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Abstract Optimization with Unified Particle Swarm
Optimization (UPSO) method is performed for the en-
hancement of buckling load capacity of composite plates
having damage under hygrothermal environment which
has received little or no attention in the literature.
Numerical results are presented for effect of damage in
buckling behavior of laminated composite plates using
an anisotropic damage model. Optimized critical buckling
temperature of laminated plates with internal flaw is com-
puted with the fiber orientation as the design variable by
employing a UPSO algorithm and results are compared
with undamaged case for various aspect ratios, ply orien-
tations, and boundary conditions. FEM formulation and
programming in the MATLAB environment have been
performed. The results of this work will assist designers
to address some key issues concerning composite struc-
tures. It is observed that the degradation of buckling
strength of a structural element in hygrothermal environ-
ment as a result of internal flaws can be avoided to a large
extent if we use these optimized ply orientations at design
phase of the composite structure. This specific application
proves the contribution of present work to be of realistic
nature.
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1 Introduction

The nature of distinct problems met in structural analysis
needs better understanding of the structural behavior. So, the
need of a detailed study on Finite Element Analysis of buck-
ling behavior of laminated composite structures considering
optimization aspects has raised the interest among researchers.
Increased use of composite laminated plates in primary struc-
tures necessitates the development of accurate theoretical
models in predicting their response. Various investigators
(Carrera 2002; Reddy 2004; Mantari et al. 2012; Grover
et al. 2013) have developed laminated plate theories based
on equivalent single layer approach. Many researchers
analysed buckling of plates due to inplane mechanical loads
(Zienkiewicz 1971; Pagano and Hatfield 1972; Kapania and
Raciti 1989) and the thermal loads (Singha et al. 2001; Kundu
et al. 2007) using finite element analysis. The reliable opera-
tion of a structure is affected by the occurrence of damage.
Therefore to ensure safety, it is vital to study the effect of
damage on the response behavior of the structure. Damage
or flaws in structures due to projectile impact, fatigue and
corrosion, or inclusions due to faulty manufacturing or fabri-
cation procedures often cause a reduction of stiffness and must
be solved by implementing the damage into the model.
Researchers (Prabhakara and Datta 1993; Rahul and Datta
2013) have examined the vibration and parametric instability
characteristics in damaged plate in beam structures, where the
formulation considers the in-plane membrane effect of the
plate in the beam problem. They used a parametric model of
damage which was proposed by Valliappan et al. (1990).
Pidaparti (1997) computed the free vibration characteristics
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of a composite plate and established that the formulation by
Valliappan et al. (1990) has more influence than some other
formulations. Zhang et al. (2001) also appreciated this method
and concluded that a parametric model is convenient in
framing problems related to structural health monitoring.
Pratihar (2008) defines optimization as the process of
finding the best one, out of all feasible solutions.
Optimization analysis make design more efficient and
cost effective, and thereby to gain practical importance
to a product. Shin et al. (1989) optimized the relative
ply-thicknesses of symmetric laminated plates for maxi-
mum buckling load. Optimality equations were solved by
homotopy method, which permits tracing the optima as a
function of total thickness. Spallino and Thierauf (2000)
investigated thermal buckling optimization of composite
plates using evolution strategies. Walker et al. (1997)
maximized buckling temperatures. Singha et al. (2000)
also maximized buckling temperatures of graphite/epoxy
laminated composite plates using the finite element meth-
od with four node shear deformable plate element. The
genetic algorithm was employed for five layered plates.
The particle swarm optimization (PSO) algorithm was
first proposed by Kennedy and Eberhart (1995). Many
advantages compared to other algorithms make PSO a
perfect method to be employed in optimization problems.
PSO provides faster results compared with many other
optimization methods like the genetic algorithm (Pratihar
2008; Mohan et al. 2014). The algorithm is quite easy to
implement, robust, and well suited to handle non-linear,
non-convex design spaces with discontinuities. It can han-
dle continuous, discrete and integer variable types with
ease. This easiness of execution, quick convergence and
excellent local search capability makes it a more attractive
method. Hu et al. (2003) presented the efficiency of PSO
when matched to other methods, requiring less number of
function calculations, while leading to better or the same
quality of results. Further, it does not require specific area
knowledge information, internal transformation of vari-
ables or other manipulations to handle constraints. PSO
can be well parallelized to decrease the overall computa-
tional time as it is a population-based process. In the last
decade, PSO has been demonstrated useful on miscella-
neous applications such as structural shape optimization
(Fourie and Groenwold 2002), power systems design
(Zheng et al. 2003), control system (Montazeri et al.
2008), and swarm of mobile robots (Tang and Eberhard
2011). Mohan et al. (2014) conducted a comparative
study on crack identification of structures from the chang-
es in natural frequencies using genetic algorithm and
PSO. They observed that PSO is able to detect crack accu-
rately for different combinations, complexities and quanti-
ties in three different structures. Many researchers (Le
Riche and Haftka 1993; Huang and Haftka 2005; Sukru
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and Omer 2009; Chang et al. 2010; Wang et al. 2010) have
conducted structural analysis employing various algorithms
for ply stacking sequence optimization. Unified Particle
Swarm Optimization (UPSO) is a recently proposed PSO
scheme that combines the local and global searches, bal-
ances exploration and exploitation that appears to be a ma-
jor advantage.

