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Abstract Traditional reliability-based design optimization
(RBDO) generally describes uncertain variables using random
distributions, while some crucial distribution parameters in
practical engineering problems can only be given intervals
rather than precise values due to the limited information.
Then, an important probability-interval hybrid reliability
problem emerged. For uncertain problems in which interval
variables are included in probability distribution functions of
the random parameters, this paper establishes a hybrid reliabil-
ity optimization design model and the corresponding efficient
decoupling algorithm, which aims to provide an effective
computational tool for reliability design of many complex
structures. The reliability of an inner constraint is an interval
since the interval distribution parameters are involved; this
paper thus establishes the probability constraint using the low-
er bound of the reliability degree which ensures a safety de-
sign of the structure. An approximate reliability analysis meth-
od is given to avoid the time-consuming multivariable optimi-
zation of the inner hybrid reliability analysis. By using an
incremental shifting vector (ISV) technique, the nested opti-
mization problem involved in RBDO is converted into an
efficient sequential iterative process of the deterministic de-
sign optimization and the hybrid reliability analysis. Three
numerical examples are presented to verify the proposed
method, which include one simple problem with explicit ex-
pression and two complex practical applications.

Keywords Reliability-based design optimization (RBDO) .

Probability-interval mixed uncertainty . Hybrid reliability
analysis . Interval analysis

1 Introduction

There are many uncertainties existing in practical engineering
problems, such as structure sizes, material characteristics and
boundary conditions. Traditional reliability analysis and de-
sign methods adopt the probability model to deal with these
uncertain variables, which include the first order reliability
method (FORM) (Hasofer and Lind 1974; Rackwitz and
Fiessler 1978; Madsen et al. 2006; Wu et al. 1990), second
order reliability method (SORM) (Breitung 1984), reliability-
based design optimization (RBDO) (Enevoldsen and
Sørensen 1994; Kuschel and Rackwitz 1997; Wu and Wang
1998; Li et al. 2001), etc. Traditional probability method gen-
erally needs a large number of samples to establish the random
distributions of uncertain variables, while in practical prob-
lems some variables are often difficult to get enough samples
since the cost and test condition are limited. Thus some as-
sumptions have to bemade for the distribution functions when
using the probability method to deal with some practical en-
gineering problems. However, the existing research (Ben-
Haim and Elishakoff 1990) has indicated that a tiny deviation
of the probability distribution might cause a large reliability
calculation error, and it will be more obvious when the failure
probability of a problem is very small (Ben-Haim 1994;
Elishakoff 1995). For example (Ben-Haim 1994), through
the reliability analysis for a cylindrical tube under uncertain
pressure load, it could be found that a 5.3 % deviation of the
pressure’s distribution parameters caused a ten times reliabil-
ity calculation error. In order to solve the above problem, in
recent years two kinds of probability-interval mixed uncertain
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models were established to deal with the parametric uncertain-
ty with limited information. In the first kind of hybrid model,
all the uncertain parameters are divided into two types: vari-
ables with sufficient samples and variables lacking samples.
The former can be treated as random variables and given pre-
cise probability distribution functions; while the latter can on-
ly be given intervals since lacking sufficient information. So
far some work (Penmetsa and Grandhi 2002; Guo and Lu
2002; Cheng et al. 2005; Du 2007; Luo et al. 2008; Wang
and Qiu 2010; Fang et al. 2014; Alibrandi and Koh 2015;
Guo and Du 2009) has been carried out for this uncertain
model. (Penmetsa and Grandhi 2002) developed a
probability-interval hybrid reliability assessment method
based on an approximate model. (Guo and Lu 2002) gave a
reliable probability measure method for structures based on
the probability and non-probability models. (Cheng et al.
2005) put forward a structural robustness design method
based on the hybrid model when probabilistic and non-
probabilistic uncertainties existed simultaneously. (Du 2007)
presented two kinds of probability-interval hybrid reliability
models, and the corresponding efficient decoupling algo-
rithms were established to deal with the nested optimization
process. (Luo et al. 2008) used a quantified measure for the
non-probabilistic reliability based on the multi-ellipsoid con-
vex model. (Wang and Qiu 2010) evaluated the reliability of
the probability and interval mixed uncertain structural system
and established the mathematical model of reliability analysis.
(Alibrandi and Koh 2015) presented a novel procedure based
on FORM; and the probability-interval hybrid reliability prob-
lemwas decoupled to several reliability problems in which the
limit state functions were defined only in terms of the random
variables. In the second kind of probability and interval hybrid
model, the uncertain variables are all treated as random vari-
ables, while some crucial distribution parameters can only be
given variation intervals since the lack of samples. This model
was first introduced to structural analysis by (Elishakoff and
Colombi 1993, 1994), and the worst response of a random
vibration structure was investigated. (Zhu and Elishakoff
1996) studied a periodic finite-span beam subjected to the
stochastic acoustic pressure with bounded parameters, and
formulated the transverse displacement and the bending mo-
ment responses of the structure. (Qiu et al. 2008) introduced
an interval approach to conventional reliability theory to ob-
tain the system failure probability interval. (Jiang et al. 2011,
2012) proposed several efficient hybrid reliability analysis
methods by combining probability and non-probability
models. (Zhang et al. 2013) constructed a probability model
for uncertainty structures on the basis of limited information
and proposed a quasi-Monte Carlo simulation methodology to
compute the bounds of structural failure probability.

All the above mentioned researches were mainly concen-
trated on reliability assessment of the probability-interval hy-
brid models, in which the upper and lower bounds of

reliability degree or the failure probability were evaluated
for the structure with mixed uncertainties. Nevertheless, there
are few researches on structural reliability optimization design
for the probability-interval mixed uncertain problem. The
RBDO can take full consideration of the influence of paramet-
ric uncertainty on constraints, thus it can ensure that the ob-
tained optimal solutionmeets the reliability request. It plays an
important role in safety design of engineering structures and
products. RBDO has presently become an important research
area in the field of structural reliability. A series of effective
methods of RBDO has been developed, which include the
single-loop decoupling method (Du and Chen 2004; Liang
et al. 2004; Cheng et al. 2006; Shan and Wang 2008; Chen
et al. 2013) and the response-surface-based method (Youn and
Choi 2004; Kim 2008; Shan andWang 2009; Zhuang and Pan
2012; Li et al. 2013), etc. Traditional RBDO methods are
generally based on the probability model which requires a
large number of samples to establish precise probability dis-
tribution functions of the uncertain parameters. Thus by intro-
ducing the probability-interval mixed uncertainty modeling
technique into the RBDO problem, it seems hopeful and
promising to significantly reduce the dependence of the tradi-
tional RBDO on samples and hence greatly expand the prac-
ticability of RBDO method in many complex engineering
problems. However, there are so far few researches on the
probability-interval hybrid reliability-based design optimiza-
tion (HRBDO). (Du and Sudjianto 2003; Du 2012) used the
biggest failure probability to measure the structural reliability
under mixed uncertainties, and a corresponding single-layer
decoupling algorithm was proposed. (Kang and Luo 2010)
presented a RBDO approach with a probability and convex
set hybridmodel. These works are all based on the first kind of
hybrid model, and on the best knowledge of the authors there
are still no relevant studies related to the second kind of hybrid
model.

