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Abstract This study compares the performance of popular
sampling methods for computer experiments using various
performance measures to compare them. It is well known that
the sample points, in the design space located by a sampling
method, determine the quality of the meta-model generated
based on expensive computer experiment (or simulation) re-
sults obtained at sample (or training) points. Thus, it is very
important to locate the sample points using a samplingmethod
suitable for the system of interest to be approximated.
However, there is still no clear guideline for selecting an ap-
propriate sampling method for computer experiments. As
such, a sampling method, the optimal Latin hypercube design
(OLHD), has been popularly used, and quasi-random se-
quences and the centroidal Voronoi tessellation (CVT) have
begun to be noticed recently. Some literature on the CVT
asserted that the performance of the CVTwas better than that
of the LHD, but this assertion seems unfair because those
studies only employed space-filling performance measures
in favor of the CVT. In this research, we performed the com-
parison study among the popular sampling methods for com-
puter experiments (CVT, OLHD, and three quasi-random se-
quences) with employing both space-filling properties and a
projective property as performance measures to fairly com-
pare them. We also compared the root mean square error

(RMSE) values of Kriging meta-models generated using the
five sampling methods to evaluate their prediction perfor-
mance. From the comparison results, we provided a guideline
for selecting appropriate sampling methods for some systems
of interest to be approximated.
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1 Introduction

Computer experiments (or simulations) have been widely
used to circumvent expensive and time-consuming physical
experiments. However, an analysis using simulation models is
still expensive and time-consuming because of their ever-
increasing complexity (Crombecq et al. 2011; Viana et al.
2010; Gorissen et al. 2006). To reduce this computational
burden, cheap meta-models, replacing the expensive simula-
tion models, have been widely used for the past three decades
(Jones 2001; Wang et al. 2001; Wang 2003; Wang and
Simpson 2004; Wang and Shan 2007). A meta-model is gen-
erated based on expensive simulation results obtained at sam-
ple (or training) points (Sobester et al. 2005). Thus, the quality
of the meta-model generated depends on the sample points,
and it is very important to locate the sample points using a
sampling method suitable for the system of interest to be
approximated.

There are two ways of evaluating the performance of a sam-
pling method: (1) without using simulation results and (2) with
using simulation results. The representative performance mea-
sures, without using simulation results, are the space-filling prop-
erty and the projective property (Xiong et al. 2009). The

* Dong-Hoon Choi
dhchoi@hanyang.ac.kr

1 Graduate School of Mechanical Convergence Engineering, Hanyang
University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Korea

2 PIDOTECH Inc., HIT #312, Hanyang University, 222
Wangsimni-ro, Seongdong-gu, Seoul, Korea

3 School of Mechanical Engineering, Hanyang University, 222
Wangsimni-ro, Seongdong-gu, Seoul, Korea

Struct Multidisc Optim (2017) 55:221–235
DOI 10.1007/s00158-016-1490-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-016-1490-6&domain=pdf


projective property measures how well sampled points are dis-
tributed when projected onto axes, while the space-filling prop-
ertymeasure show evenly sampled points are spread in the design
space. The representative performance measure with using sim-
ulation results is the root mean square error (RMSE) (Chai and
Draxler 2014) values of meta-models generated using the sam-
pled points to evaluate the prediction performance. The space-
filling property, the projective property, and the RMSE values are
employed to evaluate the performance of sampling methods for
computer experiments.

Among sampling methods for computer experiments, the
Latin hypercube design (LHD) is one of the most popular
(Loh 1996), and quasi-random sequences and, recently,
centroidal Voronoi tessellation (CVT) have begun to be no-
ticed (Du et al. 1999). LHDs intrinsically have an excellent
projective property because of their generation algorithm, but
many of them may have an unsatisfactory space-filling prop-
erty. To overcome this weak point, the optimal Latin hyper-
cube design (OLHD) was proposed. When it selects samples,
it considers not only the projective property but also the space-
filling property by introducing an optimization criterion such
as maximizing the minimum distance between samples
(Husslage et al. 2011). Quasi-random sequences (also called
“low discrepancy sequences”) consider the projective proper-
ty only, and Halton, Hammersley (Wong et al. 1997), and
Sobol sequences (Sobol 1967) are famous among quasi-
random sequences. The CVT, based on a Voronoi tessellation,
considers the space-filling property only.

