
RESEARCH PAPER

Conservative reliability-based design optimization method
with insufficient input data

Hyunkyoo Cho1 & K. K. Choi1 & Nicholas J. Gaul2 & Ikjin Lee3 &

David Lamb4
& David Gorsich4

Received: 13 December 2015 /Revised: 14 March 2016 /Accepted: 20 May 2016 /Published online: 6 June 2016
# Springer-Verlag Berlin Heidelberg 2016

Abstract Reliability analysis and reliability-based design
optimization (RBDO) require an exact input probabilis-
tic model to obtain accurate probability of failure (PoF)
and RBDO optimum design. However, often only limit-
ed input data is available to generate the input probabi-
listic model in practical engineering problems. The
insufficient input data induces uncertainty in the input
probabilistic model, and this uncertainty forces the PoF
to be uncertain. Therefore, it is necessary to consider
the PoF to follow a probability distribution. In this pa-
per, the probability of the PoF is obtained with consec-
utive conditional probabilities of input distribution types
and parameters using the Bayesian approach. The ap-
proximate conditional probabilities are obtained under
reasonable assumptions, and Monte Carlo simulation is
applied to calculate the probability of the PoF. The
probability of the PoF at a user-specified target PoF is
defined as the conservativeness level of the PoF. The
conservativeness level, in addition to the target PoF,
will be used as a probabilistic constraint in an RBDO
process to obtain a conservative optimum design, for
limited input data. Thus, the design sensitivity of the
conservativeness level is derived to support an efficient
optimization process. Using numerical examples, it is

demonstrated that the conservativeness level should be
involved in RBDO when input data is limited. The
accuracy and efficiency of the proposed design sensitiv-
ity method is verified. Finally, conservative RBDO op-
timum designs are obtained using the developed
methods for limited input data problems.
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Nomenclature
CDF Cumulative distribution function
PDF Probability density function
PoF, pF Probability of failure
G(x) Performance measure
ΩF Failure domain of a performance

measure
X,x Input random variable vector and its

realization
N Number (dimension) of input random

variables
Xi i-th input random variable
fX(x;ζ,ψ) Joint PDF of X
f X i

xi; ζ i;μi;σ
2
i

� �
Marginal PDF of Xi

Z, ζ Input distribution types and their
realizations

ζi Marginal distribution type of Xi

Ψ,ψ Input distribution parameters and their
realizations

Mi, μi Input mean of X i and its realization
Σi

2, σi
2 Input variance of X i and its realization

*x Input data set, *x={*x1,…, *xN}
*xi

(j), *xi Input data and data set for Xi

ND Number of input data
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*xi;*xi Mean of input data and its vector form
*~xi;*~xi Dispersion of input data and its vector

form

1 Introduction

Output variability, which is the variability of perfor-
mance measures, impedes a design’s ability to sustain
performance during its life cycle. To obtain a safe and
reliable design under output variability, reliability-based
design optimization (RBDO) has been developed using
the first-order reliability method (FORM) (Hasofer and
Lind 1974; Ditlevsen and Madsen 1996; Tu et al. 1999;
Haldar and Mahadevan 2000; Tu et al. 2001; Gumbert
et al. 2003; Hou 2004), the second-order reliability
method (SORM) (Hohenbichler and Rackwitz 1988;
Breitung 1984; Lee et al. 2012; Lim et al. 2014), the
dimension reduction method (DRM) (Rahman and Wei
2006; Rahman and Wei 2008; Lee et al. 2010), and
Monte Carlo simulation (MCS) (Rubinstein and Kroese
2008; Lee et al. 2011a, b). Output variability is induced
by input variability – i.e., the variability of the input
random variable. In RBDO, an input probabilistic mod-
el, which is a statistical representation of the input var-
iability, is used to obtain the output variability.
Therefore, the accuracy of the input probabilistic model
is necessary to obtain correct reliability of the RBDO
optimum design.

The aforementioned RBDO methods require an accu-
rate input probabilistic model – i.e., “true” input proba-
bilistic model. Obtaining the true input probabilistic
model is very difficult because it requires a very large
number of test data for all subjects in the system.
Unfortunately, due to cost and time constraints, it is
highly probable that insufficient input data will be avail-
able for an input probabilistic model in a practical prob-
lem. Then, the input probabilistic model generated using
the limited number of data becomes uncertain. As a
result, the uncertainty in the input probabilistic model
forces probability of failure (PoF), a measure of the
reliability, to be uncertain. Consequently, new methods
need to be developed to obtain more conservativeness
when there is insufficient input data.

A safety factor approach could be an intuitive start to
consider uncertainty in the input probabilistic model
(Elishakoff 2004). P-boxes and probability bounds,
which are essentially a new input probabilistic model
at a certain confidence level based on the input data,
have been developed to capture the uncertainty in the
input probabilistic model (Tucker and Ferson 2003;
Aughenbaugh and Paredis 2006; Utkin and Destercke
2009). The uncertainty in the input probabilistic model

and the variability of the input random variables can be
combined in a modified input probabilistic model by
using intentionally enlarged input variances (Noh et al.
2011a, b). All of these methods adjust the input proba-
bilistic model to reflect the uncertainty in it. However,
the uncertainty in the input probabilistic model transfers
to the PoF through performance measures. When the
performance measure is nonlinear, it is hardly possible
to estimate the uncertainty of the PoF accurately by
altering the input probabilistic model. Moreover, modi-
fying the input probabilistic model may mix the effect
of input uncertainty (the uncertainty in the input proba-
bilistic model due to insufficient data) and input vari-
ability (variability of the input random variables), which
are essentially two different sources of output uncertain-
ty and variability.

The Bayesian approach would be better for directly
accessing the PoF and separating the effect of the input
uncertainty and variability. In one study, the probability
of fatigue failure of a steel bridge was estimated by
combining several input probabilistic models and two
crack propagation models with the Bayesian method
and nondestructive inspection (NDI) data (Zhang and
Mahadevan 2000), and the PoF was updated as more
NDI data became available. The mean of the simulation
output was qualified in the presence of the input uncer-
tainty using the Bayesian model average (BMA) ap-
proach (Chick 2001), but the two sources were not
clearly distinguished. Later, Gunawan and Papalambros
successfully separated the two sources and assumed that
the PoF follows beta distribution (Gunawan and
Papalambros 2006). That is, the PoF, which quantifies
the output variability induced by the input variability,
also follows another probability distribution (the beta
distribution, in this case) due to the input uncertainty.
The cumulative distribution function (CDF) of the beta
distribution at a certain PoF is the conservativeness lev-
el of the PoF. Using these observations, an RBDO prob-
lem of minimizing cost and maximizing conservative-
ness level was performed. Youn and Wang obtained an
extreme case of the beta distribution using extreme dis-
tribution theory, and the median value of the extreme
case was used as new probabilistic constraints for
RBDO (Youn and Wang 2008). In addition, the design
sensitivity of the probabilistic constraints was devel-
oped. However, the probability of the PoF still has not
been fully utilized. Once the probability is obtained, the
conservativeness level of the PoF is directly accessible.
Then, the input uncertainty induced by insufficient input
data is measured by the conservativeness level, while
the input variability is captured by the PoF.

In this paper, a new method to estimate the conservative-
ness level of the PoF is presented. The new method directly
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accesses the probability of the PoF using the Bayesian ap-
proach and distinguishes the input uncertainty and the input
variability. By separating the two sources, users can specify
separate target values for both the input uncertainty and vari-
ability in the new RBDO process. Moreover, a design sensi-
tivity for the conservativeness level is developed to ensure the
effectiveness and efficiency of the new RBDO process. In
Section 2, the relationship between the PoF and insufficient
input data is shown. In addition, how to deal with the input
data in the new RBDO process is explained. In Section 3, the
probability of the PoF is obtained using the Bayesian method,
and the estimation method of conservativeness level is pre-
sented. In Section 4, the design sensitivity of the conservative-
ness level is derived. Then numerical examples are used to
show the effectiveness and efficiency of the estimation of the
conservativeness level, the design sensitivity method, and the
new conservative RBDO process in Section 5. In Section 6, an
11-dimensional problem is tested to see the performance of
developed method in high-dimensional applications. Finally,
the conclusion is presented in Section 7.

2 Probability of failure and insufficient input data

Probability of failure is revisited in this section to associate it
with input distribution types and parameters. Through this
association, propagation of the input uncertainty due to insuf-
ficient input data to probability of the PoF is characterized in
the following sections. Therefore, it is worth discussing the
PoF before moving on to the main discoveries of this paper. In
addition, how to treat input data in the RBDO process is ex-
plained in this section as well.

2.1 Probability of failure

The PoF pF is defined using a multi-dimensional integral and
an indicator function as

pF ζ;ψð Þ ¼
Z
ℝN
IΩ F xð Þ f X x; ζ;ψð Þ dx ð1Þ

where ΩF is the failure domain such that a performance mea-
sureG xð Þ is larger than zero (i.e.,G xð Þ > 0 ), f X x; ζ;ψð Þ is a
joint probability density function (PDF) of input random var-
iables X with input distribution types ζ and input distribution
parameters ψ,x is realization of X, N is the number of input
random variables, and IΩ F xð Þ is an indicator function defined
as

IΩ F xð Þ≡ 1; for x∈ΩF

0; otherwise:

�
ð2Þ

In this paper, it is assumed that each input random variable
X i is statistically independent and has marginal distribution

with two parameters. Under the assumptions, the joint PDF in
(1) can be expressed using marginal PDF as

f X x; ζ;ψð Þ ¼ ∏
i¼1

N
f X i

xi; ζi;μi;σ
2
i

� � ð3Þ

where f X i
, ζi, μi, and σ2

i are marginal PDF, marginal distri-
bution type, and mean and variance of input random variable
X i, respectively. Input distribution types and parameters can
be defined as ζ={ζ1,…, ζN} and ψ={μ1, σ1

2…, μN,σN
2}, re-

spectively. It is noted that mean (μi) and variance (σ
2
i ) are used

in (3) instead of the two parameters of the marginal distribu-
tion because they are invariants of the marginal distribution
type and the two parameters can be uniquely determined using
the mean and variance.