Based on the second kind of probability-interval hybrid
model, the paper thus aims to develop a new RBDO model
and corresponding efficient solution algorithm such that pro-
vide an effective reliability design tool for many complex
engineering problems. The remainder of this paper is orga-
nized as follows. General concept of the RBDO problem with
precise distribution parameters is introduced in Section 1.
Section 2 formulates the hybrid RBDO model as well as the
solution algorithm. Section 3 presents three numerical exam-
ples to demonstrate the validity of the proposed method.
Concluding remarks are drawn in section 4.

2 Traditional RBDO with precise probability
distributions

There generally exists an amount of uncertainty in practical
engineering problems such as loads, material parameters,
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geometrical sizes, etc. The result of a traditional deterministic
optimization may be unsafe if we do not take the uncertainty
into account. RBDO can fully take into account the impact of
the uncertain parameters on the constraints in the optimization
process, and whereby enables the optimization results to meet
the requirements of reliability. A conventional RBDO prob-
lem with precise distributions can generally be formulated as
follows (Du and Chen 2004):

min
d;μX

f d;μX;μPð Þ
s:t: Prob g j d;Zð Þ≥0

� �
≥Rt

j; j ¼ 1; 2;…; ng

Z ¼ X;P½ �; dl ≤d≤du;μl
X≤μX≤μu

X

ð1Þ

where f and gj are objective function and the j -th constraint,
respectively; ng is the number of constraints; d denotes the nd -
dimensional deterministic design vector; X denotes the nX -
dimensional random design vector. P denotes the nP -
dimensional random parameter vector; μX and μP denote the
mean vectors of X and P, respectively. Z denotes the nZ -
dimensional random vector consisted ofX and P, and its mean
vector is μZ; The superscripts l, u denote the range of the
variable values. In practical engineering problems, f and gj
are generally nonlinear implicit functions. The former is cor-
related with d, μX and μP, and the latter is correlated with d,X
and P. Prob denotes the probability of the constraint satisfac-
tion, which is also called the reliability degree; Rj

t is the target
reliability degree of the j -th constraint.

Assuming that X and P are independent to each other, for
an arbitrary d and μX, the reliability degree of the j -th con-
straint can be stated as:

Prob g j Zð Þ≥0
� �

¼
Z

g j ≥0
hZ Zð ÞdZ ð2Þ

where hZ(Z) represents the joint probability density function
of Z.

At present, FORM (Hasofer and Lind 1974; Rackwitz and
Fiessler 1978; Madsen et al. 2006; Wu et al. 1990) is the most
common method to conduct the reliability analysis of the con-
straint. Its basic idea is to transform the constraint function
from the original space (Z space) to the standard normal space
(U space), and then establish the linear approximation of the
constraint function at the most probable failure point (MPP)
for efficiently calculating the reliability. The transformation of
the random variables from the Z space to the U space can be
formulated as (Madsen et al. 2006):

Φ Uið Þ ¼ FZi Zið Þ ; i ¼ 1 ; 2 ; … ; nZ
Ui ¼ Φ−1 FZi Zið Þð Þ; Zi ¼ F−1

Zi
Φ Uið Þð Þ ð3Þ

where FZi and F−1
Zi

denote the cumulative distribution func-

tion and its inverse function of Zi, respectively. Φ and Φ− 1 are
the standard normal cumulative distribution function and its

inverse function, respectively.U denotes the vector ofZ in the
standard normal space. Then, the probability constraints in
Eq. (1) can be rewritten as:

Prob g j d;Zð Þ≥0
� �

¼
Z

G j ≥0
hU Uð ÞdU≥Rt

j

Rt
j ¼ Φ ‐βt

j

� �
; j ¼ 1 ; 2 ; … ; ng

ð4Þ

where Gj is the constraint function of gj in the U space; hU is
the joint probability density function of the standard normal
vector U; βj

t denotes the target reliability index of the j -th
constraint.

Reliability index approach (RIA) (Hasofer and Lind 1974;
Rackwitz and Fiessler 1978) is usually adopted to deal with
Eq. (4) among the existing FORMs. In RIA, the reliability
index of the jth constrain, βj, denotes the minimum distance
between the limit-state surface and the original point in the U
space, which can be calculated by:

β j ¼ min
U

Uk k
s:t: Gj Uð Þ ¼ 0

ð5Þ

Its optimal solution UMPP, j and reliability index βj
* can be

obtained using some well established algorithms such as the
HL-RF iterations (Hasofer and Lind 1974; Rackwitz and
Fiessler 1978) or the improved HL-RF iterations (iHL-RF)
(Madsen et al. 2006). If βj≥βjt is true, it means that the con-
straint satisfies the reliability requirement.

Based on the above analysis, RBDO uses probabilistic con-
straints to establish a direct link between the uncertain vari-
ables and the design point, and the constraint reliability under
uncertainty should be evaluated for each involved design
point. Thus, a two-layer nested optimization will be involved
when solving the RBDO problem. In the outer layer, the op-
timization of design variables requires calling the reliability
analysis in the inner layer repeatedly, which generally leads to
a very low computational efficiency. So far, a series of
decoupling strategies have been proposed to solve the above
mentioned nested optimization, such as the sequence optimi-
zation method and reliability analysis (SORA) (Du and Chen
2004), the single-loop method (Liang et al. 2004), the sequen-
tial approximate programming method (Cheng et al. 2006),
etc. The fundamental principle of these methods is to separate
the reliability analysis from the design optimization, and
whereby construct a sequence of efficient iterations.

3 The hybrid RBDO method with interval
distribution parameters

In practical RBDO problems, we often encounter a situation
that some important distribution parameters (such as the mean
value, standard deviation, etc.) of the random variables can
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only be given variation intervals rather than deterministic
values since lacking sufficient experimental data. As thus,
the interval distribution parameters are included in the random
variables Z in Eq. (1). In this paper, we use an nY -dimensional
interval vector Y ¼ Y 1; Y 2;…; YnYð Þ to represent all the in-
terval distribution parameters existing in the random vectorZ:

Y i∈ YL
i ; Y

U
i

� �
; i ¼ 1; 2;…; nY ð6Þ

where Yi
L and Yi

U are the lower and upper bounds of the j -th
interval distribution parameter respectively. Thus the con-
straint function of gj can be rewritten as gj(d,Z,Y). For con-
venience of analysis, we assume that each random variable Zi
contains a single interval variable Yi at most in its distribution
function.

