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Abstract Fail-safe robustness of critical load carrying struc-
tures is an important design philosophy for aerospace industry.
The basic idea is that a structure should be designed to survive
normal loading conditions when partial damage occurred.
Such damage is quantified as complete failure of a structural
member, or a partial damage of a larger structural part. In the
context of topology optimization fail-safe consideration was
first proposed by Jansen et al. Struct Multidiscip Optim
49(4):657-666, (2014). While their approach captures the es-
sence of fail-safe requirement, it has two major shortcomings:
(1) it involves analysis of a very large number of FEA models
at the scale equal to the number of elements; (2) failure was
introduced in generic terms and therefore the fundamental
aspects of failure test of discrete members was not discussed.
This paper aims at establishing a rigorous framework for fail-
safe topology optimization of general 3D structures, with the
goal to develop a computationally viable solution for indus-
trial applications. We demonstrate the effectiveness of the pro-
posed approach on several examples including a 3D example
with over three hundred thousand elements.

Keywords Fail-safe design - Topology optimization -
Aerospace structure - Robust design
1 Introduction

Since the 1988 landmark paper by Bendsee and Kikuchi
(1988) topology optimization has emerged as the most active
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research area within the field of engineering optimization.
There have been thousands of research papers published on
this subject in the literature. A comprehensive treatment of
topology optimization can be found in a book by Bendsee
and Sigmund (2004). In-depth reviews and insights can be
found in papers by Rozvany (2001, 2009), Sigmund and
Maute (2013), Deaton and Grandhi (2014). In general the
subject of this paper falls into the category of design involving
uncertainties, known generally as reliability based design op-
timization (RBDO). Since mid-2000 there has been increasing
research on reliability based topology optimization (RBTO)
considering uncertainties in loads, material, boundary geom-
etry or fabrication. Since this work doesn’t directly build on
earlier RBTO contributions, we simply refer to Deaton and
Grandhi (2014) for literature survey, and to select papers for
further reading: Maute and Frangopol (2003), Kharmanda
et al (2004), Jung and Cho (2004), Guest and Igusa (2008),
Silva et al (2010), Chen et al (2010), Chen and Chen (2011),
Lazarov et al (2012), Nguyen et al (2011), Rozvany and
Maute (2011), Tootkaboni et al (2012), Wang et al (2006).
However, as also pointed out by Jansen et al. (2014), due to
the binary nature of failure definition it is difficult to treat fail-
safe requirement within statistics based RBTO framework.
Fail-safe design philosophy is probably the single most
important reason why flying is so incredibly safe today. The
list of catastrophic accidents due to aircraft structural failures
is rather short (Wikipedia 2016a), compared to the long list of
accidents and incidents involving commercial aircraft
(Wikipedia 2016b). From the latter list we can find many cases
involving midair structural damages. Fortunately in the vast
majority of such cases an aircraft survived such structural
damages, some of which were of critical level of severity.
For example, a widely publicized incident involved A380 in
November 2010, only about 3 years after the world’s largest
passenger aircraft entered service in 2007. Qantas Flight 32
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Fig. 1 Three-bar truss

suffered severe structural and control system damages from an
uncontained engine failure shortly after taking off from
Singapore Changi Airport (Wikipedia 2016c¢). It managed to
land safely. Fail-safe requirement for aircraft design was clear-
ly defined in two books by Niu that are widely used hand-
books by aerospace structural engineers—°Aircraft structural
design’ and ‘Airframe structural analysis and sizing’ (Niu
1988, 1997). He defined fail-safe as /. Fail-safe structure
must support 80—100 % limit loads without catastrophic fail-
ure. 2. A single member failed in redundant structure or par-
tial failure in monolithic structure’ (p 538, Niu 1988). Note
that limit load for aircraft design corresponds to maximum
service loads. It differs from ‘ultimate loads’ that carries a
safety factor of 1.5 (Niu 1988). To be clear ‘a single member
failure’ is meant to be tested on all discrete members, one
instance at a time, for the condition of complete loss of load
carrying capacity. Taking the example of a stiffened panel as a
common aircraft structural component, ‘a single member’ re-
fers to a stiffener while ‘monolithic structure’ refers to the
panel itself. A partial failure is meant as complete devoid of
a chunk of material of a given size. The size of failure consid-
ered is related to possible maximum damage between inspec-
tion cycles due to crack propagation and other reasons,
outlined by Niu as ‘For fail-safe structure inspection tech-
niques and frequency must be specified to minimize risk of
catastrophic failures’ (p 538, Niu 1988). In this paper we
prefer to use the term damage as we feel that it represents
the state of the structure more accurately, especially for the
case of partial ‘failure’ of a large structural part. To be clear

Table 1 Conventional and fail-safe designs of a three-bar truss

x1 x2 x3 Effective volume  Compliance
Standard ~ 7.07  0.00  7.07  1000.00 47.60
Failsafe 522 522 522 1000.00 64.42
Failure 1  0.00 522 522 630.60 174.00
Failure2 522 0.00 522 738.79 64.42
Failure3 522 522  0.00 630.60 174.00
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damage throughout the paper is defined as the equivalent of
devoid of material. It has nothing to do with damage models
describing the process of failure of materials.

Topology optimization has seen fast growing adoption
throughout all major industries since the turn of the mil-
lennium. This includes successful aerospace applications
during development of the new generation airliners such
as A380, 350 and B787 (see, e.g., Krog et al. 2004).
However, the inability of taking fail-safe requirement into
consideration in a computationally viable way has been
seen as a significant limitation. In fact as optimization
process pushes material utilization to maximum efficien-
cy, design tends to be less redundant in general. For ex-
ample, results of topology optimization are often
benchmarked against Michell trusses (Michell 1904).
While Michell trusses are highly efficient, they are all
statically determinate with zero structural redundancy. In
the context of topology optimization, the first challenge
for fail-safe consideration lies in defining member failure
test before structural members emerge from the optimiza-
tion process. The second challenge lies in creating a com-
putational scheme that is efficient enough to solve real
world problems. Topology optimization considering fail-
safe requirement was first introduced by Jansen et al.
(2014). For 2D structures they introduced damage as a
square void zone of required size, placed one instance at
a time at every finite element grid, with the exception that
square zones falling partially outside the structural do-
main are excluded. Jansen et al. introduced the concept
of fail-safe as a general notion without reference to spe-
cific practice for aircraft design. As such they did not
explicitly discuss modeling the requirement of a complete
failure of a discrete structural member. A directly relevant
statement can be found in the conclusion of Jansen et al.
(2014): ‘As opposed to truss topology optimization where
a clear definition of a structural member exists, there is
no real notion of a structural member in a continuum and
cracks and holes of varying shape and size can occur. A
simplified model of local failure is therefore used to
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Fig. 2 Three-Bar Truss:
Structural cases under member
failures

@

simulate local material failure where a number of patches
with predefined shape can be removed from the design.’
This indicates that they avoided dealing explicitly with
the first challenge stated above - the notion of truss mem-
ber failure test within the context of topology optimiza-
tion. The design problem is defined as minimizing the
maximum compliance of all the FEA models, with each
containing a square hole at a unique location. While the
approach captures the essence of fail-safe requirement, it
involves analysis of a very large number of FEA models
at the scale equal to NE representing the number of ele-
ments. As finite element models commonly contain NE
exceeding several hundred thousand, the fail-safe problem
becomes computationally prohibitive even with largest
HPC cluster available today.