As a specific example, consider an input joint PDF
with three input random variables of X = [X1,X2,X3]

T,
which follow the Normal, Lognormal, and Gamma mar-
ginal distribution types, respectively. Each input random
variable X i has mean and variance of μi and σ2

i . Then,
the input joint PDF of the three input random variables
can be expressed using (3) as

f X x; ζ; ψð Þ ¼ f X 1
x1; ζ1;μ1; σ

2
1

� �
f X 2

x2; ζ2;μ2; σ
2
2

� �
f X 3

x3; ζ3;μ3; σ
2
3

� �
ð4Þ

with input distribution types ζ= {ζ1,ζ2, ζ3}, input distri-
bution parameters ψ = {μ1, σ1

2, μ2, σ2
2, μ3, σ3

2}, and ζ1
=Normal, ζ2 =Lognormal, ζ3 =Gamma. As marginal dis-
tribution types and the distribution parameters are spec-
ified, the joint PDF in (4) is a specific PDF that can
produce one value of the PoF in (1).

If the population data, which is a complete set of data for
input random variables, is available, the true input distribution
types ζ and the true input distribution parameters ψ can be
obtained. If this is the case, as explained earlier, (1) produces a
fixed PoF value. However, in practical engineering problems,
only limited data is available, which makes ζ and ψ follow
probability distributions instead of being fixed types or values.
Therefore, capital charactersZ andΨwill be used to represent
their randomness in the presence of limited data with ζ andψ
being the corresponding realizations, respectively. Z,Ψ, and
the amount of data cause the PoF to follow a probabilistic
distribution.

The conventional RBDO methods that find optimum de-
sign using the fixed target PoF value based on a realization set
ζ and ψ can no longer produce reliable design when only
limited data is available. Thus, a new RBDO method needs
to be developed in order to produce a conservative optimum
design that we can rely on, when only insufficient data is
available, by considering the probability distributions of Z
andΨ and, eventually, the probability distribution of the PoF.
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2.2 Input data decomposition

Let *x be the given input data set. For simplicity of explana-
tion, the number of data for each input random variable is set
to ND. This can be easily extended to a case in which the
numbers of data are not the same. The input data set *x could
contain the following data subsets:

*x ¼ *x1;…; *xNf g: ð5Þ

The data subset *xi for the i-th input random variable X i is
a column vector of size ND as

*xi ¼ *x 1ð Þ
i *x 2ð Þ

i ⋯ *x NDð Þ
i

h iT
ð6Þ

where *xi
(j) is the j-th data for X i. The data subset *xi can be

decomposed into two parts as

*xi¼*xiþ*~xi ð7Þ

where *xi is a column vector of size ND, the entities of which
are the sample mean of the i-th data subset *xi as

*xi ¼ *xi*xi ⋯ *xi
h iT

such that*xi

¼ 1

ND

X ND

j¼1
*x jð Þ

i : ð8Þ

Some of the input random variables are related to design var-
iables. If X i is related to a design variable di, the i-th data
subset *xi is assumed in the RBDO process as

*xi ¼ diþ*~xi ð9Þ
where di is the i-th design variable vector defined as

di ¼ di di ⋯ di½ �T : ð10Þ

In (9), the input data in the RBDO process are changed to be
centered at the current design point d. Hence, as the
design optimization proceeds, d moves according to
the optimization process, and the data *x follows the
design movement. However, *~xi, which is the dispersion
of the input data with respect to the design point, is
maintained in the RBDO process. An example is shown
in Fig. 1. A pair of input random variable has five data
pairs. The mean of data pairs *x ¼ *x1;*x2f g has been
moved to a design point d = {d1, d2}. However, the
dispersion of data pairs *~x ¼ *~x1;*~x2f g with respect to
the center points *x and d is maintained. The data de-
composition in (9) is a usual practice in the convention-
al RBDO process. In the process, the design variable,
which is the mean of the corresponding input random
variable, changes as design iteration proceeds, while the

variance of the input random variable is constant. The
same concept is applied to the RBDO with insufficient
input data in this paper by decomposing input data
and maintaining *~xi in the RBDO process. It is noted
that *~xi contains the input uncertainty due to insufficient
data and that it remains the same while the design is
changed during the RBDO process.

3 Probability of PoF

In this section, the probability of the PoF is obtained using the
given input data, the general expression of the joint PDF, and
the Bayesian method. We can obtain a conservative RBDO
optimal design, even with limited input data, by securing a
certain probability of the PoF that is larger than a user-
specified conservativeness level.

3.1 Probability of PoF

Consider a given input data set *x. As explained earlier, input
distribution types Z and parametersΨ follow probability dis-
tributions if the input data set *x, not true input distribution, is
provided. In this paper, it is assumed that the probability dis-
tributions of Z and Ψ can be analogized from the *x. Using
Bayes’ theorem and the given *x, a joint PDF of the PoF PF,
input distribution typesZ, and input distribution parametersΨ
is obtained as

f pF ; ζ; ψj*xð Þ
¼ f pF jζ;ψ;*x

� �
P ζjψ;*x
� �

f ψj*x� �
: ð11Þ

In (11), the joint PDF is a product of three successive condi-
tional probabilities. If all conditional probabilities on the

Fig. 1 Input data and design change
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right side of (11) are available, the PDF of PF can be obtained
by integrating Z and Ψ in (11) as

f P F
pF j*xð Þ

¼
X
Z

Z
ΩΨ

f pF ; ζ; ψj*xð Þ dψ; pF∈ 0; 1½ � ð12Þ

Furthermore, the CDF ofPF is obtained by integrating (12)
with respect to the PoF as

FPF pF j*xð Þ

¼
Z p F

0

X
Z

Z
ΩΨ

f ϕ; ζ; ψj*x� �
dψdϕ; pF∈ 0; 1½ � ð13Þ

where ϕ is the variable that corresponds to PF . The value of
the CDF of PF in (13) represents the probability that PF of a
design with the input data *x is less than a specified value pF .
In other words, the CDF value is the probability that a design
is more conservative and safer than pF . Hence, in this paper,
the CDF value of PF at the specified pF is designated as the
“conservativeness level” of pF .

Among the three conditional probabilities on the right side
of (11), the first term f(pF|ζ,ψ, *x) is the probability of PF

with the given input distribution types ζ, parameters ψ, and
data *x. As explained earlier, the PoF in (1) is determined by ζ
and ψ. Consequently, when ζ and ψ are given, the PoF is a
deterministic value, and the probability becomes a Dirac-delta
measure as

f pF jζ ;ψ; *xð Þ ¼ δ pF−pF ζ;ψð Þ½ �: ð14Þ

The second and third conditional probabilities are obtained in
Sections 3.2 and 3.3.

3.2 Joint PDF of input distribution parameters

The last conditional probability in (11) is the joint PDF
of input distribution parameters Ψ with given input
data set *x. The exact joint PDF of Ψ is not known
unless population data, which is the test data of all
subjects, of the input random variable is provided. In
fact, if input data set *x is population data, we can
obtain the exact value of Ψ, so that the joint PDF
becomes a Dirac delta measure. If not, all we can ob-
tain is an approximated joint PDF of Ψ. Hence, the
approximated joint PDF of Ψ is obtained in this sec-
tion. As indicated earlier, input mean μi and variance
σ2
i are used as input distribution parameters. In addi-

tion, they are expressed using capital symbols Mi and

Σ2
i , respectively, because of their random features.

The joint PDF of input distribution parameters Ψ is a
product of joint PDFs of input mean Mi and input var-

iance Σ2
i . Mi and Σ2

i of each input random variable
have separate joint PDFs. Therefore, the joint PDF of
Ψ can be expressed as

f ψj*x� � ¼ ∏
i¼1

N
f μi;σ

2
i

��*xi� �
: ð15Þ

The central limit theorem is a widely used method for
obtaining the PDF of the input mean Mi with the given input
data *x. Though the central limit theorem produces the PDF of
the input mean under the assumption that the input data follow
Normal distribution, it produces a well-approximated PDF of
the input mean when the input data follow other distributions.
In the same sense, the joint PDF of the input mean Mi and

variance Σ2
i are obtained using Bayes’ theorem under the

assumption that the given input data *x follows Normal dis-
tribution in this paper. This does not mean that the input dis-
tribution types Z are always Normal distributions; this is only
an intermediate assumption to find the approximate joint PDF

of the input mean Mi and variance Σ2
i . Also, the non-

informative prior, which means that there is no information
except the given input data *x, is used for Bayes’ theorem. It
will be shown that the result of Bayes’ theorem is the same as
the one from the central limit theorem.

Under the Normality assumption described above and with

the non-informative prior, the input variance Σ2
i , for the i-th

independent random variable X i and the given data subset *xi,
follows inverse-gamma distribution as (Gelman et al. 2004)

Σ2
i

��*xi e Inv−χ2 ND−1; s2i
� �

¼ IG
ND−1

2
;

ND−1ð Þs2i
2

� �
ð16Þ

where the sample variance s2i can be calculated as

s2i ¼
1

ND−1

XND

m¼1

*~x
mð Þ
i

� �2

¼ 1

ND−1
*~xiT*~xi: ð17Þ

s2i is constant in the RBDO process because the amount of data

ND and the dispersion of input data *~xi are invariant.

Therefore, the inverse-gamma distribution of Σ2
i in (16) does

not change during the RBDO process because the parameters
for the distribution are s2i and ND. The distribution has larger
uncertainty when input data with smaller ND are provided.
The larger uncertainty makes the PoF more uncertain.
Eventually, the enlarged uncertainty of the PoF reduces the
conservativeness level in (13).

The input mean Mi of the i-th independent variable X i

follows Normal distribution based on the non-informative
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prior, given input variance σ2
i and data *xi as (Gelman et al.