The reliability of the constraint then can be represented as
Prob(gj(d,Z,Y)≥0). As shown in Fig. 1, the limit-state sur-
face defined in gj(d,Z,Y) = 0 will divide the Z space into a
feasible domain and a failure domain. For each specific Y′
within the intervals the gj(d,Z,Y′) = 0 will be a limit-state
surface, and hence after synthesizing all the possible cases of
Y′, gj(d,Z,Y) = 0 actually is no longer a surface but a strip
composed of two boundary surfaces max

Y
g j d;Z;Yð Þ ¼ 0 and

min
Y

g j d;Z;Yð Þ ¼ 0. Then, the reliability of the constraint

also has a lower bound Prj
L and an upper bound Prj

U (Du
2007; Jiang et al. 2011):

PrUj ¼ Prob max
Y

g j d;Z;Yð Þ≥0
� �

ð7Þ

PrLj ¼ Prob min
Y

g j d;Z;Yð Þ≥0
� �

ð8Þ

For a practical RBDO problem, the maximal failure prob-
ability is generally what we most care about. Thus in order to
ensure a safety design, this paper selects the minimal reliabil-
ity (or the maximal failure probability) to measure the reliabil-
ity of each constraint, and whereby creates a hybrid RBDO
model as follows:

min
d;μX

f d;μX;μPð Þ

s:t: PrLj ¼ Prob min
Y

g j d;Z;Yð Þ≥0
� �

≥Rt
j; j ¼ 1; 2;…; ng

Z ¼ X;P½ �; dl ≤d≤du; μl
X≤μX≤μu

X;
Y i∈ Y L

i ; Y
U
i

� �
; i ¼ 1; 2;…; nY

ð9Þ

3.1 Hybrid reliability analysis of the constraints

For a design point [d,μX], the reliability of gj can be expressed
as:

Prob min
Y

g j d;Z;Yð Þ≥0
� �

≥Rt
j ð10Þ

When the reliability analysis is based on RIA, the follow-
ing optimization problem needs to solve (Jiang et al. 2011):

β j ¼ min
U

Uk k
s:t: min

Y
Gj U;Yð Þ ¼ 0

Y i∈ YL
i ; Y

U
i

� �
; i ¼ 1; 2;…; nY

ð11Þ

Obviously, Eq. (11) is a two-layer nested optimization
problem. The inner-layer optimization is the interval analysis:

Gj U;Y*
j

� �
¼ min

Y
Gj U;Yð Þ

s:t: Y i∈ YL
i ; Y

U
i

� �
; i ¼ 1; 2;…; nY

ð12Þ

And the outer-layer optimization is the reliability analysis:

β j ¼ min
U

Uk k
s:t: Gj U;Y*

j

� �
¼ 0

ð13Þ

According to the authors’ recent work (Jiang et al. 2011),
for the hybrid reliability problem formulated in Eq. (11), the
maximal failure probability appears on a certain boundary
combination of the interval vector when the distribution func-
tion of a random variable contains only one interval parameter.
Taking nY=2 as an example, there are a total of four boundary
combinations, Y1 = (Y1

L,Y2
L),Y2 = (Y1

L,Y2
U),Y3 = (Y1

U,Y2
L) and

Y4 = (Y1
U,Y2

U), and the maximal failure probability Yj
* must

be one of these four cases. For a more general case, the bound-
ary combinations of interval variables Yi, i=1,2,…,nY have
2nY cases. In theory, the reliability analysis can be carried
out for all the cases:

β j ¼ min
U

Uk k
s:t: Gj U;Yið Þ ¼ 0

)
i ¼ 1; 2;…; 2nY ð14Þ

Each Yi has a corresponding reliability index βj; the mini-
mum βj

* and the correspondingYj
* represent the worst reliability

situation of the constraint. Then, the Eq. (10) can be changed to:

0

2Z

min , , 0jg
Y

d Z Y

1Z

max , , 0jg
Y

d Z Y

Failure Domain

Feasible Domain

Fig. 1 Limit-state strip caused by the interval variables
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Prob g j d;Z;Y*
j

� �
≥0

� �
≥Rt

j ð15Þ

Though the above approach can be used to deal with the
nested optimization in Eq. (11), will still need to solve many
times of multi-variable optimization problems in Eq. (14) and
hence require much computational cost. In order to further
improve computational efficiency, an approximation method
is given here to solve Eq. (14) more efficiently. For a particular
boundary case Yi of the interval parameters, the reliability
index βj of gj denotes the minimum distance between the
limit-state surface Gj(U,Yi) =0 and the original point U0 as
shown in Fig. 2. According to the fundamental principles of
RIA (Madsen et al. 2006), Eq. (14) can be expressed as:

Gj −β j
∇Gj UMPP; j;Yi

� 	
∇Gj UMPP; j;Yi

� 	

 

 ;Yi

 !
¼ 0; i ¼ 1; 2;…; 2nY

ð16Þ
where ∇Gj(UMPP, j,Yi) represents the gradient vector of the
constraint function with respect to the random variables. For
a constraint that does not yet meet the requirement of reliabil-
ity, the distance between UMPP, j and the mean value point U0

is relatively close. Thus the contour of the constraint function
Gj(U,Yi) =Gj(U0,Yi) generally has a very similar shape as
Gj(U,Yi) = 0. Therefore in Eq. (16) we can use the gradient
vector ∇Gj(U0,Yi) substitute the actual gradient vector
∇Gj(UMPP, j,Yi), and whereby an approximate MPP ŨMPP, j

and corresponding reliability index ~β j can be obtained by

solving the following equation:

Gj −~β j
∇Gj U0;Yið Þ
∇Gj U0;Yið Þ

 

 ;Yi

 !
¼ 0; i ¼ 1; 2;…; 2nY ð17Þ

For a certain Yi, the above equation is a root-finding prob-
lem of the nonlinear equation with only one unknown variable
~β j, which can be efficiently solved by the well-known

Newton iteration method (Burden and Faires 1985):

~β j

� �
kþ1

¼ ~β j

� �
k
þ ∇Gj U0;Yið Þ

 



∇Gj U0;Yið Þ

Gj − ~β j

� �
k

∇Gj U0;Yið Þ
∇Gj U0;Yið Þ

 



 !

G
0
j − ~β j

� �
k

∇Gj U0;Yið Þ
∇Gj U0;Yið Þ

 



 !

ð18Þ
where k represents the iteration step. Generally, the solution of
the above root-finding problem is much more efficient than
the multi-variable optimization in Eq. (14).