This paper studies fail-safe topology optimization for
general 3D structures. First we establish the original, math-
ematically rigorous, design formulation as the structure
containing either a sphere or a cube damage of required size
at a random location within the structural domain. For geo-
metric simplicity we use cube damage throughout the paper
although sphere form is more generic. The original problem
involves an infinite damage population, which strictly en-
forces zero material survival rate in a representative cube
with size equal to damage cube. In order to reduce the orig-
inal problem into one with finite damage population, we
introduce the concept of damage population series, with
Level 1 starting as gapless fill of damage cubes within the
structural domain. With each increasing level in the series
the density of damage placement doubles. We then study
quantitative relationship between damage population size
and maximum material survival rate of a representative
cube as a measure of damage modeling accuracy. We

Fig. 3 Optimal designs: (a)
Standard and (b) fail-safe

(b) (c)

demonstrate that for practical purpose we can obtain desired
structural redundancy with Level 1 damage population rep-
resented by gapless fill of damage cubes. We also show that
a partial Level 2 damage population only doubling Level 1
population offers good ROI (return on investment) property
for increased damage modeling accuracy. Further we exam-
ine the implication of maximum length scale on damage
modeling accuracy and discover that zero material survival
rate can be achieved with Level 2 damage population when
member cross-section size is limited to half of the damage
size. As also pointed out by Jansen et al. (2014), all involved
FEA models can be analyzed in parallel with perfect scal-
ability. We implemented the solution in Altair OptiStruct
(2016) in a MPI process for best solution efficiency. An
overview of OptiStruct implementation can be found in
Zhou et al. (2004). Several 2D and 3D examples, including
the example studied by Jansen et al., are shown to demon-
strate the impact of fail-safe requirement to design concept
generated by topology optimization. The FEA model of the
3D example contains 327,493 tetrahedron elements.

This paper is structured in the following sections. In
Section 2 the concept of fail-safe design is illustrated with
a simple three-bar truss. In Section 3 mathematical repre-
sentation of failure or damage for a 3D structural continuum
is introduced so that the resulting structure is subjected to
the failure test on both discrete members and monolithic
parts. Section 4 introduces the concept of damage popula-
tion series and studies quantitative relationship between
damage population size and accuracy in damage represen-
tation. Computational scheme and implementation are
discussed in Section 5. Two 2D examples and one 3D ex-
ample are shown in Section 6. Section 7 offers concluding
remarks and suggests topics for future study.

@) )
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Fig. 4 Structure containing a
random damage: (a) Sphere; (b)
Cube

2 Fail-safe design

In this section we illustrate the concept of fail-safe design
using a simple three-bar truss shown in Fig. 1. The X and Y
dimensions of the truss is 100 x 50; the material properties are:
E=2.1x10° and v=0.3; a horizontal load of 1.0 x 10 is ap-
plied at the junction node of the three bars.

Design constraints for fail-safe should primarily be stress
and may include displacements. However for all examples in
this paper we use a simplified optimization formulation—
minimizing the compliance with a volume constraint. This
makes it easy for researchers to study and compare results as
this is the most used formulation for papers on topology opti-
mization. It also allows us to study fundamental behaviors of a
new type of problem on a well behaved simple optimization
problem. Compliance provides a clear global performance
measure for comparison between various structural configu-
rations involving failure scenarios. For the three-bar truss we
consider minimizing compliance under a volume constraint:

Minimize C(x)
Subject to V(x)-VY <0 (1)
xh<x<xY, i=1,2,3

in which the upper bound of the volume constraint V¥ = 1000;
the lower bounds of bar cross-sectional areas are set to zero,
allowing truss members to vanish. We ran the optimization
problem with Altair OptiStruct (2014). To obtain a fully con-
verged solution we used a very low convergence tolerance on
the objective at 0.0001, and the run converged after 12 itera-
tions. The optimal design, referred to as Standard case, is
given in Table 1. The middle bar vanishes and the structure
reduces to a two-bar truss. We know this design corresponds
to the simplest case of the famous Michell (1904) cantilever
truss.

For a structure with predefined load carrying members,
fail-safe is defined as sustained structural integrity under the
condition that an arbitrary structural member fails. For the
given three-bar truss it means that the structure should survive
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under the three structural configurations shown in Fig. 2,
representing failure of the right, middle and left bars, respec-
tively. This design problem now involves three structural
cases of distinct structural configurations under the same ap-
plied loads. This fail-safe optimization problem with compli-
ance as the performance measure can be formulated as fol-
lows:

Minimize Max(Cj(x)), j=12,3
Subject to V(x)-VY <0 (2)
XZLSX,'S)C[-U, 1217273

which implies that optimization should target improving
compliance of the worst failure cases. Note that Min(Max)
compliance wouldn’t be meaningful for different load
cases since relative quantities of compliances do not have
clear engineering implication. However, compliances un-
der the same load conditions for different failure modes
are meaningful engineering measures on how a failure
impacts the total performance of the structure. For a struc-
ture under multiple load cases, we can regard the sum of

Fig. 5 Base damage cubes in grey and best hideout in red (R) (lines
within lower left cube are for size reference)
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Table 2 Maximum material survival rate of a representative cube matching the size of damage cube

Damage level Damage population xNp

Maximum survival rate of a refresentative cube

PA PB PA sectional PB sectional PA volumetric PB volumetric

1 75.0 % 75.0 % 87.5 % 87.5 %

2 8 2 43.8 % 50.0 % 57.8 % 62.5 %

3 64 16 23.4 % 25.0 % 33.0 % 34.4 %

4 512 128 12.1 % 12.5 % 17.6 % 18.0 %

5 4096 1024 6.2 % 6.3 % 9.1 % 92 %

_n3L-1D n
L P =2 2% Py 1y 2 2/2 ()41 B
2 5 2
L—> © © 2/2" 2/2" 32" 32"

compliances, termed total compliance herein, as the glob-
al performance measure of the structure. In other words
the compliance in (2) for each structural case involving
one failed structural member becomes the total compli-
ance under all load cases.