2004)

Mijσ2
i ;
*xi eN *xi;σ2

i =ND
� 	

ð18Þ

where *xi is mean of data subset *xi as defined in (8). In the

distribution of Mi, the realization σ2
i of input variance Σ

2
i is

required, which means the distribution of Σ2
i in (16) is also

used to derive the distribution of Mi in (18). The distribution
of Mi is the same as the distribution from the central limit
theorem; hence the distribution of Mi as well as the distribu-

tion ofΣ2
i , which affects the distribution ofMi, are reasonable

and trustworthy. If X i is related to a design variable di, (18)
can be expressed as

Mijσ2
i ;
*xi e N di;σ2

i =ND
� � ð19Þ

because the sample mean of data set *xi changes to di. It is
noted that the design variable di is deterministic for the pur-
pose of design optimization, and the input uncertainty is con-
sidered inMi by treating it as a random variable. It can be seen
that in (18) and (19), smaller ND makes the input mean Mi

have larger variability, so the conservativeness level of the
PoF decreases.

Finally, the joint PDF of input random variable and vari-
ance can be derived using the distributions obtained as

f μi;σ
2
i

��*xi� 	
¼ f μijσ2

i ;
*xi

� �
f σ2i

��*xi� � ð20Þ

where f(σi
2|*xi) and f(μi|σi

2, *xi) are the PDF forms of (16) and
(19), respectively. Finally, (20) can be used to obtain the joint
PDF of input distribution parameters Ψ in (15).

3.3 Probability mass function of input distribution types

The probability mass function of an input distribution types Z
with the given input data *x and given parameters ψ is ob-
tained using Bayes’ theorem as

P ζjψ;*x
� � ¼ P *xjζ; ψð Þ P ζjψð ÞX

Z
P *xjζ; ψð Þ P ζjψð Þ

¼ L *x; ζ; ψð Þ P ζjψð ÞX
Z
L *x; ζ; ψð Þ P ζjψð Þ

ð21Þ

where the likelihood function L(*x;ζ, ψ) is a product of the
PDF value at each input data point as

L *x; ζ; ψ
� � ¼ ∏

i¼1

N
∏
m¼1

ND
f X i

*x mð Þ
i

���ζi;μ j;σ
2
j

� 	
: ð22Þ

The term P ζjψð Þ in (21) is a constant under the assumption
that there is no prior information. This assumption means that

all candidate distribution types are equally probable before the
analysis using the given input data *x. Then, (21) can be
simplified as

P ζjψ;*x
� � ¼ L *x; ζ; ψð ÞX

Z
L *x; ζ; ψð Þ

: ð23Þ

There are many marginal distributions; however, it is
impossible to cover all the types in the evaluation of
(23). Hence, it is reasonable to set combinations of
marginal distribution types and then evaluate the proba-
bility of each combination. In this paper, seven marginal
distribution types with two distribution parameters are
used. Probability density functions of the selected types
are listed in Appendix A.

As explained earlier, there could be a case in which each
input data subset has a different amount of data. In this case,
equations can be generalized by replacing ND with NDi for
the i-th data subset *xi.

3.4 Calculation of conservativeness level of PoF

Since all terms to evaluate the probability of the PoF in
(11) are now available in (14), (15), and (23), the con-
servativeness level of the PoF in (13) at a PoF value pF
can be calculated. When pF is given, (14) needs to be
evaluated to calculate the conservativeness level.
However, it is too complicated to solve (14) analytically
because it involves the Dirac-delta measure. In addition,
as the probability of the PoF is very likely not a stan-
dard distribution type, FORM, SORM or DRM is not
applicable to the conservativeness level estimation.
Therefore, the conservativeness level is calculated nu-
merically using MCS as (Rubinstein and Kroese 2008)

FPF pF j*x
� �

≅
1

NMCSZ NMCSΨ

Z p F

0

XNMCSΨ

n¼1

XNMCSZ

m¼1

f ϕjζ mð Þ;ψ nð Þ;*x
� 	

d ϕ

¼ 1

NMCSZ NMCSΨ

Z 1

0

XNMCSΨ

n¼1

XNMCSZ

m¼1

I 0;p F½ � ϕð Þ δ ϕ−pF ζ mð Þ;ψ nð Þ
� 	h i

dϕ

¼ 1

NMCSZ NMCSΨ

XNMCSΨ

n¼1

XNMCSZ

m¼1

I 0;p F½ � pF ζ mð Þ;ψ nð Þ
� 	h i

ð24Þ
where I 0;p F½ � ϕð Þ is an indicator function, the value

of which is 1 when ϕ is between 0 and pF , and 0
otherwise. ζ(m) and ψ(n) are the m-th realization of
(Z│ψ ,*x) and the n-th realization of (Ψ|*x), respec-
tively. NMCSΨ and NMCSZ are the MCS sample sizes
for Ψ and Z, respectively. The overall procedure to
evaluate (24) is shown in Fig. 2.
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4 Design sensitivity of conservativeness level

The conservativeness level calculated in Section 3.4 can be
used as a constraint in the RBDO process. The RBDO process
is called confidence-based RBDO (C-RBDO) because we can
have confidence that its optimum design has a certain amount
of conservativeness even when there is limited input data. The
constraint can be expressed as

FPF pTarF

��*x� �
≥CLTar ð25Þ

where pTarF and CLTar are the target PoF and the target conser-
vativeness level, respectively, for the constraint. By using the
two target values, C-RBDO is able to secure user-specified
conservativeness even with a finite amount of data.

4.1 Design sensitivity

The design sensitivity of the conservativeness level is
developed to provide an accurate and efficient direction
for the design search in the C-RBDO process. The finite
difference method (FDM) could be used to calculate the
design sensitivity; however, it requires a great deal of
computational time to calculate accurate design

sensitivity. Hence, an analytical design sensitivity is
necessary to perform C-RBDO efficiently.

The derivative of (13) with respect to a design variable di
yields

∂
∂di

FPF pF

���*x� 	
¼ ∂

∂di

Z p F

0

X
Z

Z
ΩΨ

f ϕ; ζ; ψj*x� �
dψ d ϕ

¼
Z p F

0

X
Z

Z
ΩΨ

f ϕ; ζ; ψj*x� � ∂
∂di

lnP ζjψ;*x
� �þ ln f ψj*x� �
 �

dψ
� 


dϕ:

ð26Þ

Compared with (13), there are two additional terms in (26).
The first additional term is the log-derivative of the probability
mass function of the input distribution types. This term is
derived analytically in Section 4.2 and is defined for now as

∂
∂di

lnP ζjψ;*x
� �

≡SZ ζ;ψ;*x; di
� � ð27Þ

As discussed earlier, a design change in the optimization pro-
cess does not affect the probability of the input variance; there-
fore, the probability is independent of the design variable di.
Hence, the second additional term in (26), which is the log-
derivative of the joint PDF of input distribution parameters, is
derived when di is the design variable that corresponds to X i:

∂
∂di

ln f ψj*x� � ¼ ∂
∂di

ln f μijσ2
i ;
*x

� �
¼ ND μi−dið Þ

σ2
i

≡SΨ μi;σ
2
i ; di;ND

� �
:

ð28Þ

Although the additional terms in (26) have analytical expres-
sion in (27) and (28), the design sensitivity cannot be calculated
directly. The reason is the same as why (13) is evaluated using
the MCS method in (24) of Section 3.4. Hence, the design
sensitivity in (26) is calculated using the MCS method as well.
The design sensitivity for the design variable di is

∂
∂di

FP F pF j*x
� �

≅
1

NMCSZ NMCSΨ

XNMCSΨ

n¼1

XNMCSZ

m¼1

I 0;p F½ � pF ζ mð Þ;ψ nð Þ
� 	h in

� SZ ζ mð Þ;ψ nð Þ;*x; di
� 	

þ SΨ μ nð Þ
i ;σ2 nð Þ

i ; di;ND
� 	h io

:

ð29Þ

(29) is quite similar to the conservativeness level of the PoF in
(24). Only the additional terms in (27) and (28) have to be
calculated at each MCS sample, and they are computationally
inexpensive. Hence, the design sensitivity can be calculated
with little additional effort during the calculation of the con-
servativeness level of the PoF. It is noted that the equations in
this section can be easily generalized by replacing ND with

Fig. 2 Flowchart of conservativeness level calculation
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NDi for the i-th data subset *xi in a case where each input data
subset has a different amount of data.

4.2 Log-derivative of probability mass function of input
distribution types

In Section 4.1, (27), which is the log-derivative of the probability
mass function of the input distribution types to the design vari-
able di, is required for the design sensitivity of the conservative-
ness level in (29). The easiest way to calculate (27) is with the
FDMbecause it only requires evaluations of the probabilitymass
function of the input distribution types in (23) at the perturbed
design and the current design. However, the FDM could be
inaccurate when appropriate perturbation size is not provided.
Moreover, there may be no unique perturbation size that is ap-
propriate for all candidate distribution types. Hence, determining
perturbation size could cause unnecessary difficulty and inaccu-
racy when calculating (27) using the FDM.