3.2 The decoupling strategy

Through the above method, the computational cost of the
inner-layer hybrid reliability analysis can be significantly re-
duced, while on the whole the nested optimization problem of
the hybrid RBDO still exists. To further enhance the calcula-
tion efficiency of the optimization process, the strategy of
incremental shifting vector (ISV) is introduced here to estab-
lish a more efficient algorithm for the hybrid RBDO. The ISV
technique is a new decoupling algorithm for RBDO which is
proposed by the authors recently (Huang et al. 2016). Just like
the existing decoupling algorithms (Du and Chen 2004; Liang
et al. 2004), the basic idea of ISV is also to convert the nested
optimization into a sequential iterative process of the design
optimization and the reliability analysis. During the stage of
design optimization, the original uncertain constraints are
transformed to deterministic constrains, and a new design
point is obtained by solving this deterministic optimization
problem. In the reliability analysis stage, a reliability assess-
ment is implemented on the new design point, based on which
the deterministic design optimization can be also created for
the next iteration. The design optimization and the reliability
analysis are alternately executed until convergence.

As shown in Fig. 3, the core of ISV is to transform the
probabilistic constraint in Eq. (15) into a deterministic con-
straint, through constructing a shifting vector. For convenience
of illustration, we assume that the constraint gj contains only

, ,j i j iG G 0U Y U Y
0U

j

j , 0j iG U Y
MPP, jU

MPP, jU
Feasible Domain

2
U

1
U

Fig. 2 The calculation of MPP

Prob g , 0j j j
* tRZ Y

0jg Zµ

Feasible Domain

1
ZFailure Domain

jS
0j jg Zµ S

2Z

0
Fig. 3 Shifting vector of the uncertain constraint
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Z=[X,P] but no d. Firstly, the random vector is replaced by the
mean vector μZ, namely its uncertainty is not considered; the Z
space is then divided into two domains by the constraint bound-
ary gj(μZ) =0, the feasible domain gj(μZ)≥0 and the failure
domain gj(μZ)<0. Then, the consideration of uncertainty will
result in the decrease of the feasible domain, and its probabilistic
constraint boundary Prob{gj(Z,Yj

*)≥0}=Rjt will be located in-
side the feasible domain gj(μZ)≥0. In the ISV technique, the
approximate equivalent boundary of the probabilistic constraint
is obtained through moving gj(μZ) =0 to gj(μZ−Sj) =0 by a
vector Sj. In the hybrid RBDO algorithm of this study, the
shifting vector Sj

(k) of the k -th iteration step is calculated
by combining an increment of shifting vector ΔSj

(k)

and the shifting vector in the previous iteration step:

S kð Þ
j ¼ S k−1ð Þ

j þΔS kð Þ
j ð19Þ

Apparently, the movement of the constraint boundary is
incremental since the shifting vector is just an adjustment for
the previous iteration.

Figure 4 is used to illustrate the calculation of the shifting
vector increment. For the convenience of description, the en-
tire analysis process is executed in the U space, and SU,j

(k) de-
notes the k-th shifting vector in U space. The curve
Gj(U−SU,j(k− 1),Yj

* (k)) = 0 is the equivalent constraint boundary
of the previous iteration, and the left side of this curve is
assumed to be feasible domain where the current design is
located. It is worth mentioning that the corresponding con-
straint Gj in the U space is also related to k since the updating
of the mean vector μZ

(k) in original space. Taking parametric
randomness into account, the random space of the design
point is a circle centered at the original point, and the radius
of the circle is the target reliability index βj

t. When the con-
straint boundary Gj(U−SU,j(k− 1),Yj

* (k)) = 0 passes through this
circle, it means that the current design does not meet the reli-
ability requirement since the actual reliability index βj

* (k) of

the current design is less than the target reliability index βj
t,

and their difference is denoted asΔβj
(k) =βj

t−βj* (k). To further
improve the reliability, a small adjustment is required by mov-
ing the constraint boundary towards the direction of the feasi-
ble domain. The equivalent constraint boundary then should

Ye s

,
min ( , , )

s . t . ( , ) 0 , 1, 2, ,

[ , ], ,

k
gjj

l u l u

f

g j = ... n
X

X Pd µ

Z

XXXPXZ

d µ µ

d µ S

µ µ µ d d d µ µ µ

converges ?

End

No

(0)

(0 ) (0 )

0, 0

Caculating [ , ] by Eq .(23)

jk

X

S

d µ

( ) ( )[ , ]k k
Xd µ

: = +1k k

Starting point

=1, 2, ..., gj n

* *
Caculating , by Eq .(17)

k k
j jY

* tk
j j

( )Caculating by Eq.(21)k
jS

No

( )k
jS 0

Yes

( ) ( 1) ( )S S Sk k k
j j j

Fig. 5 Flowchart of the proposed method
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k
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*
, 0
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j jG U Y

1U

1U
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Fig. 4 The calculation of the shifting vector increment
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Fig. 6 A cantilever beam (Liang et al. 2004)
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be moved Δβj
(k) towards the gradient direction of the MPP of

the last iteration step. The shifting vector increment thus can
be constructed through:

ΔS kð Þ
U; j ¼ βt

j−β
* kð Þ
j

� �
−

∇Gj U kð Þ
MPP; j;Y

* kð Þ
j

� �
∇Gj U kð Þ

MPP; j;Y
* kð Þ
j

� �


 



0
B@

1
CA ð20Þ

As mentioned before, the gradient direction of U0 and
UMPP, j
(k) are generally close to each other. For the purpose of

decreasing the calculation amount, we use the gradient vector
of Gj at U0 to approximately substitute the gradient vector at
UMPP, j
(k) , and hence Eq. (20) can be changed to:

ΔS kð Þ
U; j ¼ βt

j−β
* kð Þ
j

� �
−

∇Gj U0;Y
* kð Þ
j

� �
∇Gj U0;Y

* kð Þ
j

� �


 



0
B@

1
CA ð21Þ

where βj
* (k) and Yj

* (k) are obtained through the hybrid reliabil-
ity analysis. Transforming ΔSU,j

(k) to the original space by
Eq. (3), the required increment ΔSj

(k) of the shifting vector
can be obtained.

In the k -th iteration step, after calculating the shifting vec-
tor increments for all the constraints, the shifting vector Sj

(k)

can be set. Then, the uncertain constraints in Eq. (9) can be
transformed to the deterministic constraints, and whereby a
deterministic design optimization can be formulated:

min
d;μX

f d;μX;μPð Þ
s:t: g j d;μZ−S

kð Þ
j

� �
≥0; j ¼ 1; 2;…; ng

μZ ¼ μX;μP½ �; dl ≤d≤du;μl
X≤μX≤μu

X

ð22Þ

The constraint hybrid reliability analysis and the determin-
istic design optimization then can be carried out alternately
until convergence.

As can be observed, after using the ISV technique to solve
the hybrid RBDO problem, the shifting vector is updated
based on its historical information. Therefore the adjustment
of the equivalent constraint boundary is incremental. This
strategy ensures that the equivalent constraint boundary will
not be changed drastically between two consecutive iteration
steps and the numerical oscillation during the iteration process
could be well avoided.

