} are obtained by solv-
ing (20) and (21). The analysis results are presented and
compared with the theoretical values in Table 1 for both
BPA setting 1 defined by (25) and BPA setting 2 de-
fined by (28) . It is shown that the EPRAFI analysis
results are exactly the same with the theoretical values,

Fig. 1 Function response distribution of g(X,Y) in example 1

Table 1 Belief and plausibility of F= {g< 0} in example 1

BPA Setting 1 BPA Setting 2

Belief Plausibility Belief Plausibility

EPRAFI 0.125 0.25 0.1565 0.236

Theoretical value 0.125 0.25 0.1565 0.236

Fig. 2 The cantilever tube problem in example 2
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which validates the accuracy of EPRAFI. Besides, it can
be observed that the gap between the belief and plausi-
bility measures in BPA setting 2 is smaller than that in
BPA setting 1. This demonstrates that the refinement of
the distribution information of the epistemic uncertainty
Y can enhance the description accuracy of the uncertain
distribution of g(X,Y) with narrower range bounding the
precise probability.

4.2 Example 2: the cantilever tube example

The cantilever tube example (Du 2008) is used in (Yao
et al. 2013b) to testify the reliability analysis method
under mixed uncertainties with fixed intervals. Herein it

is taken to verify the EPRAFI method, and to compare
the reliability analysis results between the situations with
fixed and flexible intervals. The system response func-
tion is defined as