Some comparison studies between the LHD and the
CVT asserted that the CVT was found better than the
LHD (Romero et al. 2006; Saka et al. 2007). We, however,
think that the performance measures they used were inade-
quate because they only used the performance measures for
the space-filling property that are favorable to the CVT. As
mentioned in Goel et al. (2008), a sampling method taking
a single performance measure into account may lead to
small gains in that performance measure at the expense of
large deteriorations in other performance measures.
Moreover, they did not use the OLHD, but the LHD whose
space-filling property is worse than that of the OLHD. Also,
we could not find the literature on comparing the perfor-
mance of popular sampling methods for computer experi-
ments including the CVT, quasi-random sequences, and the
OLHD. In this study, we perform the comparison study
among the popular sampling methods for computer experi-
ments (the CVT, the OLHD, and three quasi-random se-
quences) with employing both space-filling properties and
a projective property as performance measures to fairly
compare them. We employ two existing performance mea-
sures for the space-filling property (the coefficient of vari-
ance measure and the mesh ratio), and propose a perfor-
mance measure for the projective property. We also com-
pare the root mean square error (RMSE) values of Kriging

meta-models generated using the five sampling methods to
evaluate their prediction performance.

The rest of the paper is organized as follows: Section 2
describes three kinds of performance measures used in this
study (the space-filling properties, the projective property,
and the prediction performance of the meta-model). In
Section 3, we compare the performances of CVT, OLHD,
and three quasi-random sequences (Halton, Hammersley,
and Sobol sequences) using the performance measures de-
scribed in Section 2. We summarize the comparison results
and provide a guideline for selecting appropriate sampling
methods for some systems of interest to be approximated in
the final section (Section 4).

2 Performance measures

We employ two types of performance measures usually used
for evaluating sampling methods for computer experiments.
Also, to assess the ability of sampling methods in generating a
meta-model with a good prediction performance, we employ
the RMSE of a meta-model generated by each sampling meth-
od of interest as a performance measure of a sampling method
for generating a meta-model with a good prediction
performance.

2.1 Performance measures for space-filling property

We adopt two measures, COVmeasure (λ) and mesh ratio (γ),
for evaluating the space-filling property of sampling methods
(Gunzburger and Burkardt 2004). To assess the COVmeasure
(λ), the minimum distance between the point zi and any point
zj other than zi in the set of NEXP sample points ({zi}i=1

NEXP) is
first calculated as

γi ¼ min j≠i zi−z j
�� ��: ð1Þ

Then, the COV measure (λ) is calculated by
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where

γ ¼ 1

NEXP

X NEXP

i¼1
γi: ð3Þ

The smaller the λ is, the better space-filling property the set
of the sample points has. For a perfectly uniform case, γ1
¼ γ2 ¼ ⋯ ¼ γNEXP ¼ γ so that λ=0.

The mesh ratio (γ) is defined as

γ ¼ maxi¼1;⋯;NEXPγi
mini¼1;⋯;NEXPγi

: ð4Þ

The closer to unity the γ is, the better space-filling property
the set of the sample points has. For a perfectly uniform case,
γ1 =γ2 =⋯=γNEXP so that γ=1.

2.2 Performance measure for projective property

We also evaluate the projective property measuring how well
the points project onto design variable axes. The star discrep-
ancy (Clerck 1986) is a typical measure to assess the projec-
tive property. It, however, requires a heavy computational
burden, and thus we propose an alternative measure for eval-
uating the projective property, denoted as P.P, as

P:P ¼
X NDV

i¼1
Ki; ð5Þ

where NDV denotes the number of design variables and

Ki ¼
X NEXP−1

j¼1
I i−Gi j
� �2

: ð6Þ

Denoting the lower and upper bounds of the ith design
variable as XLi and XUi, respectively, Ii in the above equation
is defined as

I i ¼ XUi−XLi
NEXP−1

; ð7Þ

which is the projected distance onto the ith design variable
axis between adjacent sample points when a set of sample
points has the perfect projective property. In Eq. (5), Gij is
the projected distance between the jth sample point and the
(j+1) th sample point when the projected sample points (j = 1,
2,…, NEXP) onto the ith design variable axis when the
projected sample points are numbered in ascending order.
Thus, Ki is a measure of deviation of the projective property
onto the ith design variable axis from the perfect one, and the
P.P in Eq. (4) is an aggregate measure of the projective prop-
erty onto all design variable axes.