If analytical expressions of marginal PDFs are available,
(27) could be derived analytically by taking the log-derivative
of (23) with respect to the design variable di. First, the expres-
sion of data in (6), (9) and (10) are recalled:

*xi ¼ diþ*~xi ð9Þ
where

*xi ¼ *x 1ð Þ
i

*x 2ð Þ
i ⋯ *x NDð Þ

i

h iT
; ð6Þ

di ¼ di di ⋯ di½ �T : ð10Þ

(9) indicates that each data point *xi
(j) is a function of the

design variable di because the input data subset *xi moves
exactly the same amount as di moves while *~xi is invariant
in an optimization process. Let h(*x) be a general function of
the input data *x. Then, h(*x) contains the input data points
*xi

(1),…, *xi
(ND) in its expression. Therefore, the derivative of

h(*x) with respect to di is the summation of the derivative of
the function with respect to data *xi

(j):

∂
∂di

h *x
� � ¼ XND

j¼1

∂

∂*x jð Þ
i

h *x
� �

: ð30Þ

The log-derivative of the probability mass function of the in-
put distribution types in (23) yields

∂
∂di

lnP ζjψ;*x
� �

¼ ∂
∂di

lnL *x; ζ; ψ
� �

−ln
X

Z
L *x; ζ; ψ
� �h i

¼ ∂
∂di

lnL *x; ζ; ψ
� �

−
1X

Z
L *x; ζ; ψð Þ

X
Z

L *x; ζ; ψ
� � ∂

∂di
lnL *x; ζ; ψ

� �� 

:

ð31Þ

Therefore, the log-derivative of the likelihood function is nec-
essary for (31). The log-derivative is derived using the rela-
tionship in (30) as

∂
∂di

lnL *x; ζ; ψ
� � ¼

XND

m¼1

∂
∂*x mð Þ

i

ln f X i

*x mð Þ
i

���ζi;μ j; ; σ
2
j

� 	

¼
XND

m¼1

1

f X i
*x mð Þ

i

���ζi;μ j; ;σ
2
j

� 	 ∂ f X i
*x mð Þ

i

���ζi;μ j; ; σ
2
j

� 	
∂*x mð Þ

i

:

ð32Þ

In (32), the derivatives of the marginal PDF f X i
are

required. The derivatives of commonly used marginal
PDFs are derived in Table 1 using the original expres-
sions of marginal PDFs in Appendix A, Table 18. Using
the derivatives, (32), the log-derivative of the probabil-
ity mass function of the input distribution types can be
obtained.

5 Numerical example: 2-dimensional mathematical
example

In this section, the developed methods for estimation of
conservativeness level and its design sensitivity are ver-
ified using a 2-D mathematical example. The conserva-
tiveness levels using two different data sets are com-
pared to understand the effect of the amount of data.
The developed design sensitivity method is then com-
pared with FDM design sensitivity to check its accura-
cy. In addition, C-RBDO has been performed under

Table 1 Derivative of PDF

Distribution
type

dfX/dx

Normal − x−a
b2

f X xð Þ

Lognormal − 1
x 1þ lnx−a

b2

� 	
f X xð Þ

Weibull b−1
x − b

a
x
a

� �b−1h i
f X xð Þ

Gumbel
1
b exp − x−a

b

� �
−1

� �
f X xð Þ

Gamma
a−1
x − 1

b

� �
f X xð Þ

Extreme 1
b 1−exp x−a

b

� �
 �
f X xð Þ

Extreme type-II 1
x a b

a

� �a−a−1
 �
f X xð Þ
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different conditions to understand the performance of
the developed method.

For the mathematical example, three performance
measures of the 2-D mathematical problem are consid-
ered:

G1 Xð Þ ¼ 1 −
X 2

1X 2

20
G2 Xð Þ ¼ − 1 þ 0:9063X 1 þ 0:4226X 2−6ð Þ2

þ 0:9063X 1 þ 0:4226X 2−6ð Þ3
−0:6 0:9063X 1 þ 0:4226X 2−6ð Þ4− −0:4226X 1ð
þ0:9063X 2Þ

G3 Xð Þ ¼ 1 −
80

X 2
1 þ 8X 2 þ 5

ð33Þ
where X 1 and X 2 are independent input random
variables. The limit states Gi ¼ 0ð Þ of (33) are shown
in Fig. 3, and Gi < 0 refers to the feasible area in
this example. In Table 2, a benchmark distribution,
which will be used as a true distribution, of X1 and
X2 is shown. In addition, contours of 95.5 % proba-
bil i ty density of the benchmark distr ibution at
d0 = [d1, d2]

T = [5, 5]T and d1 = [4.7, 1.6]T are shown
in Fig. 3.

5.1 Conservativeness level calculation

To verify the effectiveness of the proposed method for
conservativeness level estimation, the conservativeness
level of performance measures in (33) is calculated.
Because the method is for a limited-data problem, 10
pairs of input data are randomly drawn from the bench-
mark distribution in Table 2 using the “normrnd”

function in MATLAB. The *~x1 and *~x2 of the drawn
data are shown as follows:

*~x1 ¼

−0:2705
0:1054
0:2906
0:8496
−0:1261
0:1301
0:0492
−0:5060
−0:0578
−0:4645

2
666666666666664

3
777777777777775

;*~x2 ¼

−0:2501
−0:2259
0:2583
0:2341
0:2365
0:0128
−0:5509
0:0266
0:3005
−0:0419

2
666666666666664

3
777777777777775

: ð34Þ

As explained in Section 3.3, combinations or candi-
date distributions are necessary to evaluate the conser-
vativeness level. In this example, for the input distribu-
tion type Z, the 20 candidate types listed in Table 3 are

Fig. 3 Limit states of 2-D mathematical example and 95.5 % contour of
benchmark distribution at d0 and d1

Table 2 Benchmark input distribution

Random variable Marginal distribution Mean Variance

X1 Normal d1 0.32

X2 Normal d2 0.32

Table 3 Candidate input distribution types at d1 with 10 data pairs

No. Marginal type for X1 Marginal type for X2

1 Gumbel Extreme

2 Extreme type-II Extreme

3 Gumbel Weibull

4 Lognormal Extreme

5 Gamma Extreme

6 Extreme type-II Weibull

7 Normal Extreme

8 Lognormal Weibull

9 Gamma Weibull

10 Gumbel Normal

11 Extreme type-II Normal

12 Normal Weibull

13 Lognormal Normal

14 Gumbel Gamma

15 Gamma Normal

16 Extreme type-II Gamma

17 Normal Normal

18 Gumbel Lognormal

19 Lognormal Gamma

20 Extreme type-II Lognormal
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used. Each input random variable Xi can have seven
marginal distribution types (Normal, Lognormal,
Weibull, Gumbel, Gamma, Extreme, and Extreme type-
II). Hence, in this bivariate problem, there are 49
(=7 × 7) combinations. However, considering all 49 com-
binations is ineffective and inefficient because many of
them have very small probability. Hence, it is reason-
able to narrow the number of candidates down. Among
the 49 combinations, the 20 most probable types (ac-
cording to their likelihoods) are selected at design point
d1 = [4.7, 1.6]T using the drawn data and the sample
variances of the data. The most probable type
(Gumbel – Extreme) has 9.45 % probability mass, and
the 20th most probable type (Extreme type-II –
Lognormal) has 1.89 %. Since they have meaningful
probability mass values, those 20 are selected. Both
numbers of MCS samples, NMCSΨ and NMCSZ, are
set to 20,000. Finally, following the procedure shown
in Fig. 2, the conservativeness level of the PoF is cal-
culated with the 10 drawn data pairs and the 20 candi-
date distribution types, and the obtained result is shown
in Fig. 4.

Using the benchmark distribution in Table 2, the
PoFs at d1 are 1.79 %, 1.49 % and 0 % for G1, G2

and G3, respectively. However, when only 10 data pairs
are available, the conservativeness levels at pF= 2.275%
are 23.9 % and 41.4 % for G1 and G2, respectively, as
shown in Fig. 4. Even though pF = 2.275% is larger
than the benchmark PoFs (1.79 %, 1.49 % and 0 %),
the conservativeness level is less than 50 %. This means
that, at the design point d1, we have less than 50 %
confidence that the design will meet the target PoF of
2.275 % due to the limited input data. Consequently, if
only the 10 data pairs are available, conservativeness
has to be applied to the design to assure that the target

PoF is satisfied. For the third constraint G3, the conser-
vativeness level increases rapidly from zero at pF= 0 to
a 99.9 % conservativeness level at pF= 2.275%. This is
a reasonable result because the limit state of G3 is far
enough from d1 and is thus a very conservative design
for G3, as shown in Fig. 3. The sample variances of X1

and X2 data in (34) are 0.39452 and 0.27642, respective-
ly. Hence, there is more input uncertainty in the X1

direction than in the X2 direction. As shown in Fig. 3,
G2 is mainly affected by uncertainty in the X1

(horizontal) direction, while G1 is affected by uncertain-
ty in both the X1 and X2 (vertical) directions. This is
why the conservativeness level for G1 (41.4 %) is larger
than the one for G2 (23.9 %). In addition, we can see
that the statistical information in data as well as the
number of data affects conservativeness level.

To understand how the amount of data affects the
conservativeness level of the PoF, 100 pairs of data
are again drawn from the benchmark distribution in
Table 2. Using the drawn data, 20 new candidate distri-
bution types are chosen according to the same proce-
dure used for the 10 data pairs. Using the 100 data
pairs and 20 candidate distribution types, the conserva-
tiveness level is evaluated as shown in Fig. 5. At the
same design point d1, the conservativeness levels at pF
= 2.275 % are 59.9 % and 63.3 % for G1 and G2,
respectively. Therefore, the result agrees with the expec-
tation that the conservativeness level is more assured
when more data is available. For the inactive constraint
G3, the conservativeness level is 100 %, which has not
changed much from the case of the 10 data pairs. This
is reasonable because the conservativeness level is al-
ready maximized, even with the 10 data pairs. The con-
servativeness level for G1 (59.9 %) is very similar to
the one for G2 (63.3 %). Because the sample variances

Fig. 4 Conservativeness level of PoF at d1 with 10 data pairs Fig. 5 Conservativeness level of PoF at d1 with 100 data pairs
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of X1 and X2 data are 0.32022 and 0.31232, respectively,
the uncertainty in both the X1 and X2 directions are
similar. Therefore, the conservativeness levels are simi-
lar to each other. More data indicates that better infor-
mation is in the data set. It can be seen that the sample
variances of the 100 data pairs (0.32022 and 0.31232)
are much closer to the ones of the benchmark distribu-
tion in Table 2 (0.32 and 0.32) than the ones of 10 data
pairs (0.39452 and 0.27642). Therefore, it is anticipated
that more data will increase the conservativeness level
rapidly due to both larger number of data and better
information in it. However, a design point with the con-
servativeness levels of 59.9 % and 63.3 % is still far
from a safe and reliable design point.

Throughout the two examples with 10 and 100 data
pairs, it is shown that the design point d1, which was
safe and reliable with the benchmark distribution, can-
not ensure 2.275 % target PoF when insufficient data or
even when enough input data is provided. Therefore, the
conservativeness level of the PoF should be incorporat-
ed in the RBDO for a limited amount of input data. It
also can be seen that the developed method appropriate-
ly considers amount of provided data when estimating
the conservativeness level.