g X;Yð Þ ¼ Sy−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
x þ 3τ2zx

q
X ¼ t d L1 L2 F1 F2 P T Sy

 �
; Y ¼ θ1 θ2½ �

σx ¼ P þ F1sin θ1ð Þ þ F2sin θ2ð Þ
A

þ Mh
I

; τ zx ¼ Td
2J

M ¼ F1L1cos θ1ð Þ þ F2L2cos θ2ð Þ; A ¼ π
4

d2− d−2tð Þ2
h i

h ¼ d = 2 ; I ¼ π
64

d4− d−2tð Þ4
h i

; J ¼ 2 I

ð30Þ

Table 2 Random variables in
example 2 Variable Distribution Parameters

t Normal Mean 5 mm Std 0.1 mm

d Normal Mean 42 mm Std 0.5 mm

L1 Uniform Lower bound 119.75 mm Upper bound 120.25 mm

L2 Uniform Lower bound 59.75 mm Upper bound 60.25 mm

F1 Normal Mean 3.0 kN Std 0.3 kN

F2 Normal Mean 3.0 kN Std 0.3 kN

P Normal Mean 12.0 kN Std 1.2 kN

T Normal Mean 90.0 Nm Std 9.0 Nm

Sy Normal Mean 220 MPa Std 22.0 MPa

Table 3 Epistemic uncertain variables in example 2

Fixed interval Variable interval BPA

Setting 1 θ1
Cθ1 ¼ Cθ1 fixlow;Cθ1 fixup

 � ¼ 0; 10½ �deg Cθ1 varlow ¼ Cθ1 fixlow þ 10� L1−120
0:25

Cθ1 varup ¼ Cθ1 fixup þ 10 � L1−120
0:25

m1(Cθ1) = 1

θ2
Cθ2 ¼ Cθ2 fixlow;Cθ2 fixup

 � ¼ 5; 15½ �deg Cθ2 varlow ¼ Cθ2 fixlow þ 10� L2−60
0:25

Cθ2 varup ¼ Cθ2 fixup þ 10 � L2−60
0:25

m2(Cθ2) = 1

Setting 2 θ1
Cθ1 1 ¼ Cθ1 fixlow1;Cθ1 fixup1

 � ¼ 0; 3½ Þdeg Cθ1 varlowi ¼ Cθ1 fixlowi þ 10� L1−120
0:25

Cθ1 varupi ¼ Cθ1 fixupi þ 10� L1−120
0:25

i ¼ 1; 2; 3

m1(Cθ1_1) = 0.3

Cθ1 2 ¼ Cθ1 fixlow2;Cθ1 fixup2

 � ¼ 3; 6½ Þdeg m1(Cθ1_2) = 0.3

Cθ1 3 ¼ Cθ1 fixlow3;Cθ1 fixup3

 � ¼ 6; 10½ �deg m1(Cθ1_3) = 0.4

θ2
Cθ2 1 ¼ Cθ2 fixlow1;Cθ2 fixup1

 � ¼ 5; 8½ Þdeg Cθ2 varlowi ¼ Cθ2 fixlowi þ 10� L2−60
0:25

Cθ2 varupi ¼ Cθ2 fixupi þ 10� L2−60
0:25

i ¼ 1; 2; 3

m2(Cθ2_1) = 0.3

Cθ2 2 ¼ Cθ2 fixlow2;Cθ2 fixup2

 � ¼ 8; 11½ Þdeg m2(Cθ2_2) = 0.3

Cθ2 3 ¼ Cθ2 fixlow3;Cθ2 fixup3

 � ¼ 11; 15½ �deg m2(Cθ2_3) = 0.4
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The graph of this cantilever tube problem is shown
in Fig. 2. The distributions of aleatory uncertainties X
and epistemic uncertainties Y are described in Tables 2
and 3 respectively. Two different BPA settings of Y are
considered, and in each setting both the fixed and var-
iable bounds of focal elements are studied for compar-
ison. In the variable case, the focal element bounds of
θ2 (the input angle of force F2) varies with L2 (the
distance between the force F2 input point and the can-
tilever fixed point). The focal element bounds of θ1 (the
input angle of force F1) varies with L1 (the distance
between the force F1 input point and the cantilever
fixed point). It is obvious that g(X,Y) is continuous
and the variable bounds of the focal elements of Y are
also continuous with respect to X. Thus the two condi-
tions to apply EPRAFI are satisfied. In EPRAFI, the
probabilistic method FORM is used, and Belk{(X,
Y)∈F} and Plk{(X,Y)∈F} are obtained by solving (20)
and (21), where the failure region is defined as F= {(X,
Y)|g(X,Y)≤ 0}.

The analysis results are presented in Table 4. It is
shown that in both BPA settings, the belief and plausi-
bility measures of the variable case are slightly larger
than the fixed case. It is because in the variable case,
the lower and upper bounds of θ1 and θ2 decrease with
the decrease of L1 and L2 when they vary in the prob-
ability space, as shown in (30), which can provide more
chances to maintain the values of M and corresponding-
ly the values of σx in a high level so as to make g< 0
when L1 and L2 decrease. But in the fixed case, the
chance of the σx value to make g< 0 will decrease when
L1 and L2 decrease with the fixed bounds of θ1 and θ2.
To further demonstrate the accuracy of EPRAFI, it is
compared with the benchmark MCS method. In
implementing MCS, 106 random variable samples are
generated and for each random sample point 2000 epi-
stemic uncertain variable samples are further generated
in each focal element. The results are shown in Table 4.
It can be observed that the analysis results of the pro-
posed method are very close to the MCS results and the

relative difference is less than 1.3 % in this case, which
clearly verifies the accuracy of the proposed method.

4.3 Example 3: a satellite conceptual design example

The conceptual design problem of a hypothetical earth-
observation small satellite is chosen as a practical appli-
cation test for the proposed EPRAFI method. This ex-
ample is previously used in (Yao et al. 2013b) to testify
the reliability analysis method for the mixed uncertainty
problem with fixed intervals. In this conceptual design
problem, the system response under study is the satellite
mass Msat(X,Y) which is estimated by empirical equa-
tions with five input variables X = [h, fc, b, l, t], in-
cluding the orbit altitude h, the CCD (Charge Coupled
Device) camera focal length fc, the body width b, the
body height l, and the side wall thickness t (Wertz and
Larson 1999). These five variables are subject to alea-
tory uncertainties and the distributions are illustrated in
Table 5. Besides, in the mass estimation model, the
scaling coefficients sdh_m and sttc_m for the mass estima-
tion of the subsystems OBDH (onboard data handling)
and TTC (telemetry, tracking, and command) can be
hardly defined in the conceptual design phase. These
parameters are treated as epistemic uncertainties and de-
noted as Y= [sdh_m, sttc_m]. Two different BPA settings
of Y are considered. In each BPA setting, both the fixed
and variable interval bounds are studied for comparison.
In the variable case, as shown in Table 6, the interval

Table 4 Belief and plausibility of
F= {g < 0} in example 2 BPA Setting 1 BPA Setting 2

Belief Plausibility Belief Plausibility

Variable interval 1.55× 10−4 1.73 × 10−4 1.63× 10−4 1.72 × 10−4

MCS (Variable interval) 1.57× 10−4 1.72 × 10−4 1.63× 10−4 1.71 × 10−4

Fixed interval 1.53× 10−4 1.73 × 10−4 1.62× 10−4 1.72 × 10−4

MCS (Fixed interval) 1.56× 10−4 1.71 × 10−4 1.63× 10−4 1.70 × 10−4

Table 5 Random variables in example 3

Variable Description Distribution Parameters

b Body width (mm) Normal Mean 800 Std 10

l Body height (mm) Normal Mean 800 Std 10

t Body thickness (mm) Normal Mean 5 Std 0.1

h Orbit altitude (km) Normal Mean 650 Std 6.5

fc Focal length (mm) Normal Mean 300 Std 1.0
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bounds of the mass scaling coefficients sdh_m and sttc_m
increase as fc increases because more on-board data
handling capacity and data transmission capacity from
the satellite to the ground are required if the camera
performance is enhanced, which in turn leads to larger
scaling coefficients to estimate the OBDH and TTC
subsystem mass. The interval bounds are assumed to
be linear functions of fc and the linear coefficient is
denoted as λ, which is a positive real number. Two
different λ values representing different variable degrees
are studied for comparison.