2.3 Performance measure for generating a meta-model
with a good prediction performance

One of important purposes of applying sampling methods in
the field of design and analysis of computer experiments

(DACE) is to build a meta-model for exploring the design
space or finding an approximate optimum. In this study, to
assess the ability of sampling methods in generating a meta-
model with a good prediction performance, we employ the
RMSE of a meta-model generated by each sampling method
of interest, mathematically expressed as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NTEST

XNTEST

i¼1

y xið Þ−γ xið Þ
h i2

vuut
; ð8Þ

where y(xi) is the real function value at xi; γ xið Þ is the approx-
imate function value at xi, and NTEST is the number of test
points. The meta-model adopted in this study is a Kriging
model, one of the most popular models. The Kriging model
was mathematically developed and established by Metheron
(1963) based on Krige’s research (1951). Then, the Kriging
model was applied to various fields of engineering since Sacks
et al. (1989). In 1998, Simpson confirmed that the Kriging
model had good prediction performance in systems withmany
design variables and high nonlinearity through comparative
studies using several meta-models (Simpson et al. 1998).
For RMSE evaluation, we employ 50*NDV test points differ-
ent from the sample points for building Kriging models. If the
sample points are used as the test points for RMSE evaluation,
the RMSE value of interpolation models such as Kriging
models will be always zero, which is meaningless. The test
points are generated using OLHD, and the same test points are
used for RMSE evaluation of five sampling methods for each
test problem.

To represent a variety of responses in optimization problems,
we adopt nine mathematical functions whose types are valley-
shaped, having many local minima, plate-shaped with steep
ridges/drops, and bowl-shaped as listed in Table 1. Five of nine
functions are scalable for which the number of design variables
is set to 2, 4, 6, 8, and 10. Altogether, we use 29 test problems.

Table 1 Nine mathematical test functions

ID Function name Function type Dimension

1 Branin function Valley shape 2

2 Six-hump camelback
function

Many local minima 2

3 Haupt function Many local minima 2

4 Waving function Many local minima 2

5 Rosenbrock function Valley shape 2, 4, 6, 8, 10

6 Griewank function Many local minima 2, 4, 6, 8, 10

7 Rastrigin function Many local minima 2, 4, 6, 8, 10

8 Trid function Bowl type 2, 4, 6, 8, 10

9 Styblinski-Tang function Plate shaped & steep
ridges/drops

2, 4, 6, 8, 10
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(d) NDV=8

(e) NDV=10

(c) NDV=6

(b) NDV=4

(a) NDV=2

Fig. 1 The space-filling properties (λ, γ) of five sampling methods (a) NDV= 2 (b) NDV=4 (c) NDV=6 (d) NDV= 8 (e) NDV= 10 (f) 5*NDV (g)
10*NDV (h) 15*NDV (i) 20*NDV
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3 Comparison results

In this study, we compare performances of five sampling
methods for computer experiment: CVT, OLHD, and three
quasi-random sequences (Halton, Hammersley, and Sobol).
The optimization criterion of the OLHD in this study is

maximizing the minimum distance between samples. To assess
the performance measures for space-filling and projective prop-
erties described in Sections 2.1 and 2.2, respectively, the num-
ber of design variables (NDV) is varied as 2, 4, 6, 8, and 10 to
see the effect of NDV on the performance measures, and the
number of experimental points or sampling points (NEXP) is

(i) 20*NDV

(h) 15*NDV

(g) 10*NDV

(f) 5*NDV

Fig. 1 (continued)
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(c) NDV=6    

(b) NDV=4 

(d) NDV=8 

(e) NDV=10  

(f) 5

(h) 1

5*NDV     

5*NDV     

        (g)

        (i) 2

) 10*NDV 

20*NDV 

(a) NDV=2    

Fig. 2 The projective property
(P.P) of five sampling methods
(a) NDV= 2 (b) NDV=4 (c)
NDV= 6 (d) NDV= 8 (e)
NDV= 10 (f) 5*NDV (g)
10*NDV (h) 15*NDV (i)
20*NDV
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varied as 5*NDV, 10*NDV, 15*NDV, and 20*NDV to see the
effect of NEXP on the performance measures. Thus, we have
20 test cases of sampling points for each sampling method.
Also, for each test case, we generate 50 replications of sam-
pling points, evaluate 50 corresponding performance measures,
and use the average of 50 measure values as the performance
measure value of each test case in order to mitigate the non-
repeatability of the five sampling methods. Altogether, we gen-
erate 5,000 kinds of sampling points (5 kinds of NDVx4 kinds
of NEXPx50 replicationsx5 kinds of sampling methods).