Although an extensive study has been performed on
static and dynamic behavior of structural elements, most
investigations have ignored the effects of damage in buck-
ling of laminated composite plates. A review of the
existing literature has shown the need for the development
of a finite element computer program that could optimize
the thermal buckling loads using Particle Swarm
Optimization (PSO) method, which has a good exploration
and exploitation capability. In the present investigation,
optimization of the critical buckling temperature of lami-
nated plates with internal flaw considering the fiber orien-
tation as the design variable and employing a UPSO algo-
rithm is carried out. Degradation of buckling strength of a
structural element in hygrothermal environment as a result
of internal flaws can be avoided to a large extent if we use
optimized ply orientations at design phase of the composite
structure. This specific application proves the novel re-
search contribution of present work to be of realistic na-
ture. In broad sense, this study on new structural materials
such as composite materials can be applied where en-
hanced performance and reliability of structural system
are required. The results and observations from this work
will assist addressing some important issues concerning
structures where strength/weight is a key design factor as
in aerospace applications. Strength/weight ratio, an impor-
tant factor in structural design, is improved by optimized
orientation of plies. Especially in structures prone to ther-
mal buckling, this type of optimized composites offer more
strength/weight compared to simple composite plates. This
work can also be applied in spacecraft structures or in very
high speed flights where the structures are subjected to
large scale varying environmental (hygrothermal) condi-
tions. These can also be applied to aircraft wing panels,
etc. where a chance of compression buckling is present
on both sides of the wing.

2 Mathematical modeling
2.1 Buckling problem

The current study starts with the buckling analysis of a
laminated composite plate. The formulation takes into ac-
count the effects of hygrothermal environment and is done
using the Finite Element Method. The chosen displace-
ment field for structural analysis is as per inverse
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hyperbolic shear deformation theory (IHSDT) (Grover
et al. 2013) as shown in (1).

0,

R _ 2r
sinh™ (rz/h) Z(hm)

ow,
u(x,y,2) = uolx,y) ~ 22 +

(1)

6,

s 2r
sinh ! (VZ/]’!)*Z <ﬁm>

v(x,¥,2) = vo(x,) = Zaa_v;o +

w(x,y,z) = wo(x,y)

In present analysis we have taken a composite plate com-
prising of n orthotropic layers. Also, 6 * is the angle between
the principle material co-ordinates 5, x5, x%) of the £ lamina
and the laminate co-ordinate, x. The thickness, length, and
width of plate are %, a, and b respectively. The transverse shear
stress parameter, 7, is set as 3 per the inverse method in post
processing step given by Grover et al. (2013). Considering the
first order derivatives of the transverse displacement that ap-
pears in the in-plane displacement terms as separate indepen-
dent degrees of freedom as shown below, the continuity re-
quirement is decreased from C' to C° continuity.