Denote the limit state value as a and calculate the be-
lief and plausibility measures of the failure F = {(X,
Y)|Msat(X,Y) ≤ a}. As the mass estimation function
Msat(X,Y) is continuous, and the variable bounds of the
focal elements of Y are also continuous with respect to X,
thus the two conditions to apply EPRAFI are satisfied. In
EPRAFI, the probabilistic method FORM is used. The
reliability analysis results are presented in Table 7. It
can be noticed that if λ= 8× 10−5, which represents rela-
tively small variable degree, the reliability analysis results
between the variable and fixed bounds are very small. But

if λ is increased to 8 × 10−4, the analysis difference be-
comes much larger. For example, with BPA setting 2, the
plausibility of the satellite mass Msat< 188kg is 0.8309
with fixed intervals. But in the variable interval case it
is 0.8308 with λ= 8× 10−5 and 0.8865 with λ= 8× 10−4

respectively. With larger value of λ, the analysis differ-
ence between fixed and variable intervals can reach 6.7 %
in this example, which is not negligible especially in the
reliability analysis. By varying the value of a, the CPF
and CBF of the satellite mass with fixed and variable
interval bounds (λ = 8 × 10−4) can be obtained and are
compared in Fig. 3. It is obvious that in the range of
satellite mass from 182 to 190 kg, the plausibility differ-
ence between the fixed and variable conditions is large.
Thus in this case if we use the traditional evidence theory
and simply treat the bounds as fixed ones, it may lead to
large error in reliability estimation and consequently af-
fect the reliability-based design optimization.

To illustrate the effect of different refinement degree of
BPA settings on the reliability analysis results, the graphs
of CPF and CBF of the satellite mass in the variable
interval case (λ= 8 × 10−4) with BPA setting 1 and 2 are

Table 6 Epistemic uncertain variables in example 3

Fixed interval Variable intervala BPA

Setting 1 sdh_m
Cdh ¼ Cdh fixlow;Cdh fixup

 � ¼ 0:04; 0:06½ � C* varlow ¼ C* fixlow þ λ� f c−300ð Þ
C* varup ¼ C* fixup þ λ � f c−300ð Þ

m1(Cdh) = 1

sttc_m
Cttc ¼ Cttc fixlow;Cttc fixup

 � ¼ 0:04; 0:06½ � m2(Cttc) = 1

Setting 2 sdh_m
Cdh 1 ¼ Cdh fixlow1;Cdh fixup1

 � ¼ 0:04; 0:05½ Þ C* varlowi ¼ C* fixlowi þ λ� f c−300ð Þ
C* varupi ¼ C* fixupi þ λ � f c−300ð Þ i ¼ 1; 2

m1(Cdh_1) = 0.5

Cdh 2 ¼ Cdh fixlow2;Cdh fixup2

 � ¼ 0:05; 0:06½ � m1(Cdh_2) = 0.5

sttc_m
Cttc 1 ¼ Cttc fixlow1;Cttc fixup1

 � ¼ 0:04; 0:05½ Þ m2(Cttc_1) = 0.5

Cttc 2 ¼ Cttc fixlow2;Cttc fixup2

 � ¼ 0:05; 0:06½ � m2(Cttc_2) = 0.5

a The asterisk symbol in the subscript represents dh or ttc

Table 7 Belief and plausibility of
F= {Msat< 188} and
F= {Msat< 196} in example 3

BPA settings Interval bound conditions F= {Msat< 188} F= {Msat< 196}

Belief Plausibility Belief Plausibility

BPA Setting 1 Fixed interval 0.1674 0.9849 0.9789 1.0000

Variable interval (λ= 8 × 10−5) 0.1675 0.9849 0.9788 1.0000

Variable interval (λ= 8 × 10−4) 0.1712 0.9837 0.9772 1.0000

BPA Setting 2 Fixed interval 0.4751 0.8309 0.9935 1.0000

Variable interval (λ= 8 × 10−5) 0.4751 0.8308 0.9935 1.0000

Variable interval (λ= 8 × 10−4) 0.4753 0.8865 0.9929 0.9999
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drawn and compared in Fig. 4. It is obvious that the gap
between CPF and CBF can be reduced with the refine-
ment of BPA of Y, which accordingly can describe the
uncertain distribution of the satellite mass more precisely.
Thus in practical engineering, as the design phase goes
forward, more knowledge about the design object can be
learned and its performance can be described more
precisely.