Figure 1a through e show space-filling properties, λ and γ,
of five sampling methods with varying NEXP for different
NDVs (2, 4, 6, 8, and 10), and Fig. 1f through i with varying
NDV for different NEXPs (5*NDV, 10*NDV, 15*NDV, and
20*NDV). First of all, λ and γ show similar trends, which
means that either of the two can be used as a measure for the
space-filling property, as expected. Secondly, the space-filling
property of OLHD is better than that of CVT when the total
number of sampling points (NDV x NEXP) is small, but the
former becomes worse than the latter when the total number of
sampling points reaches around 30 and the difference in the
space-filling performance gets larger as the total number of
sampling points increase. The reason seems due to the differ-
ence of the generation mechanism between OLHD and CVT:
OLHD primarily satisfies the projective property and then
enhance the space-filling property by optimizing an optimality
criterion while CVT mainly concerns the space-filling prop-
erty. Furthermore, it becomes more difficult for OLHD to

improve the space-filling property without deteriorating its
projective property as the total number of sampling points gets
larger. Thirdly, the space-filling properties of quasi-random
sequences, which only consider the projective property (or
puts priority on the projective property) when they select
points, are generally worse than those of CVT and OLHD.

Figure 2a through e show the projective properties, P.Ps, of
five sampling methods with varying NEXP for different
NDVs (2, 4, 6, 8, and 10), and Fig. 2f through i with varying
NDV for different NEXPs (5*NDV, 10*NDV, 15*NDV, and
20*NDV). First of all, the projective property of CVT is worst
in all cases, which seems due to the difference in generation
mechanisms of sampling methods. CVT only considers the
space-filling property, and OLHD and quasi-random se-
quences primarily satisfy the projective property. Therefore,
the projective property of CVT is always worse than those of
OLHD and quasi-random sequences. Secondly, in general, the
projective properties of OLHD and quasi-random sequences
are comparable. Third, we can see that the projective property
of Halton and Hammersley become worse than that of Sobol
when NDV becomes large (larger than six). It is because
Halton and Hammersley lose their structures in a high dimen-
sion (Krykova 2003). On the other hand, Sobol keeps its
structure in a high dimension because of its additional unifor-
mity conditions, known as property A and property A’ (Sobol
et al. 2011). Therefore, it does not lose its structure even in a
high dimension. Thus, its projective property is best among all
the other sampling methods when NDV gets large.

(a) Branin function  

(c) Haupt function  (d) Waving function  

(b) Six-hump camelback function

Fig. 3 The RMSE values of the four 2-D test functions (a) Branin function (b) Six-hump camelback function (c) Haupt function (d) Waving function
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Figure 3 shows RMSE values of five sampling methods
applied to the four 2-D test functions with varying NEXP. For
all four test problems, the performance comparison among

�Fig. 4 The RMSE values of the Rosenbrock function (a) NDV=2 (b)
NDV = 4 (c) NDV = 6 (d) NDV = 8 (e) NDV = 10 (f) 5*NDV (g)
10*NDV (h) 15*NDV (i) 20*NDV

(a) NDV=2

(c) NDV=6    

(e) NDV=10 

(b) NDV=4 

(d) NDV=8 

(f

(h) 15*NDV   

f) 5*NDV     (g) 10*NDV

 (i) 20*NDV

Fig. 5 The RMSE values of the
Styblinski-Tang function (a)
NDV= 2 (b) NDV= 4 (c)
NDV= 6 (d) NDV= 8 (e)
NDV= 10 (f) 5*NDV (g)
10*NDV (h) 15*NDV (i)
20*NDV
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(a) NDV=2    

(c) NDV=6    

(e) NDV=10 

(f) 5*NDV   

 (b) NDV=4 

 (d) NDV=8 

(g) 10*NDV

(h) 15*NDV  (i) 20*NDV
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samplingmethods does not show any noteworthy tendency, but
confirms an expected result that the prediction performances of
meta-models are generally improved when NEXP increases.