3.3 The computational procedure

As shown in Fig. 5, the flowchart of the proposed hybrid
RBDO algorithm can be summarized in the following steps:

Step 1: Solve the following deterministic optimization
problem to obtain an initial point [d(0),μX

(0)] and set
Sj
(0) =0:

min
d;μX

f d;μX;μPð Þ
s:t: g j d;μZð Þ≥0 ; j ¼ 1; 2;…; ng

μZ ¼ μX;μP½ �; dl ≤d≤du;μl
X≤μX≤μu

X

ð23Þ

Step 2: Carry out the hybrid reliability analysis of the
constraints and set k :=k+1. Based on the optimal solu-
tion obtained in the last iteration, Eq. (17) is adopted to
execute the hybrid reliability analyses for the constraints.
Then, the interval vector boundary combinationYj

* (k) and
the corresponding reliability index βj

* (k) are obtained.

Table 1 Random variables and
distributions of the cantilever
beam

Variables Symbol Mean Standard deviation Distribution type

Section width (mm) w μw [0.05,0.07] Normal

Section length (mm) t μt [0.05,0.07] Normal

Vertical load (lb) F1 [950,1050] 100 Normal

Horizontal load (lb) F2 [475,520] 50 Normal

Allowable yield stress (psi) Γ0 40000 [1800,2200] Normal

Young’s Modulus (psi) E 29000000 [1305000,1595000] Normal

Table 2 Optimization results of
the cantilever beam Results Symbol HRBDO_I HRBDO_II HRBDO_III SORA

Design optimum (mm) μw,μt 2.299, 4.214 2.327, 4.164 2.301,4.213 2.251, 4.125

Objective (mm) f(μw
* ,μt

*) 9.682 9.689 9.693 9.285

Reliability index β1
*,β2

* 3.0, 3.3 3.0, 3.4 3.0, 3.4 2.5, 2.7

Functional evaluation Nf 2084 10384 423840 465
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Step 3: Calculate the shifting vector. The reliability is
judged for all the constraints. If βj

* (k)≥βjt, ΔSj
(k) is set to

be 0; otherwise,ΔSj
(k) can be calculated through Eq. (21),

and a new shifting vector is calculated by Sj
(k) =Sj

(k− 1) +
ΔSj

(k).
Step 4: Set up and solve the design optimization problem
in Eq. (22) to obtain an optimal solution [d(k),μX

(k)] of the
current iteration step.
Step 5: Repeat 2–4 until all the increments of shifting
vectors are equal to zero and simultaneously the follow-
ing condition is satisfied:

f d kð Þ;μ kð Þ
X ;μP

� �
− f d k−1ð Þ;μ k−1ð Þ

X ;μP

� �
f d kð Þ;μ kð Þ

X ;μP

� �
������

������≤ε ð24Þ

where ε is a given error limit.
Step 6: Output the optimal solution [d*,μX

* ] = [d(k),μX
(k)].

4 Numerical examples and discussions

4.1 A cantilever beam

A cantilever beammodified from literature (Liang et al. 2004)
is considered, as shown in Fig. 6. The beam with a length
L=100 in is subjected to a vertical load F1 and a lateral load
F2. The width w and thickness t of the beam’s cross-section
serve as the design variables and the goal is to minimize the
cross-sectional area. Two failure modes are considered, name-
ly the stress at the fixed end of the beam should be less than an
allowable yield stress Γ0 and the displacement of the free end
of the beam should be less than an allowable displacement
D0=2.5 in. The structure sizes w and t, the loads F1 and F2,
the allowable yield stress Γ0, and the Young’s modulus E are
all random variables as shown in Table 1, and it can be found
that some parameters of these variables’ probability distribu-
tions are only given intervals. A hybrid RBDO problem is
then created as:

min
μX

f μXð Þ ¼ μw⋅μt

s:t: PrLj ¼ Prob g j X;P;Yð Þ≥0
n o

≥Φ ‐βt
j

� �
; βt

j
¼ 3:0; j ¼ 1; 2

g1 X;P;Yð Þ ¼ Γ 0−
600

wt2
F1 þ 600

w2t
F2

� �

g2 X;P;Yð Þ ¼ D0−
4L3

Ewt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1

t2

� �2

þ F2

w2

� �2
s

X ¼ w; tð Þ; P ¼ F1; F2;Γ 0;Eð Þ; Y ¼ σw;σt;μF1
;μF2

; σΓ 0 ; σE
� 	

0 in < μw < 5:0 in; ; 0 in < μt < 5:0 in;

ð25Þ

To investigate the properties of our hybrid RBDO method
better, we construct two approaches under our ISV computa-
tional framework. The only difference of these two ap-
proaches is that the first approach uses the approximate

Iterations

f (kg)

7.50

10.00

9.00

8.50

8.00

9.50

1 2 3 4 

HRBDO_I

HRBDO_II

SORA

Fig. 7 The iteration process for the cantilever beam problem

(a) Low-speed offset collision (b) High-speed frontal collision
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problem considering both the
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reliability analysis in Eq. (17) at each iteration step while the
second one uses the conventional reliability analysis in
Eq. (14), and they are called HRBDO_I and HRBDO_II, re-
spectively. Furthermore, to verify the accuracy of the pro-
posed method, a double-loop method called HRBDO_III is
used to obtain the reference solutions. The basic principle of
HRBDO_III is that the outer layer uses the genetic algorithm
(Roger 2000) to conduct the design optimization, while the
inner layer carries out the precise hybrid reliability analysis
(Jiang et al. 2011). What’s more, to illustrate the necessity to
consider the mixed uncertainty, SORA (Du and Chen 2004) is
also adopted for the conventional RBDO analysis in which the
interval uncertainties of the distribution parameters are
neglected and they are replaced directly by their midpoints.
All design optimization problems during iteration processes
are solved by the sequential quadratic programming (Roger
2000). A start point for the four methods is set to
μX
start = (2.047mm, 3.746mm), and the optimization results

and iteration processes are shown in Table 2 and Fig. 7.
Firstly, it can be found that HRBDO_I and HRBDO_II both
converge to the stable solutions only after a small number of
iterations, which are very close to the reference solution from
HRBDO_III, while their efficiency is far superior to that of
HRBDO_III. Secondly, by comparing HRBDO_I with
HRBDO_II, it shows that the introduction of the approximate
reliability analysis does not cause an obvious error for the
overall analysis, while significantly improves the efficiency
of the optimization process. The number of the constraint
functional evaluations of HRBDO_I is 2084, and it is about
only one-fifth that of HRBDO_II which is 10384. Finally,
through comparing the solutions from HRBDO_I and
SORA, an obvious difference can be found. If we conduct
the hybrid reliability analysis (Jiang et al. 2011) to the solution
of SORA considering the interval distribution parameters, two
reliability index intervals for the constraints, [2.5, 3.1] and
[2.7, 3.3], can be obtained. As can be observed, the minimal

Table 3 Random variables and
distributions in the vehicle
crashworthiness problem