5 Conclusions

In this paper, to address the reliability analysis problem
under both aleatory uncertainties and epistemic uncer-
tainties with flexible intervals (the interval bounds are
either fixed or variable as functions of other indepen-
dent variables), the reliability analysis approach EPRAFI
is proposed based on combined probability and evidence
theory. Based on the measure theory, it is proved that
the upper and lower limits of the system response func-
tion are measurable upon the following conditions: 1)
the system response function is continuous; and 2) the
functions of the flexible interval bounds of the episte-
mic uncertainties are continuous or have countable
values as the independent variables vary in Borel sets.
Then the upper and lower limits of the system response
function can be treated as random variables, and their
reliability analysis can be directly solved by existing
probabilistic methods. The significant advantage of this
method is that the well-developed and efficient probabi-
listic methods can be directly applied to handle the
mixed uncertainty situation upon the specified condi-
tions. As the fixed interval can be regarded as a special
flexible interval, the EPRAFI method can also be direct-
ly applied to the fixed interval situation. FORM is taken
as an example to illustrate the extension of the proba-
bilistic method to solve reliability analysis problem in
the mixed uncertainty situation. The derived mathemat-
ical formulations of EPRAFI based on FORM for the
fixed interval situation are totally the same with those
reported in the literature. Thus the research work in this
paper also provides another strict mathematical proof for
the correctness of those early developed methods with
fixed intervals.

The efficacy of the proposed method is demonstrated with
two numerical examples and one practical satellite conceptual
design example. In Example 3, the results showed that if the
variable degree of the interval bounds is relatively small, there
will not be much difference in the reliability analysis results
whether the bounds are treated as fixed ones with traditional
evidence theory or as variable ones. But if the variable degree
is relatively large, the difference will not be negligible. Thus
the interval bounds should be properly treated according to
specific conditions in practical application, especially when
the variable degree is large. However in this research,
EPRAFI is developed with the prerequisite that the system
response function is continuous and only two flexible interval
bound situations are considered. The applicability of EPRAFI
for other forms of flexible intervals should be studied in the
future according to application needs.

Fig. 3 Comparison of CBF and CPF of satellite mass between fixed and
variable interval bounds (λ = 8× 10−4) with BPA setting 2 in example 3

Fig. 4 Comparison of CBF and CPF of satellite mass between BPA
setting 1 and 2 (both with variable interval bounds, λ = 8 × 10−5) in
example 3

A probabilistic method for reliability under mixed uncertainties 1651



Acknowledgments This work was supported in part by National
Natural Science Foundation of China under Grant No. 51205403 and
Grant No. 91216201.

References

Athreya KB, Lahiri SN (2006) Measure theory and probability theory.
Springer, New York

Bae H, Grandhi RV, Canfield RA (2004a) An approximation approach for
uncertainty quantification using evidence theory. Reliab Eng Syst
Saf 86:215–225

Bae H, Grandhi RV, Canfield RA (2004b) Epistemic uncertainty quanti-
fication techniques including evidence theory for large-scale struc-
tures. Comput Struct 82(13–14):1101–1112

Chen X, Park E, Xiu D (2013) A flexible numerical approach for quan-
tification of epistemic uncertainty. J Comput Phys 240(1):211–224

Der Kiureghian A, Ditlevsen O (2009) Aleatory or epistemic? Does it
matter? Struct Saf 31(2):105–112

Du X (2006) Uncertainty analysis with probability and evidence theories.
The 2006 ASME international design engineering technical confer-
ences & computers and information in engineering conference.
American Society of Mechanical Engineers ASME, PA

Du X (2008) Unified uncertainty analysis by the first order reliability
method. J Mech Des 130(9):091401

Du X, Venigell PK, Liu D (2009) Robust mechanism synthesis with
random and interval variables. Mech Mach Theory 44:1321–1337

Eldred MS, Swiler LP, Tang G (2011) Mixed aleatory-epistemic uncer-
tainty quantification with collocation-based stochastic expansions
and optimization-based interval estimation. Reliab Eng Syst Saf
96:1092–1113

GaoW, Song C, Tin-Loi F (2010) Probabilistic interval analysis for struc-
tures with uncertainty. Struct Saf 32(3):191–199