Figures 4, 5, and 6 show RMSE values of five sampling
methods for the Rosenbrock function (valley-shaped), the
Styblinski-Tang function (plate-shaped with steep ridges/
drops), and the Trid function (bowl-shaped), respectively. In
each figure, Figures (a) through (e) show the RMSE values of
five sampling methods with varying NEXP for different
NDVs (2, 4, 6, 8, and 10), and Figures (f) through (i) with
varying NDV for different NEXPs (5*NDV, 10*NDV,
15*NDV, and 20*NDV). In all cases for all the three test
problems, CVT is found to be far inferior to the other sampling
methods while the other four sampling method show similar
performance in general. To investigate the reason of the ap-
parent inferiority of CVTwith noting that function values are
dramatically changing as approached to the boundary in the
case of all the three test functions, we counted the number of
sample points located in the outer 10 % region along each
design variable. Figure 7 shows a 2-D example. The average
number of sample points in the boundary region in 50 repli-
cations of the five sampling methods for different NDVs are
listed in Table 2. As clearly shown in Table 2, CVT has no
sample points in the boundary region (except for the case of
NDV=2 with NEXP=40 which has almost no sample points
in the boundary region). Thus, the Kriging model built using
CVT sample points cannot well represent the rapid change of
the function values in the boundary region, resulting in a far
inferior performance of CVT. Based on this investigation, we
recommend not to use CVT emphasizing just space-filling,
but to use one of the other sampling methods emphasizing
projective properties for functions with a rapid local change
in value.

Figure 8a through e show the RMSE values of five sam-
pling methods for the Griewank function with varying
NEXP for different NDVs (2, 4, 6, 8, and 10), and Fig. 8f
through i with varying NDV for different NEXPs (5*NDV,
10*NDV, 15*NDV, and 20*NDV). The Griewank function

has many local minima with equidistant intervals. From
Fig. 8a through e, we can observe that CVT performs best
for NDV=2. However, as NDV increases all five sampling
methods show similar performances. The reason seems to be
that the role of projective properties becomes important for
producing a good Kriging model even though the sampling
considering space-filling only can produce a good model
when NDV is very small. From Fig. 8f through i, RMSE
values are observed to clearly decrease as NDV increases.
This behavior does not agree with our expectation of in-
creased RMSE values with increased NDVs for fixed
NEXPs because of increased complexity, and is opposite to
those of all other test problems in this study. This counter-
intuitive behavior is due to the peculiar characteristics of the
Griewank function. The Griewank function is a quadratic
convex function superimposed by an oscillatory nonconvex
function giving rise to the large number of local minima, and
the region influenced by the oscillatory nonconvex function
becomes narrower and narrower as NDV increases (Locatelli
2003). This means that, as the NDV increases, more and
more region is represented by the quadratic convex function
and thus the RMSE values become smaller and smaller.

Figure 9a through e show the RMSE values of five sampling
methods for the Rastrigin function with varying NEXP for
different NDVs (2, 4, 6, 8, and 10), and Fig. 9f through i with
varying NDV for different NEXPs (5*NDV, 10*NDV,
15*NDV, and 20*NDV). The Rastrigin function has many lo-
cal minima with equidistant intervals as the Griewank function
does. Thus, the same behaviors can be observed as those of the
Griewank function except for the counterintuitive behavior of
decreased RMSE values of the Griewank function with in-
creased NDVs. The RMSE values of the Rastrigin function
increase with increased NDVs as expected. In general, we do
not recommend to use of CVT but to use OLHD and quasi-
random sequences for applications with many local minima.

4 Summary

In this study, we compared the popular sampling methods for
computer experiments (the CVT, the OLHD, and three quasi-
random sequences) by employing both space-filling

�Fig. 6 The RMSE values of the Trid function (a) NDV= 2 (b) NDV=4
(c) NDV= 6 (d) NDV= 8 (e) NDV= 10 (f) 5*NDV (g) 10*NDV (h)
15*NDV (i) 20*NDV

Numbe rr of points in the boundary  region= 4

Fig. 7 The boundary region
when the number of design
variables is two
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properties and a projective property as performance measures.
We also compared the RMSE values of Kriging meta-models
generated using the five sampling methods to evaluate their
prediction performance. As test functions, we adopted nine
mathematical functions whose types were valley-shaped, hav-
ing many local minima, plate-shaped with steep ridges/drops,
and bowl-shaped in order to represent a variety of responses in
optimization problems. Five of nine functions were scalable
for which the number of design variables was set to 2, 4, 6, 8,
and 10. Altogether, we used 29 test problems. The results of
our comparison study are summarized below.

1. The space-filling property of CVT was better than
that of OLHD when the total number of sampling
points reaches around 30 and the superiority of
CVT over OLHD in the space-filling performance
got higher as the total number of sampling points
increased. The reason seemed due to the difference
of generation mechanism between OLHD and CVT:
OLHD primarily satisfied the projective property and
then enhanced the space-fi l l ing property by

optimizing an optimality criterion while CVT fo-
cused on improving the space-filling property. The
space-filling properties of quasi-random sequences,
which only considered the projective property (or
put priority on the projective property) when they
selected points, were generally worse than those of
CVT and OLHD.