ow ow
- = — 2
ox ¢ and oy % @)

As demonstrated in recent literature (Grover et al.
2013), the overall percentage error in results of various
structural analysis problems is less with the new IHSDT
when compared to other existing shear deformation theo-
ries. Involvement of inverse hyperbolic shear functions
makes this theory to efficiently predict structure response
at a similar computational cost as that of first order or
higher order theories. The prebuckling equilibrium equa-
tion is presented below.

[K{U} ={F} (3)

where [K] is linear stiffness matrix and {F} is thermal load
vector.

In the next step, geometric stiffness matrix [Ks] is cal-
culated as by Zienkiewicz (1971). The critical buckling
temperature is found by solving the linear eigenvalue
problem,

(K] + Ao [K]){U} = {0} (4)

The lowest eigenvalue is the critical buckling temper-
ature. Authors had explained the detailed formulation for
buckling of composite structures earlier (Sreehari and
Maiti 2015).

2.2 Incorporation of damage in composite plates

Anisotropic damage is parametrically incorporated into the
finite element formulation by considering a parameter. This

factor fundamentally depicts the lessening in effective area
and is given by

I = i (5)

Where A;” is the effective area (with unit normal) after
damage and i indicates the 3 orthogonal directions.
Valliappan et al. (1990) had conducted studies using this
effective area concept and readers may consult for more
details. For a thin plate, only I} and I need to be con-
sidered. I} denotes the damage in the fibre direction
whereas [ refers to orthogonal damage (in same plane).
The effects of a damaged region are introduced by means
of an idealized model having a decrease in the elastic
property in the damaged region. This method which para-
metrically models damage in any anisotropic material was
proposed by Valliappan et al. (1990) and the following
relationship between the damaged stress tensor [a:}] and
the undamaged stress tensor [o;;] was established assum-
ing that the internal forces acting on any damaged section
are same as the ones before damage (Valliappan et al.
1990),

{o"} = 7l{o} (6)

where {¥} is a transformation matrix. This matrix relate a
damaged stress—strain matrix with an undamaged one,
[D*] '=[¥]"[D] '[¥]. The stress—strain relation can be
given as {o*}=[D*]{e} for a zone of damage, i.e., it
retains its basic form as that of undamaged region and
(except incorporation of these parameters) the computa-
tions can be proceeded as in the undamaged formulation
(As the formulation for damaged case is similar to that of
undamaged case except the incorporation of damage pa-
rameters, no detailed formulation is giving here). This
method which parametrically models the damage in any
anisotropic material was used recently (Sreehari et al.
2016) for finding the effects of damage in a smart plate.
Damage model considered here have a broader scope of
application because of the elegance and simplicity of con-
stitutive relations, i.e., stress—strain relation for a damaged
region retains its basic form.

2.3 Optimized design of damaged composite plate

Maximization of critical buckling temperature of the laminat-
ed plate configuration having an internal flaw by changing the
ply orientations in stacking sequence is performed in the op-
timization problem. Computation of the maximum thermal
buckling load is performed through a Unified Particle
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Swarm Optimization method. The optimal design problem
can be stated as follows:
find : 0

(Ter) g = max(T'(6;)] subject t0-90°<6,<90° /
=1,2,...... n (7)

Where 6, = ply angle of the /" layer.

The PSO which is a population-based computation method
employs the idea of bird flocking in evolving each solution
and is referred to as a particle. Mathematically, the positions of
i particle (x;) in a swarm of S particles is a D-dimensional
search space, provides a candidate solution for the problem.
The velocity and position of the particles at /" iteration can be
represented by v{)=(vi; Vs Vi3 v;ip) and x,() = (x;;, Xi2,
Xi3, eenvveennnes X;p); where i € S.