5.2 Accuracy of design sensitivity of conservativeness level

In this section, the accuracy of the derived design sen-
sitivity of the conservativeness level in (29) is tested
using the performance measures in (33) and the same
10 input data pairs used in Section 5.1. The conserva-
tiveness level is calculated at pF= 10% to obtain fast
convergence of FDM design sensitivity. The design sen-
sitivity is calculated at d2 = [5, 1.5]T. Candidate distribu-
tion types are selected to cover several marginal distri-
bution types as shown in Table 4.

The design sensitivity of the conservativeness level is
calculated and compared with the FDM result. The
FDM result is carried out by using central finite differ-
ence and perturbing each design variable by 0.1 % for-
ward and backward. Eight million MCS samples for the
input distribution parameters and input distribution types
are used (NMCSΨ=NMCSZ= 8, 000, 000). At the same

time, the developed design sensitivity is calculated using
only 20,000 MCS samples for both NMCSΨ and
NMCSZ. Because the FDM requires evaluations at both
the forward and backward perturbed designs in each
input random variable, a total of 32 million MCS sam-
ples is actually used to calculate the design sensitivity
using the FDM in the 2-D mathematical problem. Thus,
only 0.0625 % of the MCS samples for the FDM are
used for the developed design sensitivity.

The accuracy check result is summarized in Table 5.
The agreement of the developed design sensitivity com-
pared to the FDM result varies from 94.2 % to
100.9 %. This indicates that the developed design sen-
sitivity agrees with the FDM result. The conservative-
ness level values at the forward and backward perturbed
designs have similar values; for example, conservative-
ness levels of G1 at the forward and backward perturbed
designs are −0.043815 and −0.041346, respectively. The
finite difference (subtraction of the values) loses the
first significant digit. Hence, the conservativeness level
value at each perturbed design should have many sig-
nificant digits for evaluating accurate FDM design sen-
sitivity. This is why FDM design sensitivity uses more
MCS samples than the developed design sensitivity
method. The developed method calculates design sensi-
tivity in a semi-analytical way, so that there is no loss
of significant digits. Therefore, it uses fewer MCS sam-
ples than the FDM. Moreover, it does not require per-
turbation size, which may cause trouble in FDM design
sensitivity when it is not selected reasonably. Hence, the
developed design sensitivity method is as accurate as
the FDM design sensitivity, does not require determina-
tion of perturbation size, and is much more efficient.

5.3 Confidence-based RBDO

In Sections 5.1 and 5.2, the developed estimation methods for
conservativeness level and for its design sensitivity have been
verified. In this section, the design optimization process (i.e.,
C-RBDO) has been performed using the developed methods.

Table 4 Candidate input
distribution types for
design sensitivity test

No. X1 X2

1 Normal Lognormal

2 Lognormal Normal

3 Extreme Lognormal

4 Extreme Normal

5 Normal Gumbel

Table 5 FDM and developed design sensitivity of conservativeness
level

Design variable Design sensitivity G1 G2

d1 FDM −0.2469 2.0047

Developed −0.2325 2.0232

Agreement 94.2 % 100.9 %

d2 FDM −0.5563 −1.5767
Developed −0.5478 −1.5545
Agreement 98.5 % 98.6 %
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The C-RBDO for the 2-D mathematical example is formulat-
ed as

minimize cost dð Þ ¼ −
d1 þ d2−10ð Þ2

30
−

d1−d2 þ 10ð Þ2
120

subject to FPF j
pTarF ¼ 2:275%j*x

� 	
≥90%; j ¼ 1; 2; 3

dL < d < dU ; d∈ℝ2; and X∈ℝ2

ð35Þ
where FPF j

is the conservativeness level of the performance

measure Gj in (33), dL= [0, 0]T and dU= [10, 10]T. It is noted
that the cost function in (35) is a deterministic function. For
the C-RBDO process, the 10 data pairs in (34) are used. In
addition, the optimization is also conducted for the 20 data
pairs drawn from the benchmark distribution in Table 2. The
*~x1 and *~x2 of the 20 data pairs are shown as follows.

*~x1 ¼

−0:4224
0:1951
−0:1442
−0:4430
0:1225
0:4416
0:7250
0:0070
−0:0581
0:1192
−0:1191
−0:6024
0:3532
0:1952
−0:1171
0:4437
−0:1119
−0:9374
0:3611
−0:0079

2
66666666666666666666666666666666664

3
77777777777777777777777777777777775

; *~x2 ¼

0:1929
0:2856
0:5433
−0:2927
−0:1043
0:0144
−0:2329
−0:0825
−0:2743
0:4301
0:0066
0:7394
−0:3420
−0:4818
0:4609
0:3256
−0:2971
−0:3731
−0:2917
−0:2263

2
66666666666666666666666666666666664

3
77777777777777777777777777777777775

: ð36Þ

Confidence-based RBDO is computationally expensive
compared to deterministic design optimization (DDO) and
conventional RBDO. Therefore, for numerical efficiency,
DDO and conventional RBDO are carried out in advance of
C-RBDO. In this way, the computational effort for design
iterat ions of the C-RBDO process is minimized.
Deterministic design optimization is launched from the initial
design d0 = [5, 5]T. Because DDO does not consider the input
uncertainty or variability, the optimum design of DDO is the
same as dDDO= [5.1969, 0.7405]T, regardless of given input
data. From dDDO, the conventional RBDO is performed using
the most likely distribution types and sample variances, which
can be obtained using the given input data. It is noted that the

means of input random variables are the design variables in
the conventional RBDO process.

Finally, the C-RBDO is launched at the conventional
RBDO optimum. A sequential quadratic programming
(SQP) algorithm is used for the C-RBDO with conver-
gence criteria 0.001 for first-optimality, constraint (con-
servativeness level) and design movement. Both
NMCSΨ and NMCSZ are set to 20,000. Assuming that
the conventional RBDO optimum design is close to the
C-RBDO optimum design, 20 candidate input distribu-
tion types are determined among 49 combinations at the
conventional RBDO optimum using the given input da-
ta. The C-RBDO process is carried out using an Intel
Xeon E5-2690 processor with 16GB memory and the
computational time is approximately 2.5 h. As a bench-
mark, the conventional RBDO optimum design based on
the benchmark input distribution in Table 2 is obtained
as well. The results of C-RBDO and the benchmark
design are summarized in Table 6.

The C-RBDO optimum designs satisfy the given target con-
fidence level of 90 % for both the 10 and 20 input data pairs.
Both C-RBDO processes are converged under eight design
iterations, which is efficient enough. This could be an indica-
tion that the provided design sensitivity is quite accurate.
Because G3 is far enough from both optimum designs, the
conservativeness levels for G3 are almost 100 %, as shown in
Table 6. Comparing both C-RBDO optimum designs with the
benchmark design, the optimum cost is increased. For the case
with 10 input data pairs, 12.4 % more cost (−1.6722 vs.
−1.9089) is required to meet the target conservativeness level
since significant input uncertainty arises due to the limited data.
Hence, a more conservative design is obtained in C-RBDO
using higher optimum cost. However, in the case with 20 data
pairs, the optimum cost value increases only 8.3% compared to
the benchmark (−1.7500 vs. −1.9089) as it has more data. That
is, less input uncertainty is induced by more data, so a less
conservative design is obtained than for the case with 10 data
pairs to satisfy 90 % target conservativeness level.

In real engineering applications with limited input data, the
C-RBDO results in Table 6 are all that we can obtain.
However, being this is a numerical example, a conventional
reliability analysis can be performed at the C-RBDO optimum
designs using the benchmark distribution in Table 2. The re-
liability analysis will reveal how conservative the C-RBDO
optimum designs are. The calculated results are summarized
in Table 7. The optimum design of the case with 10 data pairs
has PoFs of 0.051 % and 0.023 % forG1 andG2, respectively,
which are 1.0 % (0.023/2.219) of the result of the benchmark
design. However, in the case with 20 data pairs, the PoFs are
only 0.156 % and 0.245 % for G1 and G2, respectively, which
are approximately 6.7 % (0.156/2.319) of the result of the
benchmark design. Therefore, it can be concluded that the
number of data is a crucial factor in the input uncertainty,
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especially when the data is limited. The trend will be shown
further in Section 5.4

The result in Table 7 may seem to be overly conser-
vative. However, the conservativeness is inevitable when
the insufficient input data is given for the input proba-
bilistic model. In Ref (Noh et al. 2011a), sample vari-
ance is calculated from data and is enlarged according
to its confidence level to consider the input uncertainty
due to limited number of data. For 10 and 20 data
pairs, the sample variance is increased by 170.7 %
and 87.8 %, respectively, for 90 % confidence level,
which is the same level used for the target conservative-
ness level. Using the enlarged sample variance, the con-
ventional RBDO is performed targeting 2.275 % PoF,
which is the same target PoF in C-RBDO as well.
The result is summarized in Table 8. It can be seen that
cost is increased by 6.0 % (−1.6722 .vs. –1.5715) and
2.6 % (−1.7500 .vs. –1.7039) compared to the C-RBDO
result. Conventional reliability analysis using the bench-
mark distribution is also shown in Table 8. All the PoF
values in Table 8 are much smaller than the ones in
Table 7. It is noted that the enlarged sample variance
considers only uncertainty in the variance of the input
random variable, while C-RBDO considers the uncer-
tainty of both mean and variance. Therefore, we can
see that the C-RBDO result is more appropriate and
also produces a reliable design even with a limited
number of input data.

5.4 Convergence test of C-RBDO

A large number of data ND would bring three aspects to the
developed estimation method for the conservativeness level.