Variable Symbol Mean Standard deviation Distribution type

Frontal bumper thickness (mm) X1 μX 1

[0.04,0.06] Normal

Crash box inner plate thickness (mm) X2 μX 2

[0.04,0.06] Normal

Crash box outer plate thickness (mm) X3 μX 3

[0.04,0.06] Normal

F.L. beam inner plate thickness (mm) X4 μX 4

[0.04,0.06] Normal

F.L. beam outer plate thickness (mm) X5 μX 5

[0.04,0.06] Normal

Table 4 Response surface models of the four constraint functions in the vehicle crashworthiness problem

Constraint function Response surface

g1 =E0−E E ¼ 109:428X 1 þ 446:816X 2 þ 292:161X 3−783:119X 4−1455:022X 5

−78:912X 1X 2− 179:822X 1X 3 þ 55:735X 1X 4 þ 68:927X 2X 3 þ 97:546X 1X 5

−99:046X 2X 4−88:414X 2X 5−35:461X 3X 4 þ 52:259X 3X 5 þ 185:717X 4X 5

þ 14:85X 2
2 þ 134:994X 2

4 þ 275:308X 2
5 þ 12779:336

g2 = ā0− ā a ¼ 9:449X 2−1:832X 1 þ 11:69X 3 þ 10:636X 4 þ 6:679X 5−1:232X 1X 2

−1:329X 1X 4 þ 1:106X 2X 3−0:914X 1X 5−1:313X 2X 5−3:759X 3X 4

−1:1978X 3X 5 þ 1:225X 2
1−2:366X

2
2−1:353X

2
3−0:906X

2
4 þ 16:596

g3 = I0
H− IH

IH ¼ 37:824X 2
1 þ 12:634X 1X 2−21:495X 1X 3−20:773X 1X 5−135:479X 1

þ 25:779X 2
2−15:08X 2X 4 þ 8:781X 2X 5−123:145X 2 þ 29:194X 2

3
þ 7:606X 3X 4−65:554X 3 þ 31:565X 2

4−15:874X 4X 5−93:243X 4

−14:968X 2
5 þ 106:945X 5 þ 643:436

g4 = I0
L− IL

IL ¼ 51:820X 1−9:242X 2 þ 8:394X 3−79:998X 4−64:932X 5

−5:156X 1X 2 þ 6:211X 2X 3 þ 14:747X 1X 5−5:878X 2X 4−9:894X 2X 5

−8:811X 3X 4−2:477X 3X 5 þ 7:152X 4X 5−15:196X 2
1 þ 6:761X 2

2
þ 20:438X 2

4 þ 7:471X 2
5 þ 275:327
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reliability indexes, β1
* =2.5 and β2

* =2.7, will obviously violate
the target reliability indexes β1

t =β2
t =3.0. It further indicates

that an unsafe design might be achieved in practical RBDO
problems if we simply use a deterministic value to deal with
the interval distribution parameter.

4.2 A vehicle crashworthiness problem

Crashworthiness design is playing an important role in current
product development of vehicles. Its final design exerts great
effects not only on the overall performance of an automobile
but also the passengers’ life safety. Vehicle crashworthiness
can be divided into a variety of forms, such as low-speed
offset collision and high-speed frontal collision and so on. In
order to meet the requirements of vehicle’s performance such
as crashworthiness and lightweight, the structural optimiza-
tion design is generally required. As shown in Fig. 8, a vehicle
crashworthiness problem modified based on the literature
(Jiang and Deng 2014) is investigated in this paper, in which
its high-speed and low-speed crashworthiness will be both
considered. The design variables X1−X5 are the thicknesses
of the frontal bumper, the inner plate of crash box, the outer
plate of crash box, the inner plate of frontal longitudinal and
the outer plate of frontal longitudinal, respectively. The total
massM of the five parts is used as the objective function. Two
vehicle crashworthiness cases serve as the constraints, which

are the 15 km/h low-speed offset collision and the 56 km/h
high-speed frontal collision. In the former case, the vehicle
body should be protected because passengers are generally
safe enough. In other words, the fee of the damage repair
should be reduced by decreasing the deformation of the front
longitudinal as much as possible. Hence, the total energy ab-
sorption E of the inner and outer plates of the front longitudi-
nal should be less than a given value E0. In the high velocity
impact case, the safety of passengers is mainly concerned
about. Thus, the mean integration acceleration of the left back-
seat, ā, the intrusions of the two upper and lower mark points
located in the engine, IH and IL, are required to be less than the
given values ā0, I0H, I0L, respectively. The target reliability in-
dexes of the four constraints are set to βj

t = 2.0, j=1, 2, 3, 4.
The random variables and their probability distributions are
shown in Table 3, in which some distribution parameters
are only given intervals since lacking information. A hy-
brid RBDO problem thus can be created in the following
form:

min
μX

M μXð Þ ¼ 2:088μX 1
þ 0:404μX 2

þ 0:22μX 3
þ 1:2μX 4

þ 0:887μX 5

s:t: PrLj ¼ Prob g j X;Yð Þ≥0
� �

≥Φ −βt
j

� �
; βt

j
¼ 2:0; j ¼ 1; 2; 3; 4

g1 ¼ E0−E X;Yð Þ; g2 ¼ a0−a X;Yð Þ;
g3 ¼ IH0 −I

H X;Yð Þ; g4 ¼ IL0−I
L X;Yð Þ

Y ¼ σX; a0 ¼ 40 g; E0 ¼ 300 J; IH0 ¼ 350 mm; IL0 ¼ 200 mm
2:0mm≤μX 1

≤3:0mm; 1:0mm≤μX 2
≤3:0mm; 1:0mm≤μX 3

≤2:5mm;
1:5mm≤μX 4

≤3:0mm; 1:0mm≤μX 5
≤3:0mm

ð26Þ

(a) Low-speed offset collision (b) High-speed frontal collision

Fig. 9 FEMs for the vehicle
crashworthiness problem

Table 5 Accuracy test of the response surface models in the vehicle
crashworthiness problem

Test point of x Relative error from the FEMs

E(X) ā(X) IH(X) IL(X)

(2.08,2.63,1.73,2.80,1.70) 0.92 % 2.45 % 3.90 % 4.71 %

(2.44,2.74,1.64,2.37,2.03) 1.20 % 2.45 % 1.95 % 4.78 %

(2.11,1.17,1.93,2.32,1.80) 2.09 % 1.69 % 1.21 % 2.88 %

(2.96,1.80,2.06,1.72,1.15) 0.25 % 4.50 % 2.02 % 0.30 %

(2.00,1.52,1.58,2.78,1.48) 4.51 % 1.85 % 0.48 % 1.17 %

(2.77,2.60,1.54,2.43,1.25) 4.72 % 0.56 % 0.66 % 1.77 %

M (kg)