We used Altair OptiStruct (2014) to solve this multiple
model optimization (MMO) problem. The same low conver-
gence tolerance is used and the run converged in 21 iterations.
The optimal design of the fail-safe problem is included in
Table 1, which also lists compliances for the three structural
cases involving failures. Both standard and fail-safe designs
are illustrated in Fig. 3(a) and (b), respectively. Obviously the
structure needs redundant stable load transmission paths,
hence all three bars are necessary for a fail-safe design. It is
interesting to observe that the compliance of undamaged state
is the same as that of the second failure case with vanishing
middle bar. This can be easily understood as, given symmetry,
there is no vertical displacement at the loading point, hence
the vertical bar has zero strain under linear FEA assumption.
The performance under the first and the third failure cases are
significantly worse than the 45° two-bar configuration that

Fig. 6 a Best hideout in green
(G) for PA,; b Best hideout in
blue (B) for PB,

corresponds to the optimal Michell truss. Clearly the optimi-
zation is driven by these two structural cases. We refer to these
as the active structural cases for fail-safe as they correspond to
active constraints in the bound formulation for the Min(Max)
problem (Olhoff 1989).

3 Fail-safe formulation for general 3D structural
continuum

While the concept and practice of fail-safe is easy to fol-
low when the layout of load carrying structural members
is already established, the definition of member failure for
design concept generation process, i.e., topology optimi-
zation, has yet to be established. To understand the con-
cept, let’s start with the first fail-safe scenario defined by
Niu—failure of discrete members. This scenario is highly
relevant to topology optimization that often results in a
truss-like structure if there are no additional imposed
manufacturing requirements such as casting. The pre-
sumption of fail-safe requires that failure test of a single

(b)
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Fig. 7 Best hideout in red (R) for
d/2 maximum length scale: a PA1
in grey cubes; b PB2 in grey and
blue (B) cubes

member needs to rotate through all structural members
without exception. However, the dilemma lies in defining
failure test before discrete members emerge during the
iterative process of topology optimization. By definition
the failure test of ‘a member’ needs to be valid for any
member emerged at any arbitrary location. To meet this
requirement the failure test of all structural members with-
in a 3D structural domain {2 can be established as a spher-
ical damage of diameter d randomly located in the given
domain as illustrated in Fig. 4(a). As stated in the intro-
duction section, damage of a given shape and volume
throughout the paper is defined as complete devoid of
material. We cannot over emphasize the keyword random
location that implies that the spherical damage be tested at
any possible location, one instance at a time. Under the
above definition no discrete structural member would sur-
vive a failure test as long as its cross-section doesn’t ex-
ceed length scale d. If the cross-section of a structural part
shaped by topology optimization is bigger than length
scale d, the damage due to the presence of the given
spherical damage falls into the second category of failure
defined by Niu as ‘partial failure in monolithic structure’.
To conclude, the definition of damage outlined above
covers both failure scenarios defined by Niu as ‘A single
member failed in redundant structure or partial failure in
monolithic structure’. To help visualizing the effect of the
damage volume, we can picture the sphere as a magic
eraser that only erases material where it currently

(2) (b)

occupies but doesn’t leave trace behind. In other words,
the material would recover from void to solid when the
eraser moved away. For a more dramatic visualization we
can picture the effect of an unconventional bomb that
would evaporate material in the contained volume while
leaving adjacent space unharmed. Note that the funda-
mental concept outlined above is clearly present in
Jansen et al. (2014), although (1) they did not explicitly
establish the mathematically rigorous formulation with the
given damage at a random location; (2) they did not ex-
plicitly differentiate between the failure scenario of a sin-
gle discrete member and that of a monolithic part. These
aspects by no means diminish the value of their work as
the first research publication on fail-safe design within the
context of topology optimization.

Alternatively let’s also consider a cube shaped damage of
edge length d, shown in Fig. 4(b). Though spherical damage
is directionless and more generic, damage of a cube can also
represent a practical use case without losing generality. As
interactions of cubes are more easily illustrated and ana-
lyzed, we will primarily use cube form damage for estab-
lishing a mathematical and engineering foundation. From
engineering perspective cube form damage with edge length
equal to the diameter d of the spherical damage can be used
as a more conservative representation as the devoid material
volume contains the subset of the sphere at the same loca-
tion. Therefore we can assume that general qualitative ob-
servations drawn based on cube damage are valid for sphere

Table 3 Maximum material
survival rate of a representative Damage level
cube half the edge length of xNp

Damage population

Maximum survival of a representative cube

damage cube

PA PB DS-A sectional DS-B DS-A volumetric  DS-B volumetric
1 75.0 % 750 % 875 % 87.5 %
2 8 2 0.0 % 50.0 % 0.0 % 50.0 %

@ Springer
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Fig. 8 Fail-safe topology iterative scheme

damage as well. Obviously the orientation of damage cubes
has quantitative implications. The diagonal section of a
cube can cause a larger sectional cut of a structural member
in its most vulnerable cross-section. As we generally use
cube damage as a more conservative test of spherical dam-
age, we can regard the orientation factor as merely varying
degrees of reserves relative to sphere damage. From appli-
cation perspective the practicing engineer should place cube
orientation according to insights into the structure’s direc-
tional vulnerability. When directional neutrality of damage
is important we can always resort to sphere damage in actual
modeling.

The topology optimization problem for fail-safe design can
be defined as follows:

Minimize f(x)
Subject to (g.l'(x)_gysov j=1 M) Jor (Se£2ASEDrandom) (3)
0.0<x;<1.0,i=1,..N

where f(x) represents the objective function, g;(x) and g’
the j-th constraint response and its upper bound, respectively.
For fail-safe design stress constraints should be primary focus,

8 1P 0 0 R B OO0 W BOO A
—

Fig. 9 FEA model with 200 x 100 quadratic elements

while displacement and other constraints could also be includ-
ed if crucial for the survivability of the structure. There are
generally multiple load cases involved. For simplicity of no-
tation let’s consider that the total number of constraints M
includes constraints from all load cases considered. All M
constraints should hold for the residual structure S excluding
arandomly located damage D, .4, In essence this represents
an infinite number of structural cases. X; is the normalized
material density of the i-th element. In this paper we use the
SIMP topology optimization approach (Bendsee 1989; Zhou
and Rozvany 1991) where a power law penalty is applied to
the stiffness density relationship:

K;(x;) = K; (4)

where K; and K| represent the penalized and the real stiffness
matrix at full density of the i-th element, respectively, and p is
the penalization power that is larger than 1.0. Typically p takes
value between 2 and 4. A small lower bound, say 0.01, is
typically applied on the density variables to prevent
singularity in the stiffness matrix. Note that the effect of
elements at density lower bound is further significantly
weakened by the power law. It is well established today that
minimum length scale should be included in the topology
variable formulation. There are many approaches available
today that can be find in reviews by Sigmund and Maute
(2013) and Deaton and Grandhi (2014).

For a structure with discrete members (i.e., a truss or
frame-like structure), if damage D is larger than or equal
to the largest structural member size in the design, it can
completely wipe out an arbitrary member as it moves
through the structure to ‘erase’ a target. For a spread-out
structural component, e.g., a plate with area larger than D,
the damage produces a hole in the structure of the given
size at the given location.