First, large ND would reduce the input uncertainty in input
distribution parameters as shown in (16) and (19). Second,
large ND would provide accurate estimation of sample vari-
ance si

2, which is used for distribution of the input variance in
(16) that affects (19) as well. Third, large ND would suggest a
correct input distribution type in (23) by providing distinctive
likelihood value in (22). All three aspects eventually reduce
the input uncertainty, so that the C-RBDO with large ND
would be close to the benchmark design in Table 6.
Therefore, in the C-RBDO process, the only parameter that
determines whether or not the C-RBDO optimum converges
to the benchmark design is ND. Changing the target conser-
vativeness level may expedite the convergence, but the oppo-
site is also possible. In this section, the number of data in the 2-
D mathematical example is increased to 1000 to see if the C-
RBDO optimum moves closer to the benchmark design.

For the convergence test, 50, 100, 200, 500 and 1000
pairs of data are drawn from the benchmark distribution
in Table 2. The same procedure used in Section 5.3 has
been followed, with the same target values for the large
number of input data cases. First, the initial design is
set to the DDO optimum design dDDO, as the DDO
result is the same regardless of the number of data.
Second, conventional RBDO is performed for each case
with the most likely distribution types and the sample
variances. Then, the 20 candidate distribution types are
determined at the conventional RBDO optimum, and C-
RBDO is performed from the conventional RBDO opti-
mum using the candidate types.

The C-RBDO optimum designs using 50, 100, 200,
500 and 1000 pairs of data are shown graphically in
Fig. 6. Because the optimum designs of 200, 500 and
1000 data pairs are all in gray area of Fig. 6a, the area
is magnified in Fig. 6b. In addition, C-RBDO optimum
designs of 10 and 20 data pairs and the benchmark
design obtained in Section 5.3 are shown in Fig. 6.
The benchmark design is the RBDO optimum design
if there is no input uncertainty. Hence, we can expect
that the C-RBDO optimum design with larger input data
will approach closer to the benchmark design as smaller
input uncertainty is in the input data. The optimum de-
signs for 10 and 20 data pairs are the farthest from the
benchmark optimum. Because they have smaller

Table 7 Reliability
analysis result using
benchmark distribution

Data Probability of failure (%)

G1 G2 G3

10 0.051 0.023 0

20 0.156 0.245 0

Benchmark 2.319 2.219 0

Table 6 Optimal design of
C-RBDO result and benchmark
design

Method Data Optimum design Cost Conservativeness level (%)

d1 d2 G1 G2 G3

C-RBDO 10 4.5516 2.0851 −1.6722 90.0 90.4 99.9

20 4.6658 1.9026 −1.7500 89.8 89.8 100.0

Benchmark design 4.7334 1.5498 −1.9089 – – –
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numbers of data compared to the other cases, the input
uncertainty in the input data is larger. To compensate
for the input uncertainty, the optimum designs are
pushed further inside the feasible domain (upper left
side in Fig. 6) to maintain a distance far from the limit
states of G1 and G2. The optimum designs for 50 and
100 data pairs have moderate distance from the bench-
mark design as well as the limit states of G1 and G2.
As the number of input data is increased, the input
uncertainty is reduced, so that the designs could be
closer to the benchmark design. Interestingly, the opti-
mum design of 50 data pairs is closer to the benchmark
design than the optimum design of 100 data pairs. The
reason is that the sample variances of 50 data pairs are
0.25952 and 0.30942, while those of 100 data pairs are
0.32022 and 0.31232. The sample variance of 50 data
pairs is smaller than 0.32, the variance of the benchmark
distribution. The small sample variance of 50 data pairs
indicates underestimation of input variability. The under-
estimation makes the optimum design close to the
benchmark design; however, the conventional RBDO
with 50 data pairs will violate the target PoF 2.275 %
due to the underestimation. Therefore, it can be seen
that even 50 data could induce unreliable conventional
RBDO optimum design in this case. However, the C-
RBDO method pushes the design to a feasible region to
compensate for the underestimation, which is the input
uncertainty. The same analogy can be applied to the

optimum designs of 200, 500 and 1000 data pair. As
shown in Fig. 6b, the optimum design of 1000 data pair
is farther from the benchmark design than the ones of
200 and 500 data; however, this is due to the statistical
information in the data. The optimum designs of 200,
500 and 1000 data pairs are already very close to the
benchmark design as they have a large number of data.
In addition, they are reliable designs because they are
further inside of the feasible domain than the bench-
mark design. Hence, we can conclude that C-RBDO
optimum design converges to the benchmark design as
more data are provided.

5.5 Repeated test of C-RBDO

In this example, the theoretical meaning of 90 % conserva-
tiveness level is that there is a 90 % probability that the true
PoF is less than the 2.275 % target PoF. However, this defini-
tion is not readily comprehensible. The practical meaning
could be that at least 90 % of C-RBDO optimum designs
satisfy the 2.275 % target PoF if we try C-RBDO with many
sets of input data. Each C-RBDO trial will satisfy a 90 %
target conservativeness level; however, to understand the
meaning of a 90 % conservativeness level, it is necessary to
try the same C-RBDO many times. Therefore, C-RBDO has
been tested 1000 times with different sets of input data in this
section.

There are three types of test cases: 20, 100 and 200
input data pairs. For each case, input data are drawn from
the benchmark distribution in Table 2 1000 times. Starting
from dDDO, conventional RBDO, C-RBDO and conven-
tional reliability analysis using the benchmark distribution
are performed consecutively. The same procedures used in
Sections 5.3 and 5.4 are followed. Target conservativeness
level and target PoF are set to 90 % and 2.275 %, respec-
tively. This repeated test is performed on a high-
performance computing system – Excalibur – in the U.S.

(a) 10 ~ 100 data                            (b) 200 ~ 1000 data

Fig. 6 C-RBDO optimum
designs with large number of
input data

Table 8 RBDO with enlarged sample variance

Data Optimum Design cost Benchmark PoF (%)

d1 d2 G1 G2 G3

10 4.4243 2.3267 −1.5715 0.011 0.001 0.000

20 4.7002 2.0074 −1.7039 0.046 0.155 0.000
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Army Research Laboratory due to its very high computa-
tional cost. The repeated test used approximately 50 nodes
in parallel. Each node on the Excalibur has 32 cores and
128 GB memory, which result in excellent computation
power.

The number of cases that have benchmark PoF larger
than 2.275 % are summarized in Table 9. Those cases
can be interpreted as safe and reliable cases in real
situations. First, it can be seen that the results are in
accordance with the practical meaning of conservative-
ness level. Among 1000 trials, the smallest number is
899, which indicates all cases satisfy a 90 % conserva-
tiveness level. Therefore, it can be seen that the devel-
oped C-RBDO method works as intended. The perfor-
mance measure G3 always has successful results be-
cause the optimum designs are far from the limit state
of G3. The other performance measure, G1, has less
success as the number of input data increases. As the
number of input data increases, the joint PDF of input
distribution parameter in (15) and the probability mass
function of input distribution in (23) become more ac-
curate. Therefore, the success rate could approach 90 %
as more input data is provided. On the other hand, G2

acquires more success as more input data is provided.
The reason can be seen in Fig. 7, which shows limit
state (Gi= 0) and two contours of Gi= − 0.8 and 0.8 for
i = 1, 2. G2 has a narrower contour than G1, which
means output uncertainty in G2 is smaller than in G1.
The developed C-RBDO tries to compensate for the
output uncertainties in G1 and G2 in each trial using
the conservativeness level and given set of input data.
However, the compensatory amount of the output uncer-
tainty is similar for G1 and G2. As G1 has larger output
uncertainty, it shows a success rate similar to the target
conservativeness level, while G2 has a higher success
rate than G1. This can be further explained using the
result of the benchmark PoF.

The statistics of the benchmark PoF are shown in Table 10.
The statistics ofG3 are not shown because all of them are close
to 0 %. In Table 10, it can be seen that the average benchmark
PoFs ofG1 andG2 are close to each other, which indicates that
C-RBDO tries to consider the same amount of output uncer-
tainty in G1 and G2. However, the min-max interval of G2 is
smaller than that of G1 in all data cases because G2 has less
output uncertainty, as explained earlier. Therefore, the success

rate ofG2 is larger than that ofG1 in Table 9. Moreover, as the
number of data increases, the maximum benchmark PoF ofG2

decreases. This is why the success rate ofG2 increases as more
data are provided. The average values are all increased toward
2.275 % as more data are given. This result coincides with the
convergence test in Section 5.4. In addition, it can be seen that
more data reduces the size of the min-max interval as less
input uncertainty arises. The same feature can also be seen
in Fig. 8, which shows 1000 optimum designs in each case.
As more data are provided, the distribution of optimum de-
signs is concentrated in a smaller area due to the reduced input
uncertainty. It is also shown that most of the optimum designs
are distributed well inside the feasible domain, leaving the
benchmark design at a corner. Hence, it can be seen that C-
RBDO finds conservative design compared to the benchmark
design, which is not known during the C-RBDO process.

In this test, it is shown that the C-RBDO optimum designs
satisfy the practical meaning of conservativeness level. Hence, it
can be concluded that C-RBDO indeed finds reliable design in
the presence of limited number of data. It is noted that the success
rate is available when we have many sets of input data while the
conservativeness level is from a data set. This is why we cannot
match the two values exactly. Each C-RBDO trial finds a cost-
effective as well as reliable design based on the given input data
set. That is why the averages of the benchmark PoF ofG1 andG2

Fig. 7 Contour of G1 and G2 in 2-D mathematical example

Table 9 Number of
successful results in
repeated C-RBDO trials

Data G1 G2 G3

20 946 949 1000

100 913 958 1000

200 899 977 1000

Table 10 Statistics of benchmark PoF in repeated test

Data Probability of failure of G1 (%) Probability of failure of G2 (%)

Average Min. Max. Average Min. Max.

20 0.772 0.001 6.842 0.904 0.022 5.372

100 1.368 0.131 4.229 1.434 0.499 3.498

200 1.589 0.437 3.806 1.576 0.741 3.211
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are similar to each other. The repeated test in this section requires
the high-performance computing system, which is not usually
available. The C-RBDO could be one of the best solutions for
design optimization in the presence of a limited number of data
because it provides a cost-effective and reliable optimum design
based on the limited data.