11.50

10.50

10.00

9.50

11.00

Iterations

Fig. 10 The iteration process for the vehicle crashworthiness problem
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Two finite element models (FEMs) are created to analyze
the low-speed and high-speed collision cases. As shown in
Fig. 9, each FEM has 755 components, 998220 nodes and
977742 elements. To promote the subsequent optimization
efficiency, four second-order polynomial response surface
models are created for the constraints based on 65 samples,
as shown in Table 4, and they will be used to replace the time-
consuming FEMs. To test their accuracy, six points are ran-
domly selected in the design space and the results of the re-
sponse surfaces and the FEMs are compared at these points, as
shown in Table 5. It can be found that the created response
surface models have acceptable accuracy as their relative er-
rors from the FEMs are relatively small. The start point of the
optimization is set as μX

start = (2.40mm, 2.40mm, 2.40mm,
2.40mm, 2.40mm). At this start point, the actual reliability
index vector of the constraints is βstart = (0.0, 6.7, 0.0, 6.0),
which Obviously violates the target reliability requirements.
After carrying out the hybrid RBDO analysis using
HRBDO_I, a stable solution is obtained after only 4 iteration
steps, as shown in Fig. 10. To demonstrate the accuracy of the
proposed method, a reference solution is also obtained by
using HRBDO_III. The results of the two methods are listed
in Table 6. It can be found that the thicknesses of the five parts

are optimized and all reliabilities of the safety and crashwor-
thiness constraints at the optimum are satisfied. What’s more,
the total mass of these parts is decreased from 11.52 to
10.57 kg. Also, the results show that the present method has
a fine accuracy since it outputs a very close result to the ref-
erence solution.

4.3 A structural design problem of tablet computer

Currently, electronic devices usually have a high integrated
density and large power dissipation. It is necessary for its
structural design to consider various aspects of design re-
quirements (Hirohata et al. 2006; Hadim and Suwa 2008),
such as appearance, portability, and environmental adapta-
tion, etc. Tablet computer is a typical consumer electronic
device, and the appearance design is usually given high-
priority, for instance, the minimal size of the product is
required. And other design requirements, such as a high-
temperature environment, accidental fall and operating
safety, should be considered during the structural design
of tablet computers. Thus, an excellent structural design
can ensure the tablet computer to work reliably or not to
be damaged in various extreme conditions, such as high

Table 6 Optimization results for the vehicle crashworthiness problem

Result Symbol Start point HRBDO_I HRBDO_III
Optimal solution Reference solution

Design variables (mm) μX
* 2.40, 2.40, 2.40, 2.40, 2.40 2.35, 2.15, 1.66, 2.15, 2.08 2.43, 2.16, 1.73, 2.13, 2.05

Objective function value (kg) M(μX
* ) 11.52 10.57 10.71

Practical reliability index β* 0.0, 6.7, 0.0, 6.0 2.0, 5.5, 2.0, 6.0 2.3, 5.2, 2.0, 6.5

Functional evaluation Nf – 848 22948

(a) Appearance view (b) Exploded view

Battery Display

Back shell Mainboard Front shell

Bracket

Touch screen

Fig. 11 A 7-inch tablet computer
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temperature, alternating temperature, and free fall and so
on. This subsection considers the hybrid RBDO problem of
a 7-inches tablet computer, as illustrated in Fig. 11. The
tablet computer mainly consists of the following parts: the

touch screen, the display, the battery, the mainboard, the
inner bracket, the front shell and the back shell. The mini-
mization of the tablet’s thickness is served as the design
objective. Four work conditions are involved and they are

Table 7 Random variables and
distributions in the tablet
structural design problem

Variable Symbol Mean (μ) Standard deviation (σ) Distribution type

Front shell thickness (mm) X1 μX1 0.03 Uniform

Touch screen thickness (mm) X2 μX2 0.03 Uniform

Bracket thickness (mm) X3 μX3 0.03 Uniform

Back shell thickness (mm) X4 μX4 0.03 Uniform

Display elastic modulus (Mpa) P1 23,000 [900, 1,100] Normal

Battery elastic modulus (Mpa) P2 2,480 [60, 70] Normal

Display expansion coefficient (/°C) P3 0.012 % [0.0010 %, 0.0014 %] Normal

Battery expansion coefficient (/°C) P4 0.064 % [0.0060 %, 0.0068 %] Normal

Main board power (W) P5 2.0 [0.1,0.2] Uniform

Display power (W) P6 2.0 [0.1,0.2] Uniform

(a) FEM_1 high temperature (b) FEM_2 room temperature 

(c) FEM_3 alternative temperature (d) FEM_4, free fall

Fig. 12 FEMs for the tablet
structural design problem
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high-temperature, room-temperature, and alternating tem-
perature and free fall, respectively. Case 1: under the high-
temperature (45 °C), and the temperature TCH of the chip on
the main board is not allowed to be higher than the given
temperature T0

CH = 65 °C. Case 2: to ensure daily-using
comfortably, the shell surface temperature TSH should be
less than T0

SH = 40 °C with a full load under the room tem-
perature (25 °C) for an hour continuously. Case 3: during
the alternative temperature [0 °C, 40 °C], the electronic
components may be failure because of the thermal stress
caused by the difference of thermal expansion coefficients
of various materials. In order to make sure the operating
safety, the thermal stress ΓBA of the battery is required to be
less than the given value Γ0

BA= 24Mpa. Case 4: during the
collision of the 0.5 m-height free fall, the maximal stress
ΓTS of the touch screen is not allowed to be more than the
material breaking strength Γ0

TS = 100Mpa. The design vari-
ables of the hybrid RBDO problem are: the thickness of the
front shell, the display, the inner bracket, the back shell; the
parameters are Young’s modulus and the thermal expansion
coefficient of the viewing screen, Young’s modulus and the
thermal expansion coefficient of the battery, the power dis-
sipation of the mainboard and the display. All above four
design variables and six parameters are random variables,
and the details of distributions are given in Table 7. It

indicates that some distributions parameters can only be
given by intervals, while others can be given by the accu-
rate values. The target reliability indexes of constraints are
set to βj

t = 2.0, j = 1, 2, 3, 4. This practical hybrid RBDO
model is written as:

min
μX

f μXð Þ ¼ μX 1
þ μX 2

þ μX 3
þ μX 4

s:t: PrLj ¼ Prob g j X;P;Yð Þ≥0
� �

≥Φ −βt
j

� �
; βt

j ¼ 2:0; j ¼ 1; 2; 3; 4

g1 ¼ TCH
0 −TCH X;P;Yð Þ; g2 ¼ TSH

0 −TSH X;P;Yð Þ;
g3 ¼ ΓBA

0 −ΓBA X;P;Yð Þ; g4 ¼ ΓTS
0 −ΓTS X;P;Yð Þ;

Y ¼ σP1 ; σP2 ;σP3 ; σP4ð Þ;
4:00mm≤μX 1

≤6:00mm; 0:50mm≤μX 2
≤2:00mm;