4 Solution strategy for fail-safe topology optimization

Obviously random placement of damage of a given size
within a structural domain is challenging even for analy-
sis. Fortunately, we can take cues from many similar de-
sign scenarios we encounter in engineering practice. For
example, loads in an elevator for N persons are randomly

Fig. 10 Eight damaged models for damage population PA

@ Springer
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Fig. 11 Damage populations: (a)
PA,; (b) Addition in PB,

placed, which can, however, be modeled by sufficient
load case samples. The same strategy can be applied to
fail-safe design formulation, although admittedly the case
of failure is more complex than the random load location
analogy. For the latter it is relatively easy to identify sev-
eral most severe load cases.

For convenience let’s focus on cube damage in this
section. In Section 4.1 we introduce a serial process of
damage population increase to explore the relationship
between the population size and the maximum material
survival rate within a representative cube of the same
size as the damage. In Section 4.2 we study the effect
of cross-section length scale on material survival rate. In
Section 4.3 considerations for practical application are
discussed.

4.1 Effect of damage population size

From engineering perspective it makes sense to start with a
base damage population with damage cubes occupying the
structural domain (2 evenly without gap and overlap. This
implies that not a single finite element in the structural domain
survives removal under the base damage population. The five
grey color cubes in Fig. 5 represent a part of the base popula-
tion Np. First we establish a series of damage population size
levels, termed Damage Series A, with each level increase dou-
bling the density of damages.

Fig. 12 Topology results: (a)
Standard: (b) Fail-safe PA;; (¢)
Fail-safe PB,

@ Springer
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Damage Series A:

(a) Level I: A total number of N damage cubes of size d
are distributed evenly to cover the entire structural domain
2. Grey cubes in Fig. 5 represent the base Level 1 damage
population. The centers of damages are evenly spread in {2,
with diagonal distance v/3d between neighboring cubes.
We denote the population size of Level 1 at PA;= Np.

(b) Level 2: Next we aim to double the density of damage
zones to create evenly spread damage zones with distance
between neighbors reduced to V3d /2. To achieve that we
only need to double the grid points of cube centers along
X, Y and Z, resulting in a damage population
PA>=2°xNp=8xNp,.

(c) Level L: We aim to double the evenly spread damage
population density from Level (L—1), producing a dam-
age population PA; =2>*" D x N, It can be easily
established that for a 3D domain the total population of
level L is always eight times the population of the
previous level, i.e., PA,=8*xPA ). Thus the in-
crease of population from one level to the next is
always APA;,=7xPAq 1)

Now we construct a slight variation of the above
damage series, termed PB, as a partial set of PA at
all levels except Level 1. We will show later that
PB has some interesting characteristics.

Damage Series B:
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Table 5 Compliances for optimal design under PB,
Standard Failsafe PB, Failure Zones
1 2 3 4
Fig. 13 Damaged models with final fail-safe topology for PA, 58.72 82.96 164.46 184.44 184.44 164.46
5 6 7 8
(a) Level I: The damage population starts exactly the same
as PA, i.e., PB;=PA,. 165.04 18634 18634  165.04
(b) Level 2: We keep only a subset of Level 2 population
in PA. PA, can be constructed by moving seven copies of 9 10 11
PA, into bisection combinations along XYZ. For PB we
165.08 183.44 165.08

only keep the copy moving diagonally in space, shown in
red color in Fig. 5. The resulting damage population is
PB,=2xPA, =PA,/4.

(c) Level L: Following the logic in (b) we construct PBy as
PA( -1 enriched with its copy shifted diagonally into bi-
section location in space, i.e. in all three dimensions XYZ.
The total damage population is PB; =2 % PA, — 1,=PA/4.
Therefore, the population size of the partial set for PB is
only a quarter of the complete set of PA at any level in the
series.

The population size is summarized in Table 2 for varying
damage levels. For a given finite damage population size Py
(i.e., PAp or PBy) established at Level L, the design problem
given in (3) can be formulated as follows:

Minimize f(x)
Subject to (g,(x)—g,?’so7_; —1,.., M)for(Se.Q/\SezD,),l =1,...,p, (5)

0.0<x,<1.0, i=1,...N

As discussed in Section 2, we will use a simplified problem
formulation for numerical examples so we can focus on the
key phenomenon related to fail-safe. The Min(Max) compli-
ance formulation for the fail-safe problem becomes the fol-
lowing:

Minimize Max(C,(x)), for (Sef2AS¢D;), 1=1,....P,
Subject to V-VV <0 (6)

00<x,<1.0, i=1,...,N

Table4 Compliances for optimal design under PA;

Standard Failsafe PA, Failure Zones
1 2 3 4
58.72 84.28 161.50  183.10 183.10 161.50
5 6 7 8
161.50  184.02 184.02 161.50

where C; represents the sum of compliances, termed total
compliance herein, of all static load cases for the structure
S'¢ D,. Note that analysis and sensitivity calculation of a struc-
tural case involving a damage zone is a standard process ex-
cept that the concerning FEA model has elements contained in
the damage zone D, removed. In other words, load carrying
capacity and sensitivity contribution from elements within D,
are zero for the structural case S ¢ D,. Therefore, the optimiza-
tion problem shown in (6) essentially aims at minimizing the
adverse impact of damages to the structural performance. This
is the same problem formulation proposed by Jansen et al.
(2014). They further reduced the min(imax) objective into a
single aggregate based on K-S function formulation to deal
with a very large damage population. As will be shown sub-
sequently, our solution involves a much smaller damage pop-
ulation size. Therefore it is sufficient to solve the Min(Max)
problem accurately by introducing an upper bound on all ob-
jectives (Olhoff 1989).

Compared to (3) the problem in (5) or (6) becomes
numerically feasible, though computationally expensive.
We will discuss computational aspects in Sections 4.3
and 5. For now we will focus on establishing important
characteristics in relationship between the damage popu-
lation size and the maximum material survival rate within
a representative cube of damage size. This is important for
measuring the confidence level we have in the model as
the very definition of random failure corresponds to zero
material survival of a representative cube randomly locat-
ed in the entire structural domain. Therefore the lower the
maximum material survival rate of a representative cube
is, the closer the problem defined by a constructed finite
damage population reflects the original problem. We in-
troduce the following theorem first:

Theorem I The problem defined by Damage Series A or B
shown in (5) is equivalent to the original problem in (3) as the
damage population P; approaches infinity.

@ Springer
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Fig. 14 Shifted damage zones:
Unrestricted (a) PA; and (c¢) PB,;
Enforced symmetry (b) PA; and
(d) PB,

The proof of the theorem is straightforward. Since damages
defined by PA are always evenly spread in the entire structural
domain {2 with distance from one damage zone to another not
exceeding V3d / Z(L_U, the distance between damage zones
approaches zero when L approaches infinity. The same should
hold for PB as at Level L the total damage population includes
the damage population Level (L—1) of PA. In a visual display,
when L approaches infinity every possible point in the space
2 would have a bomb planted that can remove material within
a cube of the given size d.