6 Numerical example: 11-dimensional vehicle side
impact problem

In this section, an 11-dimensional vehicle side impact problem
(Youn and Choi 2004; Du and Choi 2008) has been tested to
verify the performance of the C-RBDO in high-dimensional
applications. The vehicle side impact problem has 11 input
random variables: X1 ~X7 are the thicknesses of structural
members, X8 and X9 are the material properties of critical
members, and X10 and X11 are the position of the impact test.
Hence, X10 and X11 are random parameters and not related to
the design variables. The benchmark distribution of the prob-
lem is shown in Table 11. It can be seen that all the input
random variables follow Normal distribution.

The optimization problem is to find d= [d1,…,d9]
T to

minimize cost dð Þ
subject to FPF j

pTarF ¼ 10%j*x
� 	

≥90%; j ¼ 1; …; 10

dL < d < dU ; d∈ℝ9; and X∈ℝ11

ð37Þ

(a) 20 data pairs                                        (b) 100 data pairs

(c) 200 data pairs

Fig. 8 Optimum designs of
repeated C-RBDO Test

Table 11 Benchmark input distribution

Random variable Marginal distribution Mean Variance

X1 Normal d1 0.032

X2 Normal d2 0.032

X3 Normal d3 0.032

X4 Normal d4 0.032

X5 Normal d5 0.032

X6 Normal d6 0.032

X7 Normal d7 0.032

X8 Normal d8 0.0062

X9 Normal d9 0.0062

X10 Normal 0 102

X11 Normal 0 102
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where dL = [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.192,
0.192]T and dU = [1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5,

0.345, 0.345]T. The cost function and 10 constraint
functions are defined by

cost dð Þ ¼ 1:98 þ 4:9 d1 þ 6:67d2 þ 6:98d3 þ 4:01d4 þ 1:78d5 þ 2:73d7

G1 Xð Þ ¼ 14:36 þ −9:9X 2−12:9X 1X 8 þ 0:1107X 3X 10ð Þ
G2 Xð Þ ¼ 1:86þ 2:95X 3 þ 0:1792X 10−5:057X 1X 2−11X 2X 8−0:0215X 5X 10ð

−9:98X 7X 8 þ 22X 8X 9Þ
G3 Xð Þ ¼ −3:02þ 3:818X 3−4:2X 1X 2 þ 0:0207X 5X 10 þ 6:63X 6X 9−7:7X 7X 8ð

þ0:32X 9X 10Þ
G4 Xð Þ ¼ −0:059þ −0:0159X 1X 2−0:188X 1X 8−0:019X 2X 7 þ 0:0144X 3X 5ð

þ 0:0008757X 5X 10 þ 0:08045X 6X 9 þ 0:00139X 8X 11

þ0:00001575X 10X 11Þ
G5 Xð Þ ¼ −0:106þ 0:00817X 5−0:131X 1X 8−0:0704X 1X 9 þ 0:03099X 2X 6−0:018X 2X 7ð

þ 0:0208X 3X 8 þ 0:121X 3X 9−0:00364X 5X 6 þ 0:0007715X 5X 10

−0:0005354X 6X 10 þ 0:00121X 8X 11 þ 0:00184X 9X 10−0:018X 2
2

�
G6 Xð Þ ¼ 0:42 þ −0:61X 2−0:163X 3X 8 þ 0:001232X 3X 10−0:166X 7X 9 þ 0:227X 2

2

� �
G7 Xð Þ ¼ 0:72þ −0:5X 4−0:19X 2X 3−0:0122X 4X 10 þ 0:009325X 6X 10ð

þ0:000191X 2
11

�
G8 Xð Þ ¼ 0:68þ 0:674X 1X 2−1:95X 2X 8 þ 0:02054X 3X 10−0:0198X 4X 10ð

þ0:028X 6X 10Þ
G9 Xð Þ ¼ 1:35þ −0:489X 3X 7−0:843X 5X 6 þ 0:0432X 9X 10−0:0556X 9X 11ð

−0:000786X 2
11

�
G10 Xð Þ ¼ 0:16 þ −0:3717X 2X 4−0:00931X 2X 10−0:484X 3X 9 þ 0:01343X 6X 10ð Þ

ð38Þ

The target PoF is 10 % and the target conservativeness level is
90 % in this example as shown in (37). It is difficult to carry
out the C-RBDO for high-dimensional applications like this
problem due to the huge number of candidate distribution
types. If seven marginal distribution types are used for each
random variable of the vehicle side impact problem, there are
nearly two billion (71 = 1,977,326,743) candidate distribution
types. Two billion types cannot be considered computational-
ly; therefore, we need a method to break the number of types
down effectively. Section 6.2 is dedicated to explain and re-
solve this challenge in detail.

6.1 Test cases

Similar to the 2-D mathematical example, sets of limited input
data have been drawn from the benchmark distribution in
Table 11. To see the effect of the number of data, three cases
with different data sizes are considered as shown in Table 12.
Moreover, in each case, the number of data for random variables
is different. Sample variance, which is the variance of the data, is
summarized in Table 12 aswell. By comparing Tables 11 and 12,
it can be seen that the more data we have, the more accurate the
information (sample variance) we can obtain.

Table 12 Test cases

Random variable Case 1 Case 2 Case 3

Number of data Sample variance Number of data Sample variance Number of data Sample variance

X1 15 0.024392 50 0.027362 150 0.028012

X2 0.037482 0.026722 0.028632

X3 0.025582 0.024872 0.026932

X4 0.029172 0.031652 0.027742

X5 0.024902 0.028862 0.027612

X6 0.037142 0.032832 0.033782

X7 0.031272 0.032022 0.030292

X8 20 0.0046832 60 0.0056432 200 0.0061082

X9 0.0056632 0.0056832 0.0056872

X10 10 7.00642 30 10.02082 100 9.42922

X11 10.52282 11.64602 10.02902
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To pursue an efficient process of the C-RBDO, the DDO
and the conventional RBDO have been performed a priori.
The same procedure with the 2-D mathematical example has
been followed for the conventional RBDO. The optimum de-
sign of DDO is the same for the three cases, whereas different
RBDO optimum design is obtained due to the different input
data. The optimum designs are summarized in Table 13. It can
be seen that d2, d4 and d5 are changed while the other design
variables are on their design bounds. d9 does not move in the
DDO process because the design sensitivities of the cost func-
tion and the active constraints with respect to d9 are zero.
However, in the conventional RBDO process, d9 is moved
to the lower bound for all three cases.

The cost function values at the DDO and conventional
RBDO optimum designs are shown in Table 14. All three
conventional RBDO optimum designs have larger cost value
than the one at the DDO optimum design because they secure
more reliability to compensate for the input variability.
However, in the conventional RBDO, the input variability
cannot be considered correctly because it is estimated using
limited input data, as shown in Table 12. To understand the
effect of the limited input data, the reliability analysis has been
performed at these optimum designs using the benchmark
distribution in Table 11 and the benchmark PoF of active
constraints are listed in Table 14. In Case 1, the 10 % target
PoF is almost satisfied for G1 and G9; however, this result
cannot be always expected. Because input uncertainty is not
considered in the conventional RBDO, the result may not
satisfy the target PoF with different sets of input data. Case
2 has more data than Case 1, but it fails to satisfy the 10 %
target PoF for G1 and G9 due to the input uncertainty. Even
though the sample variances of Case 2 are closer to the ones of
the benchmark distribution compared to Case 1 (see Tables 11
and 12), Case 2 violates the target PoF more. The benchmark
PoF of Case 3 is close to the 10 % target PoF even for G7.
Since a large number of data is given in Case 3, the input
uncertainty is substantially small. Hence, the conventional
RBDO optimum design of Case 3 is more trustworthy com-
pared to that of the other two cases.

6.2 Candidate distribution type selection

As explained earlier, the number of candidate distribu-
tion types is enormous (2 billion) if we try to consider
all marginal distribution types for each input random

variable. Hence, a method to effectively reduce the
number of candidates is introduced in this section. At
the conventional RBDO optimum design, which is the
initial design of the C-RBDO, all marginal PDFs for X1

are depicted using the sample variance (see Table 12) as
shown in Fig. 9. It is shown that the marginal distribu-
tion types can be divided into three groups as symmet-
ric, left-skewed and right-skewed PDFs and that we can
select one representative type from each group because
they have almost identical shape. Moreover, the slight
shape difference can be covered by the probability of
input distribution parameters. The other input random
variables follow the same PDF grouping as X1 except
for X10 and X11. Because X10 and X11 can have negative
values, the applicable marginal distribution types are
Normal, Gumbel and extreme. These three types also
represent the PDF groups for X1 ~X9. Hence, Normal,
Gumbel and extreme are used as the marginal distribu-
tion types for each input random variable.