0:50mm≤μX 3
≤2:00mm; 0:50mm≤μX 4

≤2:00mm

ð27Þ

Four FEMs are established corresponding to the above
four cases as shown in Fig. 12. The information of the
FEMs is listed in Table 8. To achieve parameterization
and improve efficiency, the second-order polynomial re-
sponse surfaces are created based on 65 samples corre-
spondingly, as formulated in Table 9. As before, six
points are randomly selected and the results at these
points from the FEMs and response surfaces are com-
pared, and the accuracy test is listed in Table 10. We
select μX

start = (6.00mm, 1.20mm, 1.20mm, 1.00mm) as a

Table 8 FEMs information of
the tablet structural design
problem

FEM serial number Working condition Element Constraint

FEM_1 High temperature, 45 °C 133764 g1 = T0
CH−TCH≥ 0

FEM_2 Room temperature, 25 °C 133764 g2 = T0
SH−TSH≥ 0

FEM_3 Alternative temperature, 0 ~ 40 °C 133764 g3 =Γ0
BA−ΓBA≥ 0

FEM_4 Free fall, 0.5 m height 152613 g4 =Γ0
TL−ΓTL≥ 0

Table 9 Response surfaces for the four constraint functions of the tablet structural design problem

Constraint function Response surface

g1 = T0
CH− TCH≥ 0

TCH ¼ −0:6330P2
5 þ 0:02776P5P6−0:2823P5X 2 þ 7:119P5 þ 0:6486P2

6
−0:1774X 2

1 þ 1:767X 1−0:03070X 2
2−0:2237X

2
3−0:1057X

2
4 þ 44:18

g2 = T0
SH−TSH≥ 0

TSH ¼ −0:4823P2
5 þ 0:08551P5P6 þ 0:02609P5X 2 þ 5:1409P5 þ 0:5292P2

6
−0:1567X 2

1 þ 1:5762X 1−0:04655X 2
2−0:1078X

2
3−0:08632X

2
4 þ 23:28

g3 =Γ0
BA−ΓBA≥ 0

ΓBA ¼ 1010 −1:612P2
3 þ 0:3459P3P4−0:1393P2

4

� 	þ 105 0:4898P3X 2 þ 2:4333P4ð Þ
þ 0:3593X 2

1−2:045X 1−0:1874X 2
2−0:1274X

2
3 þ 0:3632X 2

4 þ 14:01

g4 =Γ0
TL−ΓTL ≥ 0

ΓTL ¼ 10−6 0:5571P2
1 þ 0:01029P1P2 þ 114:7P2

2

� 	þ 10−3 28:69P1−569:4P2−0:4503P1X 2ð Þ
−18:03X 2

1 þ 178:6X 1 þ 6:538X 2
2 þ 0:02344X 2

3 þ 4:067X 2
4−5:98
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start point. At this start point, the actual reliability index
vector of the constraints is βstart = (0.0, 2.9, 0.0, 6.8),
which Obviously violates the target reliability require-
ments. That is to say, the high-temperature performance
and the daily-using safety cannot be guaranteed. This may
not only lead to the tablet-operating failure, but also the
damage to users’ personal safety. After conducting the
hybrid RBDO analysis, the solution from HRBDO_I and
the reference solution via HRBDO_III are listed in
Table 11. Figure 13 shows the iteration process which
indicates that the proposed method can converge rapidly
after only 3 iterations. And It can be seen that there is
only a tiny difference between our HRBDO_I solutions
and the reference solutions. The structural thickness of
optimized tablet is f(μX

* ) = 6.39mm, which is a 32.0 %
reduction in compared with that of the start point. And
the reliability indexes β* = (2.0, 2.0, 2.2, 7.2) at the solu-
tions μX

* = (4.00mm, 0.52mm, 1.37mm, 0.50mm) can
meet the target reliability requirement. This is meaningful
because the final design is reliable and more aligned with
consumers’ expectations about the appearance and porta-
bility for the tablet.

5 Conclusion

In practical RBDO problems, random variables are generally
used to deal with the uncertain parameters, while in many
cases some distribution parameters of the random variables
can only be given intervals since lacking sufficient samples.
In this paper, we created a hybrid RBDO model for a class of
problems with interval distribution parameters, and also pro-
posed an efficient solution algorithm for this model, which
provided a potential tool for reliability design of many com-
plex structures. This paper has the following two innovations.
Firstly, an approximate probability-interval hybrid reliability
analysis method was given, which could avoid the multi-
variable optimization in the inner-layer reliability analysis
and hence reduce the computational cost greatly. Secondly,
an ISV strategy was employed to deal with the nested optimi-
zation of hybrid RBDO, which could convert the nested opti-
mization into an efficient sequential iterative process of the
design optimization and the hybrid reliability analysis. The
numerical example analyses show that the proposed hybrid
RBDO method is not only efficient but also robust. Also, it
seems promising to extend this method to deal with some
other important problems in this field in the future, such as
multidisciplinary reliability design optimization, multi-
objective reliability design optimization, etc.

Table 10 Accuracy test of the response surface models in the tablet
structural design problem

Test point of (X,P) Relative error from the FEMs

TCH TSH ΓBA ΓTL

(4.31,1.28,0.93,1.50,23705,2451,
0.0108 %,0.0581 %,1.81,1.96)

1.04 % 2.29 % 4.21 % 4.35 %

(4.56,1.92,1.51,1.77,22219,2681,
0.0128 %,0.0686 %,1.87,2.09)

3.55 % 3.31 % 4.16 % 1.32 %

(4.88,1.46,1.54,1.02,25870,2348,
0.0119 %,0.0591 %,1.75,2.09)

1.18 % 3.85 % 1.28 % 1.59 %

(5.05,1.94,0.60,1.67,19558,2692,
0.0108 %,0.0720 %,2.05,2.11)

0.60 % 1.75 % 3.07 % 0.60 %

(4.91,0.86,0.88,1.51,22741,2459,
0.0114 %,0.0596 %,2.11,2.08)

3.04 % 3.31 % 2.91 % 4.70 %

(5.75,1.51,0.84,0.51,22478,2135,
0.0124 %,0.0691 %,2.03,2.27)

2.25 % 2.08 % 2.70 % 3.23 %

Table 11 Optimization results
for the tablet structural design
problem

Result Symbol Start point HRBDO_I HRBDO_III
Optimal solution Reference solution

Design variables (mm) μX
* 6.00, 1.20, 1.20,1.00 4.00, 0.52, 1.37, 0.50 3.91, 0.50, 1.38, 0.47

Objective function value
(mm)

f(μX
* ) 9.40 6.39 6.26

Practical reliability index β 0.0, 2.9, 0.0, 6.8 2.0, 2.0, 2.2, 7.2 2.0, 2.2, 2.4, 6.8

Functional evaluation Nf – 1116 29724

1 2 3 4

Iterations

f (mm)

6.00

9.00

8.00

7.00

10.00

Fig. 13 The iteration process for the tablet structural design problem
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