In the following analysis we normalized the cube to
unit size d=1. For a given damage population, it is im-
portant to understand the reliability of the model for cap-
turing a random failure. Assuming discrete members have
a maximum cross-section length scale d=1, failure test of
a member can be carried out on a unite length that forms a
representative cube of size d. Clearly when damage pop-
ulation is infinity the material survival rate within the
representative cube is zero. As already pointed out when
introducing cube form damage, it causes more sectional
damage for structural members not aligned with the cube
orientation. Therefore we only need to focus on the most sur-
vivable case where the representative cube is aligned with dam-
age cubes. For a given damage population, the maximum ma-
terial survival rate within the representative cube provides a
quantitative measure on the accuracy of the failure test. For
PA,;=PB,, it can be observed that the red cube shown in

Table 6 Detailed results with shifted damage zone locations

Unrestricted Enforced symmetry

PA, PB, PA, PB,
Iteration 55 61 59 59
Compliance 87.18 86.94 87.20 89.56
Max comp 140.18 155.84 164.04 171.42
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d)

Fig. 5 represents the best hideout location for the representative
cube in red, with a volumetric survival rate of 87.5 %. Note that
from the perspective of structural mechanics the sectional resid-
ual is a more important measure as forces are transferred
directionally. It is easy to calculate that the sectional survival
rate for a structural member represented by the unit length cube
is 75 % for the base damage population PA;.

Visualization becomes much more crowded when damage
population increases eight times from PA; to PA,. For visual
clarity we only leave the most damaging cubes in the image in
Fig. 6. Analyzing geometric interactions we have determined
that the green cube in Fig. 6(a) represents the best hideout for
PA,, with a sofa-corner shaped surviving volume at (37/
64)=57.81 % and sectional survival rate at 43.75 %. For
PB, we can find a slightly better hideout shown in blue in
Fig. 6(b). The survival volume of the blue cube has a L-shape,
or sofa-section shape, with a surviving volume and cross-
section of 62.50 and 50 %, respectively. It should be noted
that while sectional survival rate of the green cube in Fig. 6 is
equal in all X, Y and Z directions for PA, and PB,, the sec-
tional survival rates of the blue cube in Fig. 6 are uneven for
PB, with 25, 50 and 25 % in X, Y, Z directions, respectively.
We observe that PB is superior to PA in terms of computation-
al efficiency since at any level above Level 2 we achieve just a
slightly worse material survival rate with a quarter of the dam-
age population.

For the damage population at the L-#4 level, we have de-
termined that the above observation regarding the best hideout
positions and surviving volume shapes holds true, albeit with
thicknesses of the surviving green sofa-corner and blue sofa-
section halving to the next damage population level. The max-
imum sectional and volumetric survival rates for Level 1 to
Level 5 are shown in Table 2, including exact formulae for
Level L. These results are obtained by analyzing geometric
interaction of intersecting cubes. The results are confirmed
through numerical simulation with a billion random cube lo-
cations. We are confident about the results represented in
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Fig. 15 FEA model with 10,800
elements

Table 2, although we would forego a formal mathematical
proof.

4.2 Effect of member cross-section length scale

In Sections 3 and 4.1 we already made the connection between
damage size and the cross-sectional size of discrete members
subject to failure test. Let’s restate the conclusion for the case
with infinite damage population: (1) failure test holds for any
discrete member with maximum cross-sectional dimension
smaller than damage size d; (2) for members with larger di-
mensions the presence of a size d damage establishes what
Niu (1988) defined as ‘partial failure in monolithic structure’.
This conclusion serves as a clear guideline for practical appli-
cation—the design engineer should define damage size d ac-
cording to the target size for structural members classified as
individual members. Obviously the fail-safe design problem
has to be solved under finite damage population, with as low a
population size as possible. As damage population size in-
creases exponentially with respect to population level, Level
2 should be considered the practical limit for real applications.
Table 2 shows that the maximum sectional survival rate of a
member with cross-sectional size d is 43.8 % for full Level 2
damage population PA,, and slightly higher at 50 % for partial
Level 2 damage population PB,. Now let’s assume that we
reduce the maximum cross-sectional length scale to d/2. As
illustrated in Fig. 7(a), the material survival rate for a repre-
sentative cube of size d/2 does not change for PA1. Figure 7(b)
shows the best hideout location for the half edge length cube
under PB, that carries a volumetric and sectional survival rate
of 50 %. The sectional survival rates are directional, with 50 %
along two axes and 0 % along the third axis. At full Level 2
damage population PA, we can observe a surprisingly strong
property—there is no survivable hideout place for the small

Fig. 16 Topology result of the
standard problem: (a) Jansen et al
(2014); (b) This paper

(a)

'ORCE = 1.00e+000

size cube. That means that the damage population series con-
verge, as shown in Table 3, at Level 2 when maximum cross-
sectional length scale is half of the damage cube size. This is
an extremely attractive property both theoretically and practi-
cally as, at only eight times base damage population size,
failure test of discrete members is strictly satisfied if damage
size d is defined as twice the maximum length scale for topol-
ogy optimization. Various methods were proposed for impos-
ing maximum length scale for topology optimization (see,
Guest 2009; Guo et al. 2014). Maximum length scale control
is also available in OptiStruct 7.0 since 2004. For a 3D struc-
ture maximum length scale constraint allows formation of a
plate-like part with thickness below the given length scale,
forming a structural part referred to as monolithic structural
component in Niu’s terminology (1988). The failure test from
damage population PA, for such parts guarantees a through
hole in the plate-like components with maximum thickness
not exceeding d/2.

4.3 Practical considerations on damage population size

In Sections 4.1 and 4.2 we studied material survival rate of a
cube representing an isoperimetric section of a structural
member under a given damage population. The properties
are derived from a pure geometric perspective. We empha-
sized that sectional residual of a structural member is the most
important measure for residual load carrying capacity.
Assuming a damage population PAj, it is to be expected that
topology optimization will exploit the loopholes in the dam-
age model, placing material around the intersection between
damage cubes to reach maximum potential sectional residual
of 75 %. However, we shouldn’t forget that material place-
ment is also driven by structural performance. In general, best
locations for structural members to survive damage cubes do
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Table 7 Results for designs in

Figs. 16, 18 and 20 Design Damage size Population Compliance Max Comp Active Zone Iteration