Movement of each particle to new positions throughout
the search process is based on the previous best position
of itself (pbest), and the best position so far found by any
individual of the population (gbest- in global best
neighbourhood approach) or the best position so far found
by any of its neighbour (lbest- in local best
neighbourhood approach).

pbest = (prSt,‘lprestiZ, ,‘....prStiD> ®)

gbest = (gbestil,gb€Sti2, ,4.4...4,gbeStiD> (9)

Ibest = (Ibest;; Ibest;,, (10)

Here the population and its individuals are referred
respectively as swarm and particles. The swarm is up-
dated by velocity and position update. The velocity is
updated by,

via(t +1) =uGig(t + 1) + (1—u)L;g(t + 1) (11)

Where, Giq(t + 1)
= R[via(t) + Cy x rand, (pbestiy—x;4(t)) + Co X rand,(gbesti;—x;q(t))] and
(12)
Lia(t+1)
= Rvia(t) + Ci x rands(pbestiq=xi4(t)) + C2 x rands(lbestiq—xia(t))]
ieSanddeD

(13)

G;y(t+1) and L;,(¢t+ 1) are the velocity update of the it
particle (x;), global best and local best variants of PSO for
(t+ 1) iteration. Random numbers (usually, equally
scattered between 0 and 1) are represented by rand. R,
C,, C, denotes the constriction factor, cognitive parame-
ter, and social parameter of the optimization algorithm.
The three terms of (12) and (13) represents the different
influencing elements that lead to the final solution and it
can be represented as in Fig. 1. The unification factor, u,
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Fig. 1 Concept of PSO

in (11) can be varying or a constant. In this paper, an
exponentially varying unification factor is considered, as
given below

t x log2
u(t) = exp (%)—1 (14)
The updated position is attained from
X,’d(l + 1) = xid(t) + de(t + 1) (15)

We will obtain the solution after much iteration. The simple
representation of the convergence in swarm optimization is
shown in Fig. 2 and a schematic representation of the PSO
algorithm is presented in Fig. 3. The optimization problem is
concluded when the change amongst the present value of the
objective function and the best design until now is less than a
stated tolerance. Also it is important to note that here we are
not considering any functional constraints to avoid computa-
tional complexities and there is plenty to occupy us in uncon-
strained problems. Furthermore, the methods for solving un-
constrained problems are the basis for constrained optimiza-
tion algorithms and most of problems we met in real life can
be solved by unconstrained optimization methods (Dennis Jr
and Schnabel 1996; Rao 2009). A constrained problem must
be treated as such, only if the existence of the constraints is
likely to affect the solution. Several algorithms to solve
constrained problems in fact will boil down to solving a relat-
ed in unconstrained problem whose solution is very close the
solution of constrained one. However, thus many problems
with simple constraints, such as bounds on the variables, can
be solved by unconstrained algorithms.

3 Numerical results and discussion
3.1 Setup

A FEM formulation has been done for optimization analysis
of a damaged composite plate. Governing equations based on
IHSDT has been derived and programming in MATLAB en-
vironment has been performed. The numerical results were
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Fig. 2 Convergence in PSO T
./5
)~
>
Iteration: 0 Iteration: N

obtained and compared with previous investigations. A C°-
continuous isoparametric biquadratic-quadrilateral serendipi-
ty element (as in Fig. 4) with 56 degrees of freedom (each
node has 2 degrees of freedom due to artificial constraints
(as explained in Section 2.1), 3 translational degrees of free-
dom, and 2 rotational degrees of freedom) has been employed
for discretization of the laminated plate. Numerical results are
shown in figures and tables. The non-dimensionality used for
transverse deflection and critical buckling load is given re-
spectively as,

_ 1004°E, a?
w = W(W) and Ppy = Py, (m) (16)

The basic concept of finite element formulation being an
assemblage of building blocks like elements interconnected at
nodal points was utilized. The element that was chosen for the
present analysis is an 8-noded iso-parametric element as in
Fig. 4. Benefit of isoparametric element is that element

Fig. 3 Flowchart illustrating the
PSO algorithm

geometry and displacements are represented by same set of
shape functions. Advantage of 8 noded element is that all the
nodes are located on element sides and hence there are no
internal nodes and shape functions have quadratic variation
in x and y direction. The various Material Models are (taken
from literatures from which, comparison studies are done),

Material Model 1 (MMI) EI/E2:25, GIZ :G13=0.5 Ez,
G23 =02 Ez, V1= 025, 0(2/0(1 =10.