Gao W, Di W, Song C, Tin-Loi F, Li X (2011) Hybrid probabilistic
interval analysis of bar structures with uncertainty using a mixed
perturbation Monte-Carlo method. Finite Elem Anal Des 47:643–
652

Halmos PR (1974) Measure theory. Springer, New York
He L, Huang GH, Lu HW (2009) Flexible interval mixed-integer bi-

infinite programming for environmental systemsmanagement under
uncertainty. J Environ Manag 90(5):1802–1813

He Y, Mirzargar M, Kirby RM (2015) Mixed aleatory and epistemic
uncertainty quantification using fuzzy set theory. Int J Approx
Reason 66:1–15

Helton JC, Johnson JD (2011) Quantification of margins and uncer-
tainties: alternative representations of epistemic uncertainty. Reliab
Eng Syst Saf 96(9):1034–1052

Helton JC, Pilch M (2011) Guest editorial: quantification of margins and
uncertainties. Reliab Eng Syst Saf 96(9):959–964

Hohenbichler M, Gollwitzer S, Kruse W, Rackwitz R (1987) New light
on first- and second-order reliability methods. Struct Saf 4(4):267–
284

Jakeman J, Eldred M, Xiu D (2010) Numerical approach for quantifica-
tion of epistemic uncertainty. J Comput Phys 229(12):4648–4663

Jiang C, Long XY, Han X, Tao YR, Liu J (2013) Probability-interval
hybrid reliability analysis for cracked structures existing epistemic
uncertainty. Eng Fract Mech 112–113:148–164

Li L, Lu Z, Cheng L, Wu D (2014) Importance analysis on the failure
probability of the fuzzy and random system and its state dependent
parameter solution. Fuzzy Sets Syst 250:69–89

Liu B (2007) Uncertainty theory. Springer, Berlin
Melchers RE (1999) Structural reliability analysis and prediction. John

Wiley and Sons, Chichester
Oberguggenberger M (2015) Analysis and computation with hybrid ran-

dom set stochastic models. Struct Saf 52:233–243
Oberkampf WL, Helton JC (2002). Investigation of Evidence Theory for

Engineering Applications. 4th Non-Deterministic Approaches
Forum. Denver, Colorado

Rackwitz R (2001) Reliability analysis-a review and some perspectives.
Struct Saf 23(4):365–395

Sentz K, Ferson S (2011) Probabilistic bounding analysis in the quantifi-
cation of margins and uncertainties. Reliab Eng Syst Saf 96:1126–
1136

Shafer G (1976) Amathematical theory of evidence. PrincetonUniversity
Press, Princeton

Urbina A, Mahadevan S, Paez TL (2011) Quantification of margins and
uncertainties of complex systems in the presence of aleatoric and
epistemic uncertainty. Reliab Eng Syst Saf 96(9):1114–1125

Wertz JR, LarsonWJ (1999) Space mission analysis and design, 3rd edn.
Microcosm Press, California

Yao W, Chen X, Huang Y, Gurdal Z, van Tooren M (2013a) A sequential
optimization and mixed uncertainty analysis method for reliability-
based optimization. AIAA J 51(9):2266–2277

Yao W, Chen X, Huang Y, van Tooren M (2013b) An enhanced unified
uncertainty analysis approach based on first order reliability method
with single-level optimization. Reliab Eng Syst Saf 116:28–37

Zaman K, Rangavajhala S, McDonald MP, Mahadevan S (2011) A prob-
abilistic approach for representation of interval uncertainty. Reliab
Eng Syst Saf 96(1):117–130

Zhang X, Huang H (2010) Sequential optimization and reliability assess-
ment for multidisciplinary design optimization under aleatory and
epistemic uncertainties. J Struct Multidiscip Optim 40(1):165–175

Zhao Y, Ono T (1999) A general procedure for first/second-order reliabil-
ity method (FORM/SORM). Struct Saf 21(2):95–112

1652 X. Chen et al.


	An...
	Abstract
	Introduction
	Preliminaries
	The Fundamentals of measure theory for aleatory uncertainty
	The fundamentals of evidence theory for epistemic uncertainty
	Reliability analysis under mixed aleatory and epistemic uncertainties

	Extended probabilistic method for reliability analysis under mixed uncertainties
	Measurability of the upper and lower limit functions
	The extension of the probabilistic method to mixed uncertainty problem
	The EPRAFI algorithm

	Numerical examples
	Example 1: a simple numerical example
	Example 2: the cantilever tube example
	Example 3: a satellite conceptual design example

	Conclusions
	References