Fig. 16(a) none 202

Fig. 16(b) none 222 42

Fig. 18(a) 10 7701 239 352

Fig. 18(b) 10 108 300 405 30 88

Fig. 18(c) 10 193 304 413 42 79

Fig. 20(a) 22 5421 304 714

Fig. 20(b) 22 26 350 644 18 85

Fig. 20(c) 22 42 358 656 20 86

Fig. 21 22 42 348 643 20 80

not correspond to best locations for structural performance.
With the combined effects of performance and survival the
optimization process is most likely to split a larger member
into two or more smaller members so that only a subset of
them is affected by each damage instance. This hypothesis
will be confirmed by examples in Section 6. When more strin-
gent failure test on discrete members is desired, we recom-
mend imposing a maximum length scale constraintd_max and
define the damage cube size at 2xd_max. As shown in
Section 4.2, strict member failure test can be satisfied if we
applied full Level 2 damage population PA,. However, prac-
tically it may not be necessary to increase the computing cost
eight time (4 times for 2D structures) compared to PA;.
Limiting maximum structural member size will further force
the design to split larger members into multiple smaller mem-
bers. This effect, combined with presence of damage popula-
tion PA; or PB,, will drive robust load path redundancy. So far
our discussion has been limited to cube form damage. If spher-
ical damage is applied, PA; will leave elements between the
sphere gaps unaffected. However the second layer of damage
spheres in PB, provides complete coverage of the gaps in PA;,
and hence guarantees elimination of all elements by at least
one damage instance. Therefore PB, should be the recom-
mended choice when spherical damage is applied.

Jansen et al. (2014) introduced a damage population den-
sity essentially equivalent to FEA mesh density. It is well-
established today that minimum length scale is generally re-
quired for avoiding checkerboard and other artifacts due to too
course FEA mesh relative to feature size. Generally we can
assume that a structural member at minimum size should have
three elements across. Let’s assume that desired maximum
member size has at least 4 elements across, a minimum dam-
age cube size should be at least 4 times element size. Under

Fig. 17 Damage populations for
damage d=10: (a) PAy; (b)
Addition in PB,
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these assumptions the damage population applied by Jansen
et al. corresponds to PA; shown in Table 2, which carries 64
times damage population size of PA; or 32 times that of PB,.
In practice the damage cube size is likely to be much larger
than 4 time element size, so the discrepancy between element
density based damage population and that of PA; or PB; can
be much larger. This large gap can be seen from Example 2
shown in Section 6.2.

5 Computational scheme

In the context of finite element analysis, the optimization
problem in (3) involves P; structural cases with distinct
FEA models. The solution obviously is computationally ex-
pensive. However, since each FEA model is completely
independent from another, the analysis and sensitivity anal-
ysis can be solved entirely in parallel. Therefore, given a
large enough HPC cluster with P, computing nodes the
fail-safe optimization problem can be solved at the same
turnaround time as the base design problem without failure
modes. The fail-safe topology design framework is imple-
mented in Altair OptiStruct 14.0.220 (2016), based on the
multiple model optimization (MMO) framework available
in OptiStruct 13.0 (2014). The MMO capability is a general
feature aimed at optimizing structures of varying configura-
tions, yet sharing some common design components. An
example of MMO scenario is a car chassis platform on
which three variations—sedan, van and SUV—are built.
The MMO optimization problem involves three FEA
models with a set of independent variables for each model,
while all models share common design variables on the
chassis. In OptiStruct MMO is implemented as a MPI
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Fig. 18 Damage d=10: (a) Jansen et. al.; (b) PA;; (¢) PB,; (d) PB, with a critical damage

parallel algorithm, with the master process orchestrating the
optimization solution by assembling the analysis and sensi-
tivity results from all models involved.

The iterative scheme of fail-safe solution is illustrated in
Fig. 8. It is implemented as a MPI application with (P, + 1)
processes, with the master process also carrying out analysis
of the undamaged model for performance reference. Several
practical measures are implemented for damage zone
generation:

+ Damage zones containing any point load are eliminated to
preserve load conditions. Partial elimination of distributed
loads by a damage zone is considered acceptable.

» Ifadamage zone increases the compliance by a significant
margin compared to that of the undamaged structure at the
start, the process terminates. Such case indicates that the
structure’s function depends on a narrow pathway that
doesn’t allow redundancy to be built. The margin thresh-
old can be defined by the user and 10 times compliance
increase is set as default.

* For reducing computation cost, a threshold on the
material volume inside a damage cube can be ap-
plied to reduce the total damage population. Ten
percent threshold is used for numerical examples in
this paper. In addition for second layer of damage
cubes added by PA, or PB, we only include those
that are fully inside the structural domain.

Fig. 19 Damage populations for
damage d=22: (a) PAy; (b)
Addition in PB,

EER R
(a) (b)

For preserving load conditions one could also freeze out
a sufficiently large non-design domain around the loading
points. However the above general treatment adds robust-
ness to the software implementation. The general imple-
mentation can accommodate any level of PA and PB dam-
age population generation. However, for practical applica-
tions we recommend not to exceed PB,. Note that a MPI
application can utilize computing resources flexibly. When
the number of computing nodes N¢ is smaller than Nyp;,
several MPI processes are distributed onto each computing
node. The operating system on each node manages multiple
processes in the same manner as a computer handles multi-
ple tasks. On a homogenecous HPC cluster it is recommend-
ed to choose Nyp; as a multiple of N¢ for best computing
resource utilization. Optimally, we should use large enough
HPC cluster with (P, + 1) computing nodes for shortest run
time.

6 Numerical examples

Two 2D examples and one 3D example are provided to show
the effect of fail-safe on topology results. We use OptiStruct
default objective convergence tolerance 0.005 except
Example 2 that used a lower tolerance 0.001. For penalty
value in (4) OptiStruct has a built-in gradual increase, with
the default final penalty values at 3.0 for 2D and 4.0 for 3D
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Fig. 20 Damage d=22: (a) Jansen et al.; (b) PA;; (¢) PB;; (d) PB, with a critical damage

structures. The minimum member size (minimum length
scale) takes default value equal to three times the average
mesh size.

6.1 Example 1: rectangular plate under shear force

We aim to reproduce the fail-safe scenario discussed in the
three-bar truss example in Section 2. The 2D domain has
dimensions 100 x 50 with a thickness of 1.0, modeled with
200 % 100=20,000 quadratic elements with material proper-
ties: E=2.1x10° and v=0.3. The load is the same as for the
three-bar truss example: P=1000 is applied at the center of the
bottom edge while the upper edge is fixed. The finite element
model is shown in Fig. 9. The same volume constraint of 1000
is used, which represents a 20 % volume fraction of the design
domain. A relatively large square damage size of 25 %25 is
considered. The models corresponding to damage population
PA; are illustrated in Fig. 10. For reference purpose damage
populations PA; and PB, are shown in Fig. 11 with labels for
the damage zones. Figure 11(b) also shows that the grey zone
of PB, is eliminated because it cuts off the point load. The
optimum for this standard problem is, as expected, a two-bar
truss-like structure shown in Fig. 12(a). The fail-safe designs
with PA, and PB, damage populations are shown in Fig. 12(b)
and (c), respectively. The runs took 26, 39 and 39 iterations for
the results in Fig. 12 in the order (a), (b) and (c). To provide a
clear view on how the structure preserves certain level of