Material Model 2 (MM2) E]/EZZZS, G]2: G13 =0.5 Ez,
Gy3=0.2 E,, v1,=0.25.

Material Model 3 (MM3): E; =181 GPa, E,=10.3 GPa,
G12 =G13 =7.17 GPa, G23 =2.39 GPa, Via =0.28,
0 =0.02x10°%°C", xy=22.5x10°°C .

3.2 Validation studies in buckling

Current finite element formulation using IHSDT and Matlab
programming is validated in Table 1. Non dimensional central

Start

v

Particle initialization
(using random position and velocity vectors)

J

Loop till all
particles
finish

¥

Evaluate fitness for each particle’s position, X;

v

If fitness better than
fitness (pbest) then pbest = X;
If lbest; is better, then lbest = [best;

s 4

If pbest 1s better than lbest, then assign ghest =
pbhest, else gbest = lbest

Loop till
convergence

7

Update global and local variants

¥

Update velocity and position of particles

1
k 4

Stop: giving the optimal solution, gbest.
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Fig. 4 Eight noded iso-parametric element

deflections are computed for different span-to-thickness ra-
tio’s and for simply supported square laminated (0/90/90/0)
plate under transverse sinusoidal loading (MM1 property).
When compared with exact solutions percentage variation of
other higher order theory (Reddy 2004) is larger, whereas
variation is less with IHSDT. Analysis is done with side to
thickness ratio varying from 10 to 100 using FSDT and
IHSDT for validation of results as shown in Fig. 5. For this
study, we have taken a (0/90), laminated composite plate with
simply supported at all ends subjected to uniaxial inplane
loads. The results by applying biaxial inplane loads are shown
in Fig. 6. It is found that nondimensional critical loads are
higher for uniaxial loading. And as thickness decreases, the
nondimensional buckling load increases. The variation is very
less above a/h=40 for both cases. Analysis is done with side
to thickness ratio varying from 10 to 100 using FSDT and
IHSDT for validation of results by considering square anti-
symmetric cross ply plates (two layered and eight layered) as
shown in Figs. 7 and 8. Here, uniaxial loading and simply
support conditions on all edges is considered. As number of
layers is high, buckling loads also are high. So, it is observed
from these comparison results that present finite element mod-
el predicts the bending and buckling behavior quite accurately.

Similar investigation can be extended for coefficient of
moisture concentration instead of thermal expansion coeffi-
cient for finding the buckling moisture concentration. Strains
are set up in laminas of composite due to change in tempera-
ture and moisture. These in turn give rise to stresses which are
called as hygrothermal stresses. On the loading, if material is
unconstrained, no stresses are developed. Stress develops only

Table 1 Nondimensionalized central deflections

a/h  ExactPagano Reddy (2004) % difference Present % difference
and Hatfield
(1972)

10 0.743 0.715 -3.76 0.7284 -1.96

20 0.517 0.506 -2.12 0.5102 -1.31

100 0.439 0.434 —1.13 04345 -1.02
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Non dimensioal buckling load

W
1
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Fig. 5 Comparison of buckling load using FSDT and IHSDT (for
uniaxial loading)

when the material is constrained. The stresses developed in the
body are proportional to the constraint imposed.