Thus, the new number of candidate distribution types is 311

(=177,147), which is still a very large number to be considered
computationally. At the conventional RBDO optimum design,
the probability of 177,147 candidate distribution types is cal-
culated using (23) and settingψ to be the conventional RBDO
optimum design (input mean) and the sample variance (input
variance). These probability values are very small due to the
large number of combinations; for this reason, the probability
values are accumulated. In Table 15, the accumulated proba-
bility of distribution type of Case 1 is shown. Among the 177,
147 probability values, the probability that X1 would be
Normal distribution is accumulated as 50.6 %, as shown in
Table 15. In other words, the 50.6 % is the sum of all

Table 14 Cost function values and reliability analysis result using
benchmark distribution at DDO and conventional RBDO optimum
designs

Case Cost Probability of failure (%)

G1 G7 G9

DDO 24.029 49.79 73.50 41.85

RBDO Case 1 25.318 10.42 6.19 10.74

Case 2 25.096 13.90 9.81 13.70

Case 3 25.145 11.41 10.64 10.91

Table 13 Optimum designs of
DDO and conventional RBDO Case d1 d2 d3 d4 d5 d6 d7 d8 d9

DDO 0.5 1.2257 0.5 1.2071 0.9709 1.5 0.5 0.345 0.3

RBDO Case 1 0.5 1.2962 0.5 1.3253 1.0398 1.5 0.5 0.345 0.192

Case 2 0.5 1.3074 0.5 1.3560 1.0532 1.5 0.5 0.345 0.192

Case 3 0.5 1.3042 0.5 1.3185 1.0526 1.5 0.5 0.345 0.192
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probabilities that X1 is Normal distribution. In this way, all the
accumulated probability is calculated. From Table 15, the
dominant marginal distribution type for each random vari-
able is selected if the probability is over 66.7 % (=200 %/3).
The threshold value could be different; in this paper, we give
double weight (200 %) to determine dominancy and divide
it by three – the number of marginal distribution types.
Once, a dominant type is selected, it is the only marginal
type for the random variable. In this way, X3 ~X6 and X8

have one dominant type as marked with bold font in
Table 15. If there is no dominant type, multiple types are
considered for the variable. The marginal distribution types
with a probability less than 16.7 % (=50 %/3) have been
opted out from the candidate types. Again, we give half

weight to declare opt-out. For example, Gumbel has not
been used for the marginal distribution type for X1 because
its probability of 8.4 % is less than 16.7 %. The selected
marginal distribution types are marked with bold fonts in
Table 15, and there is a total of 144 (=2×3×3×2×2×2) can-
didate distribution types for Case 1. The same strategy is
used for Cases 2 and 3. Because these cases have more data,
a smaller number of candidate distribution types is selected.
For Case 2, X1 ~X10 have Normal distribution for the mar-
ginal distribution type, while X11 could have Normal and
Gumbel. Hence, there are two candidate distribution types
for Case 2. For Case 3, Normal distribution is dominant for
all random variables since there is enough data. Hence, there
is only one candidate distribution type in Case 3.

Table 15 Accumulate probability of distribution types at conventional RBDO optimum design for Case 1

Types X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

Normal 50.6% 46.0% 28.3 % 30.6 % 9.0 % 87.1% 40.5% 70.2% 42.8% 55.2% 47.9%

Gumbel 8.4 % 18.0% 0.2 % 0.5 % 0.0 % 10.2 % 20.6% 22.7 % 0.2 % 28.3% 44.8%

Extreme 40.9% 36.0% 71.5% 68.9% 91.0% 2.7 % 38.8% 7.1 % 57.0% 16.6 % 7.3 %

(a) Symmetric PDFs                                         (b) Left-skewed PDFs

(c) Right-skewed PDFs

Fig. 9 Marginal PDFs of X1

using sample variance at
conventional RBDO optimum
design
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6.3 Confidence-based RBDO result

Using the selected candidate distribution types, C-
RBDO has been performed for the 11-D vehicle side
impact problem. The C-RBDO is initiated at the con-
ventional RBDO optimum design in Table 13. Both
NMCSΨ and NMCSZ are set to 20,000 in this example.
The SQP is used for the optimization process, and the
convergence criteria are set to 0.001 for first-optimality,
conservativeness level and design movement. The opti-
mization uses an Intel Xeon E5-2690 processor with
16GB memory, and the computation time is 36.3, 0.5
and 0.8 h for Cases 1, 2 and 3, respectively. As more
data is given, the computation time is much smaller
because there is a smaller number of candidate distribu-
tion types and the initial design is closer to the C-
RBDO optimum design. The obtained optimum designs
are listed in Table 16. The optimum design variables d2,
d4 and d5 move to secure more conservativeness in the
C-RBDO process. In Case 1, d8 and d9 move a little
away from their bounds, but they stay on their bounds
in other cases. The other design variables remain at the
conventional RBDO optimum design. The cost function
values are all increased to satisfy the 90 % target con-
servativeness level for the active constraints as shown in
Table 16. The other constraints are inactive, which
means their conservativeness level is almost 100 %.
Case 1 uses 17 design iterations and 28 conservative-
ness level estimations, Case 2 uses four design itera-
tions and five conservativeness level estimations, and
Case 3 uses three design i tera t ions and eight

conservativeness level estimations. Case 1 uses more
design iterations and conservativeness level estimations
to compensate larger input uncertainty than other cases.
Considering this is a high-dimensional optimization
problem, the optimization processes are performed effi-
ciently and effectively by providing accurate design sen-
sitivity. The conventional RBDO optimum design using
the benchmark input distribution is also shown in
Table 16. It can be seen that the C-RBDO optimum
design approaches the benchmark design as more input
data is provided. Therefore, it is verified that the C-
RBDO performs effectively in this vehicle side impact
problem.

Reliability analysis is again carried out at the C-
RBDO optimum designs using the benchmark input dis-
tribution in Table 11. The benchmark PoF of active
constraints is shown in Table 17. It can be seen the
all PoFs are smaller than the 10 % target PoF. Hence,
C-RBDO secures more conservativeness in the optimum
design to compensate for the input uncertainty. At the
same time, the optimum designs show convergence to
the benchmark optimum in the sense of benchmark PoF
as well. Therefore, it can be confirmed that the C-
RBDO considers the limited input data correctly.

7 Conclusion

This paper presents a new method that takes insufficient
input data into consideration for RBDO. Probability of
failure is defined as a function of input distribution
parameters and types. When the amount of input data
is limited, there is no fixed input distribution parameter
and type, and the PoF becomes uncertain. Using the
Bayesian method, joint PDFs of input distribution pa-
rameters and types are obtained based on the input data.
Then, MCS is used to obtain the probability of the PoF,
and the conservativeness level is defined as the proba-
bility at a user-specified PoF value. The conservative-
ness level can be used as a new constraint for RBDO to
acquire reasonable conservativeness in the optimum de-
sign. Moreover, a new design sensitivity of the

Table 17 Reliability
analysis result using
benchmark distribution

Case Probability of failure (%)

G1 G7 G9

Case 1 5.085 1.523 6.761

Case 2 5.742 2.649 5.992

Case 3 8.630 7.510 8.629

Benchmark 9.877 9.918 9.908

Table 16 Optimum designs
of C-RBDO Case Optimum design Cost Conservativeness level (%)

d2 d4 d5 d8 d9 G1 G7 G9

Case 1 1.3323 1.4692 1.0768 0.3442 0.1945 25.979 90.3 90.1 90.5

Case 2 1.3281 1.4192 1.0797 0.3450 0.1920 25.756 90.0 89.7 90.2

Case 3 1.3143 1.3407 1.0642 0.3450 0.1920 25.322 89.3 88.8 89.4

Benchmark 1.3088 1.3215 1.0568 0.3450 0.1920 25.195 – – –
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conservativeness level is derived for an efficient and
effective optimization process.

Through a 2-D mathematical example, it is shown that
a safe design assuming the true input distribution is no
longer reliable when only limited input data is provided.
In addition, it is shown that more data provides a greater
conservativeness level at the design, which is a good in-
dication that the developed method correctly considers
amount of input data. The developed design sensitivity
of the conservativeness level is compared with FDM de-
sign sensitivity. The accuracy of the developed design
sensitivity agrees with the FDM design sensitivity well
while using only 0.0625 % MCS samples of the FDM.
Therefore, it is proven that the developed design sensitiv-
ity method is accurate as well as efficient. Using the de-
veloped method for estimation of conservativeness level
and design sensitivity, an RBDO process is performed to
acquire a more reliable optimum design even with limited
data. An optimum design closer to the benchmark opti-
mum design is obtained as more data is provided. At
the same time, the C-RBDO design optimum is not overly
conservative compared to the previously developed meth-
od, which uses confidence level of input variance. Finally,
C-RBDO is tested repeatedly to see the performance of

conservativeness level estimation. It is shown that the ob-
tained C-RBDO optimum design correctly represents the
target conservativeness level. Hence, the C-RBDO method
can be recommended for a design problem with insuffi-
cient input data. To verify the scalability of the developed
C-RBDO method, an 11-D vehicle side impact problem is
tested. A procedure to effectively select candidate distribu-
tion type is proposed for high-dimensional applications.
The C-RBDO result is in accordance with the 2-D math-
ematical example, which verifies the scalability of the C-
RBDO method.

In the future, the C-RBDO method could be expanded to
consider correlated input data. Ultimately, an engineering ap-
plication could be carried out for realistic applications.

Acknowledgments Research was supported by the Automotive
Research Center (ARC) in accordance with Cooperative Agreement
W56HZV-04-2-0001 U.S. Army Tank Automotive Research,
Development and Engineering Center (TARDEC). This research was
partially supported by high-performance computer time and resources
from the DOD High Performance Computing Modernization Program,
and the Technology Innovation Program (10048305, Launching Plug-in
Digital Analysis Framework for Modular System Design) funded by the
Ministry of Trade, Industry & Energy (MI, Korea). These supports are
greatly appreciated.

Appendix A

Table 18 Marginal PDFs

Distribution
type

PDF fX(x; a, b) Parameters

Normal
1ffiffiffiffi
2π

p
b
e−

1
2

x−a
bð Þ2 μ= a,σ= b

Lognormal 1ffiffiffiffi
2π

p
xb
e−

1
2

lnx−a
bð Þ2 μ ¼ eaþb2=2;

σ2 ¼ eb
2

−1
� 	

e2aþb2

Weibull
b
a

x
a

� �b−1e− x
að Þb

μ ¼ aΓ 1þ 1=bð Þ;
σ2 ¼ a2 Γ 1þ 2=bð Þ−Γ2 1þ 1=bð Þ� �

Gumbel
1
b exp − x−a

b −exp − x−a
b

� �� � μ ¼ aþ 0:5772b;
σ2 ¼ b2π2=6

Gamma
xa−1 e−x=b

Γ að Þba
μ ¼ ab;
σ2 ¼ ab2

Extreme
1
b exp

x−a
b −exp x−a

b

� �� � μ ¼ a−0:5772b;
σ2 ¼ b2π2=6

Extreme Type
II a

b
b
x

� �aþ1e−
b
xð Þa μ ¼ b Γ 1−1=að Þ;

σ2 ¼ b2 Γ 1−2=að Þ−Γ2 1−1=að Þ� �
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