Fig. 21 Damage d=22: PB, with refined mesh (360 x 120)
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structural integrity under each damage instance, models for
damage population PA; are shown in Fig. 13 with final fail-
safe topology result. The compliances of the standard and the
fail-safe design for PA; are listed in Table 4, including the
compliances for all eight failure modes. In Table 5 the com-
pliances for damage population PB, are listed. The compli-
ance of the final standard design is 58.72, which is 23 % above
the compliance 47.60 of the two-bar truss discussed in sec-
tion 2. This difference is due to several factors: (a) 1D vs. 2D
modeling; (b) the penalty effect on the remaining semi-dense
elements. The compliances, 84.28 and 82.96, for undamaged
state under PA; and PB, are about 44 % higher than the stan-
dard solution. At the final designs there are four active failure
zones in the center (2,3,6,7) for PA;, with an additional zone
(10) becoming active for PB,. We classified active damage
zones as those yielding final compliances within 2 % of the
maximum compliance. From results in Tables 4 and 5 we
notice a maximum compliance increase of about 120 % com-
pared to the undamaged state. This is less than the 170 %
increase observed for the three-bar truss design shown in
Table 1. This seems to indicate that the increased redundancy
compared to a three-bar truss helped to improve risk
mitigation.

In order to study damage location dependency we ran the
same example for PA| and PB, with locations shifted by 1/4 of
the square size along both X and Y axes. We obtain the designs
shown in Fig. 14(a) and (c) for PA; and PB,, respectively.
Asymmetry of the design is induced by asymmetric damage
zone placement. If we enforce symmetry for topology optimi-
zation, we arrive at the designs shown in Fig. 14(b) and (d) for
PA; and PB,, respectively. The iteration numbers and compli-
ances of the four solutions are given in Table 6. Note that the
damage location dependency is amplified in this example by a
very large damage size relative to the structural dimension.
But even for this rather extreme case we can observe that
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ORCE = 3.03e-+03

=131e+03

v % X
P
RCE = 1582403 <

(a)

Fig. 22 Control arm: (a) Load case 1; (b) Load case 2

globally the results in Figs. 14 and 12 share similar design
features in terms of load path redundancy.

6.2 Example 2: rectangular plate under bending force

We consider the example from Jansen et al. (2014). The
plate has dimensions 180 % 60 with a thickness of 1.0 and
E=1.0, modeled with 180 x60=10,800 quadratic ele-
ments. The left edge of the plate is supported, and a unit
load P=1.0 is applied at the center of the right edge. The
FEA model is shown in Fig. 15. The material volume con-
straint is 40 %. For this example we ran OptiStruct with an
objective convergence tolerance 0.001. Result of the stan-
dard optimization problem without fail-safe requirement is
shown in Fig. 16(b), which is practically identical to the
result from Jansen et al. in Fig. 16(a). The compliance is
222, compared to 203 reported by Jansen et al. This shows
about 9 % result difference, which is likely due to presence
of a small amount of semi-dense elements in our result. At
final penalty p = 3.0 semi-dense material offers significantly

Fig. 23 Damage populations: (a)
PA;; (b) Addition for PB,

OMENT = 1.73e+00

ORCE = 243e+03

'ORCE = 1.26e+03

(b)

weakened stiffness. Jansen et al. used a Heaviside projec-
tion formulation that achieved very discrete result. They did
not report number of iterations in their results. Average
damage population size of first 250 iterations was men-
tioned when they studied damage population reduction ap-
proaches. Therefore we can assume that results in Jansen
et al. took more than 250 iterations to achieve. As the result
of a less steep projection formulation OptiStruct typically
results in a semi-dense layer on the boundary of structural
members in the final design. But practically applicable to-
pology results are typically obtained well below 100 itera-
tions. Note that for practical applications final topology is
usually extracted as smoothed iso-surface at a density
threshold between 0.3 and 0.5. Therefore presence of some
amount of semi-dense elements and distorted final compli-
ance value have limited practical implication as long as
clear topological representation can be achieved. We will
see in the following that as more members form under fail-
safe requirements, percentage of semi-dense elements in-
creases, and hence the gap between compliance values
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(b)

Fig. 24 Final design with casting constraint: (a) Standard; (b) Fail-safe

compared to Jansen et al. widen even further. Therefore we
should focus mostly on the topological layout of results and
the relative performance difference between undamaged
state and damaged state of the same design. Results for the
standard design and fail-safe designs are all summarized in
Table 7.

Jansen et al. considered three damage square edge
lengths d equal to 5, 10 and 22. They excluded 1/9th of
the model on the right end to preserve the load. As summa-
rized in Section 5 we implemented an automatic procedure
to exclude damage zones that eliminate point loads. Since
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d=5 is too small to make any practical impact, we only
study two cases with larger damage square sizes. For dam-
age square d=10 PA; and PB, damage populations are
shown in Fig. 17, which contain 108 and 193 squares, re-
spectively. In Jansen’s model 7701 damage squares are in-
volved. The topology results of the reference, PA; and PB,
are shown in Fig. 18(a), (b) and (c), respectively, with
Fig. 18(d) showing PB, result on one critical damage case.
We can see that all results show very similar redundant de-
sign features. Therefore damage population PA; is practi-
cally sufficient for achieving an applicable solution. The
compliance values are summarized in Table 7, including
maximum compliances under damage state. Table 7 also
include number of active damage zones that yield compli-
ances within 2 % of the maximum value. The final design is
a truss-like structure without large monolithic parts.
Without performing analyses modeling each member fail-
ure we can observe qualitatively that robust redundant load
paths exist for failure test on every member. This include
members supporting the loading point for results from this
paper. For damage population PA; the computational cost
difference between the reference and this paper is
7701/108 =71 times. Note that Jansen et al. proposed ap-
proaches to screen active damage set that could further re-
duce their base damage population up to 20 %. This doesn’t
change the above comparison from a qualitative perspec-
tive. Note also that the actual damage population reduction
would be less as they excluded coverage of 1/9th of the
model.

For damage square d=22 PA; and PB, damage popula-
tions are shown in Fig. 19, which contain 26 and 42 squares,
respectively. In Jansen’s model 5421 damage squares are in-
volved. The topology results of the reference, PA, and PB, are
shown in Fig. 20(a), (b) and (c), respectively, with Fig. 20(d)
showing PB, result on one critical damage case. Again we
observe that all results show very similar redundant design
features. Therefore damage population PA; is practically suf-
ficient for achieving an applicable solution. The compliance
values are summarized in Table 7, including maximum com-
pliances under damaged state. Table 7 also include number of
active damage zones that yield compliances within 2 % of the
maximum value. Screening failure test of every discrete mem-
ber we notice that the PA, solution doesn’t provide member
redundancy at the loading point. This implies that for design
with larger damage size yielding relatively low damage pop-
ulation it is both desirable and affordable to use PB, damage
population. The computational cost for d=22 under PB2 is
42/5421=0.8 % of that of Jansen et al. We also ran this case
with a refined mesh with 360 % 120=43,200 elements. The
result shown in Fig. 21 is very similar to the one in
Fig. 20(c), which shows that the solution is largely mesh in-
dependent. Final compliance and other values for this design
are also listed in Table 7. The refined FEA model does provide
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cleaner member definition. For this model the damage popu-
lation according to the reference approach would quadruple to
above 20,000 while PB, remains 42 in our approach.