3.3 Validation of incorporation of damage

After incorporating the effects of damage, some results for
simple plate were compared with the results obtained by
Prabhakara and Datta (1993). A plate with centre damage is
considered and the plate is having a damage area of 4 % of the
total plate area, i.c., we have introduced the damage parame-
ters in the centre 4 elements for a plate with 10 % 10 mesh size
as in Fig. 9. The buckling coefficients for a plate for 3 different
aspect ratios (AR) are found and compared with those of ref-
erence as shown in Table 2, and it clearly indicates that, pres-
ent damage formulation using IHSDT possess excellent accu-
racy. Thus, authors validated the present finite element formu-
lation incorporating damage and the methodology.

mFSDT IHSDT

Non dimensioal buckling load

10 20 30 40 50 60 70 80 90 100
a’h

Fig. 6 Comparison of buckling load using FSDT and IHSDT (for biaxial
loading)
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Non dimensioal buckling load
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100 20 30 40 50 60 70 80 90 100
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Fig. 7 Comparison of buckling load using FSDT and IHSDT (for a two
layer composite)

A laminated composite plate (MM2 property) with
simply supported boundary conditions on all sides is
analysed for uniaxial loads. The variation of nondimen-
sional buckling load for a 4 layered (0/90/90/0) plate with
damage in two middle layers and for centrally located
damage patches having damage intensities of I'}/I>=3
and I'\/I,=7 is presented in Table 3. The damage ratio
I')/T, takes values between 0.0 and 9.0. A mild damage
may be represented with a damage ratio 0.0<77/,<3.0
while a heavy damage may be denoted by the range of
values, 7.0<1/I,<9.0. As damage intensity increases
the buckling load decreases with the decrement being
higher in case of larger damage areas. Critical buckling
temperature is found and plotted for a square laminated
composite plate having (0/+45/-45/90); lamination, with
and without damage in Fig. 10. This real world lamination
sequence increases the practical side and applicability of

25

mEFSDT IHSDT

—_ — %)
1= O S
L .

Non dimensioal buckling load

W
L

10 20 30 40 50 60 70 80 90 100
a’h

Fig. 8 Comparison of buckling load using FSDT and IHSDT (for an
eight layer composite)
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11 12 113 14 ¢ 15 1 16 17 p18 ¢19 ¢ 20

1 2 <] 4 =) 6 7 8 9 10

Fig. 9 Mesh Discretization with damage in center 4 elements

the results. The plate considered is under simply support-
ed boundary conditions and uniform temperature distribu-
tion. The damage considered here is a mild damage with
damage intensity of I'7/I>=3. As E/E, increases from 10
to 40, the critical buckling temperature decreases. The
decrement is higher for damaged plates, as observed from
the steeper curve of damaged case.

3.4 Optimization of thermal buckling load using UPSO

In this investigation, a 4 layered laminated plate subjected
to uniform temperature load is considered. The material
properties taken are that of MM3. Each of the laminate is
assumed to be of the same thickness. The UPSO
Algorithm related parameters used here are: Swarm size,
§'=20, Maximum number of iterations =100, Cognitive
parameter, C;=2.05, Social parameter, C,=2.05, and
Constriction factor, R=0.7298. Clerc (2002) had de-
scribed the constriction factor R, that increases PSO’s ca-
pability to constrain and control velocities and described
its calculation. Recent literatures (Premalatha and
Natarajan 2009; Sumathi and Surekha 2010) explained
that if C=C,+C,=4.1, then R=0.7298 and as C in-
creases above 4.0, R gets smaller and the damping effect
is even more prominent and suggested that it would be
better to choose C;=C,=2.05 which shown an overall
better performance of PSO. The parameters C; and C,

Table 2  Buckling coefficients for various aspect ratio

AR Prabhakara and Present Variation
Datta (1993)

0.8 3.59 348 3.06 %

1 445 432 2.92 %

1.6 1.77 1.71 338 %

@ Springer



444

V. M. Sreehari, D. K. Maiti

Table 3  Variation of nondimensional buckling load of damaged
composite plate as damage intensity varies

Table 4 Optimum ply-angle (in degree) of a four layered composite
plate

Damage area at center I/I=3 1/I,=17
layer in percentage

35 21.4969 16.9440
45 19.9309 15.1381

are not much critical for the convergence of algorithm, but
quicker convergence and alleviation of local optimum so-
lutions can be achieved through the fine-tuning of these
parameters. Here, the tolerance value is considered as
0.001 for the objective function. Initially we had conduct-
ed optimization process with values 0.1, 0.01, 0.001, etc.
and with 0.001 there is not differentiable change occur-
ring in results. So we fixed the tolerance value as 0.001
for this work.