2. The projective property of CVT was worst in all
cases because CVT did not consider the projective
property but only considered the space-filling prop-
erty. The projective properties of OLHD and quasi-
random sequences were generally comparable.
Among quasi-random sequences, the projective prop-
erty of Halton and Hammersley became worse than
that of Sobol when the number of design variables
(NDV) got large (larger than six) because Halton and
Hammersley lost their structures in a high dimension.
On the other hand, Sobol kept its structure in a high
dimension because of its additional uniformity con-
ditions. Thus, the projective property of Sobol was
best among all the other sampling methods when
NDV got large.

3. The RMSE values of the five sampling methods ap-
plied to the four 2-D test functions did not show any
noteworthy tendency among the sampling methods. As
expected, however, the prediction performances of
Kriging models generated by all five sampling
methods were generally improved for all four test
functions as the number of experimental points
(NEXP) increased.

4. Comparison of the RMSE values of five sampling
methods for the Rosenbrock function (valley-shaped),
the Styblinski-Tang function (plate-shaped with steep
ridges/drops), and the Trid function (bowl-shaped) re-
veals that the prediction performance of CVT is found
to be far inferior to those of the other sampling methods
while the other four sampling method show similar per-
formance in general. The reason was found due to the fact
that CVT had far less average number of sample points in
the boundary region compared to those of the other four
sampling methods, and thus could not well represent the
rapid local change of the three functions. For functions
with a rapid local change in value, we recommend against
use of CVT emphasizing just space-filling, rather to use
one of the other sampling methods emphasizing projec-
tive properties.

5. Comparison of the RMSE values of five sampling
methods for functions having many local minima with
equidistant intervals such as the Griewank function and
the Rastrigin function revealed that the prediction per-
formance of CVT became worse than or similar to those
of the other four sampling methods as NDV increased.
The reason seemed that the role of projective properties

Table 2 The average number of sample points in the boundary region
of the five sampling methods for different NDVs

NEXP CVT OLHD HAMMERSLEY HALTON SOBOL

(a) NDV= 2

10 0 3.96 1.76 1.66 2.08

20 0 4.86 4.78 3.76 3.96

30 0 7.02 5.72 5.48 5.94

40 0.02 7.70 8.28 7.22 7.84

(b) NDV= 4

20 0 7.14 4.54 3.64 4.28

40 0 11.36 8.54 7.4 8.24

60 0 16.48 12.24 10.88 12.

80 0 20.84 16.16 14.84 15.28

(c) NDV= 6

30 0 12.84 5.8 5.48 5.94

60 0 19.94 12.32 11.62 11.62

90 0 28.06 17.16 16.62 16.36

120 0 37.38 23.76 22.66 21.44

(d) NDV= 8

40 0 18.06 8.44 7.22 7.98

80 0 30.62 16.26 14.76 14.78

120 0 44.20 23.64 22.92 21.74

160 0 58.22 31.2 30.3 28.8

(e) NDV= 10

50 0 25.22 9.48 9.44 10.16

100 0 42.08 20.02 18.84 18.02

150 0 63.52 28.42 27.92 27.08

200 0 84.32 39.14 38.3 36
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became important for producing a good Kriging model
even though the sampling considering space-filling only
could produce a good model when NDV was very

small. In general, we do not recommend to use of
CVT, but to use OLHD and quasi-random sequences
for functions with many local minima.

(a) NDV=2    

(c) NDV=6

(e) NDV=10 

(f) 5*NDV   

(b) NDV=4

(d) NDV=8

(g) 10*NDV

(h) 15*NEXP   (i) 20*NEXP 

Fig. 8 The RMSE values of the
Griewank function (a) NDV= 2
(b) NDV= 4 (c) NDV= 6 (d)
NDV= 8 (e) NDV= 10 (f)
5*NDV (g) 10*NDV (h)
15*NEXP (i) 20*NEXP
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(a) NDV=2    

(c) NDV=6    

(b) NDV=4

 (d) NDV=8

(e) NDV=10 

(f) 5*NDV    

(h) 15*NDV     

(g) 10*NDV

(i) 20*NDV

Fig. 9 The RMSE values of the
Rastrigin function (a) NDV= 2
(b) NDV= 4 (c) NDV= 6 (d)
NDV= 8 (e) NDV= 10 (f)
5*NDV (g) 10*NDV (h)
15*NDV (i) 20*NDV
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