6.3 Example 3: 3D control arm

In this example taken from OptiStruct tutorials, the di-
mensions of the model are approximately
450x550x% 110, and the model contains 327,493 tetrahe-
dron elements with material properties E=2.1x10° and
v=0.3. We apply a 30 % volume fraction constraint, as
well as single draw direction constraint for casting
manufacturing. Two load cases are considered, shown in
Fig. 22, representing different combinations of bending
and torque. The total compliance of the two load cases
is the response for the Min(Max) problem in (6). A dam-
age cube size of 50 x 50 x 50 is imposed for fail-safe. The
base layer damage population PA; contains 45 cubes
shown in Fig. 23(a), and the enrichment layer for PB,
adds 28 more cubes, are shown in Fig. 23(b). The optimal
designs for standard and fail-safe are shown in Fig. 24.
The compliances of standard and fail-safe designs are
162.3 and 193.7, and took 46 and 41 iterations, respec-
tively. The maximum compliance of damaged structure is
756.8, corresponding to four active damage zones all
close to the two vertical bearings in the back in Fig. 22.
The compliance loss is quite large at almost four times
that of the undamaged state. This can be explained by the
fact that all active failure zones cause significant weaken-
ing of the already narrow pathways to the bearings. This
clearly suggests to the designer that if fail-safe of the
structure is required additional bearings should help to
widen the pathways for load transfer. From Fig. 24 we
can see that major fail-safe features include an additional
large rib in the middle and more redundancy close to the
two vertical bearings. With 327,473 elements in this FEA
model damage population as proposed by Jansen et al.
(2014) would likely exceed 200,000 after eliminating
cubes falling partially outside the structural domain. This
would make it computationally rather infeasible.

7 Conclusion

The basic concept of populating damage squares within a 2D
structure for fail-safe topology optimization was first intro-
duced by Jansen et al. (2014). However two major shortcom-
ings existed: (1) From theoretical perspective they avoided
directly dealing with the dilemma of failure test of discrete
members that yet to emerge from topology optimization; (2)
From practical perspective the method they proposed is com-
putationally prohibitive for real applications as it involves a

damage population size at the scale of the number of elements
in the model.

In this paper we established the concept and formula-
tion for fail-safe design in the context of topology opti-
mization of a 3D structural continuum by following well
established fail-safe requirements for aircraft design. We
first established the rigorous mathematical foundation of
the fail-safe design problem as designing a structure with
presence of a given size damage randomly located within
the structural domain. We then introduced the concept of
damage population series to study the relationship be-
tween accuracy in failure test modeling and the damage
population size. We defined base damage population PA;
as containing gapless fill of damage cubes occupying the
entire structural domain, with each population level in-
crease doubling the placement density of damage cubes.
We discovered simple exact formulae for maximum ma-
terial survival rate within a representative isoperimetric
section of a structural member under a given damage
population level. Further we investigated the relationship
of structural member size and damage size and discovered
that rigorous member failure test is guaranteed with level
2 population PA, if maximum length scale of half the
damage size is imposed. This is a profound property con-
sidered that rigorous failure test guarantee is reached only
when damage population approaches infinity if maximum
length scale is equal to damage cube size.

From engineering perspective the needs for redundant load
paths are sufficiently represented by PA; damage population.
We constructed a partial set of PA, damage population PB,
that only doubles the PA; population. The added damage layer
occupies exactly the best hideout locations under PA; dam-
ages, centered at the junctures of PA; damage cubes. We iden-
tified that the partial population of a given level is superior as
it yields just a slightly higher material survival rate with a
quarter of the full level damage population. For practical ap-
plications we recommend using PA; damage population. PB,
can be a good option if damage cubes appear to be rather
coarse in the structural domain as a result of large damage size
relative the structural dimensions. Although the paper used a
Min(Max) compliance formulation to study the fail-safe de-
sign concept, the engineering case clearly defined by Niu
(1988) is a stress constrained design problem. Our implemen-
tation in OptiStruct (2016) includes stress constraints. We
chose to limit the content of this paper to the compliance based
formulation so that we can focus the study on fail-safe aspects.
Also compliance-based design can be easily reproduce by
readers, while handling of stress constraints involve compli-
cated aggregates and related parameter tuning (see, e.g., Le
etal. 2010).

As all models containing damage instances can be solved
completely in parallel, we implemented the solution as an MPI
parallel process in OptiStruct (2016). The user only needs to
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specify damage cube size in the model. The software automat-
ically populates damage cubes within the structural domain,
and then initiates the MPI solution process. HPC computing
resources are widely available today, making it possible to
solve fail-safe topology optimization containing hundreds of
damage cubes with very efficient turnaround time. We dem-
onstrated the solution with two 2D examples and one 3D
example, including a cantilever plate example from Jansen
et al. (2014). For the cantilever plate example we showed that
qualitatively identical results are obtained with roughly
1/100th damage population compared to Jansen et al.

Since fail-safe design has important practical relevance, we
hope that this paper can open up a new research direction for
further exploration. We can suggest several future research
areas:

* The fail-safe topology optimization concept and for-
mulation is developed with reference to well
established fail-safe design approach vital to aircraft
design. However, the general approach should be ap-
plicable to any industry where structural failure can
result in catastrophic accident. We only established
the basic concept with generic sphere and cube shaped
damages. In practice damage can occur in different
forms. For example a ballistic impact could cause a
penetration of a given shape and size. It should be an
interesting research topic to explore more broad dam-
age scenarios found in engineering practice of various
industries.

* From the perspective of confidence quantification of the
failure representation, we only provided quantitative study
about maximum material survival rate of a representative
member section for a given damage population. Statistics
based study on reliability of the entire structural system
under a given damage population can provide further
insights.

* Some basic problems studied herein can be interesting
for mathematicians as well. We used an engineering
approach to establish exact survival properties under a
given damage population through analyzing geometric
interactions of a representative member section with
intersecting damage cubes. It can be of theoretical
value to provide formal mathematical proofs of the
findings presented. Also it can be an interesting prob-
lem to derive geometric properties for sphere and oth-
er damage shapes. Another very challenging theoreti-
cal problem is to study the uniqueness and global op-
timality of fail-safe topology. Though the solution is
not unique under finite damage population, the limit-
ing case of infinite damage population seems unique
by definition. Mathematical insights into this complex
problem can be highly valuable from both theoretical
and practical perspectives.
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