Optimum ply-angle (in degree) of a four layered (6/-6/
0/-0) composite plate for maximum critical buckling tem-
perature using UPSO is computed. The optimum fiber
orientations obtained from the present analysis (using
UPSO) and from Walker et al. (1997) and Singha et al.
(2000) (using genetic algorithm) are shown in Table 4 for
simply supported and clamped boundary conditions.
These numerical results clearly demonstrate the effective-
ness of UPSO algorithm on the thermal buckling optimi-
zation for laminates.

Investigation of the effect of thermal expansion ratio,
ay/cy on the optimum design of a four layered square
plate with a 4 % central damage in a layer (in middle
two layers) is performed. The optimum fiber orientations
obtained are plotted against the corresponding o,/ ra-
tios for 3 different E,/E, ratios in Fig. 11. It is observed
that the optimum fiber orientation angle decrease with
increase in ay/« ratio. It is further observed that the op-
timum fiber orientation angle decrease with increase in
E,/E, ratio. The optimized critical temperatures for

165 -
160 -
155
150
145
140
135
130 -
125

20 +—r—"mm—m—m—"F—"—"——"—""—"""T—"—T—"T—
0 10 20 30 40 50

E,/E,

——Undamaged

—&— Damaged

Fig. 10 Critical buckling temperature for 8 layered composite plate (0/+
45/-45/90) for undamaged and damaged cases
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Sources Simply supported Clamped
Walker et al. (1997) 45.1 54.3
Singha et al. (2000) 45 52.9
Present 45.04 53.2

various a/b ratios are computed for both damaged and
undamaged cases. The analysis results for symmetric
and anti-symmetric ply orientations with simply supported
boundary condition at all ends are plotted in Fig. 12. The
analysis is also performed for a composite plate with all
edges clamped and results are plotted in Fig. 13.

It is noted that the optimum critical temperature
comes down as a/b ratio increases, and it is due to the
higher stiffness of square plates in thermal loading anal-
ysis. Under clamped conditions the critical temperatures
are always higher than those for corresponding simply
supported conditions. The optimum critical temperature
is higher for symmetric lamination scheme than anti-
symmetric lamination scheme. As a/b increases, the var-
iation between optimum critical temperature obtained
for symmetric and anti-symmetric cases decreases. The
same is true in damaged as well as in undamaged com-
posite plate. The critical temperatures for a composite
plate with damage seem to be lesser than the corre-
sponding values for undamaged cases. The variation be-
tween optimum critical temperature obtained for dam-
aged and undamaged composite plates increases as a/b
increases, for both symmetric and anti-symmetric
conditions.

In the next example, optimization analysis of a dam-
aged composite plate is performed employing continuous
ply angle laminate configuration keeping all other prop-
erties same as that of previous examples. Optimized crit-
ical buckling temperatures for variable ply angle lay up are

75
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70
—8—E1/E2=25
65 E1/E2= 40
60
q?
55
50
45
40 ;
0 10 20 30 40 50 60
a0y

Fig. 11 Effect of ratio of thermal expansion coefficients on the optimum
fiber orientations
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Fig. 12 Optimum buckling temperatures (in °C) for different a/b ratios
for all edges simply supported

presented and are compared with fixed angle lay up in Fig. 14.
The analysis is done for all edges simply supported and all
edges clamped boundary conditions. For square plates, the
maximum critical temperature was obtaining at 45.04/-
45.04/45.04/-45.04 lamination sequence for plates with sim-
ply supported boundary condition whereas at 0/90/90/0 for
plates with clamped boundary condition. The thermal buck-
ling load obtained now is 1.68 % higher than that for corre-
sponding fixed angle antisymmetric lay up in clamped bound-
ary case. But at a/b=1.5 maximum critical buckling temper-
ature was obtaining at 69.42/-51.64/62.09/-70.3 (the angle
values are approximated to the nearest integer values,
resulting in stack 69/-52/62/-70, for practical composite de-
sign) ply lay up for simply supported boundary conditions and
at 67.8/-34/28.41/-68.37 ply lay up for clamped boundary
conditions. The thermal buckling load obtained now for
a/b=1.51s 13.59 % higher than that for corresponding fixed
angle lay up in simply supported case and 4.11 % higher in
clamped case. Similarly for a/b=2 the maximum critical
buckling temperature was obtaining at 68.55/-53.01/
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Fig. 13 Optimum buckling temperatures (in °C) for different a/b ratios
for all edges clamped

a/b

Fig. 14 Optimum buckling temperatures (in °C) for variable ply angle
laminate configuration

56.39/-66.66 and at 77.25/-28.81/15.04/-80.91 respectively
for simply supported and clamped plates. The thermal buck-
ling load obtained now for a/b=2 is 16 % higher than that
for corresponding fixed angle lay up in simply supported
case and 9.78 % higher in clamped case. Thus the reduced
buckling load capacity of a composite plate due to an inter-
nal flaw can be regained almost if we use this type of lam-
inate configuration at design phase and therefore this can be
used in real applications.

4 Conclusion

A finite element computer program is developed and imple-
mented in the present work that could optimize the thermal
buckling loads of laminated plates with internal flaw consid-
ering the fiber orientation as the design variable and
employing a UPSO algorithm. Buckling analysis for a lami-
nated composite plate subject to mechanical and uniform in-
plane thermally induced loadings using IHSDT are presented.
A plate having centre damage (damage area of 4 % of the total
plate area) is considered for validating the finite element dam-
age formulation and the methodology. The theoretical formu-
lation has been verified, and programming in the MATLAB
environment for analysis has been performed. The codes pro-
vide satisfactory results when compared with references. The
excellent agreement of the results obtained in the present
method with those from references shows that the technique
is effective and precise. The contributions of present work are
summarized in the following points,

*  Optimized critical buckling temperature of damaged com-
posite plate is computed with the fiber orientation as de-
sign variable employing a UPSO algorithm.

» Effect of the ratio of thermal expansion coefficients on the
optimum fiber orientations is presented and it is observed
that the optimum fiber orientations decrease with increase
in /oy ratio.
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*  Optimized critical temperatures for a damaged composite
plate are compared with undamaged case for various a/b
ratios, ply orientations, and boundary conditions.

* Optimization analysis is performed employing vari-
able ply angle laminate configuration and the results
for maximum thermal buckling loads are compared
with the corresponding 4 layered antisymmetric lay
ups. The percentage increment in maximum critical
buckling temperature by the application of variable
ply angle laminate configuration is computed.

* The results of chosen optimization problem bring new
insight that would indeed address design issues.
Degradation of buckling strength of a structural ele-
ment in hygrothermal environment as a result of inter-
nal flaws can be avoided to a large extent if we use
these optimized ply orientations at design phase of
the composite structure. It appears to be a major prac-
tical application.

* This study can be applied in aircraft and spacecraft where
improved performance and reliability of structural system
are required.

5 Notation

The following symbols are used in this paper:

E\, E, Young’s moduli

G2 G13,  shear moduli

Ga3

h thickness of the plate

[K],[Ks] global linear and geometric stiffness matrices

T temperature

{U} global displacement field

ug, vo, Wy  midplane displacements

w maximum out of plane displacement

x{(f), v(t)  position and velocity of particles at M iteration of
optimization

ap, thermal expansion coefficients

0, ply angles of n layers

0, 0, rotations at the midplane

Aer inplane magnification factor; and

20 Poisson’s ratio
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