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Abstract This paper presents a numerical investigation of
the non-hierarchical formulation of Analytical Target Cas-
cading (ATC) for coordinating distributed multidisciplinary
design optimization (MDO) problems. Since the computa-
tional cost of the analyses can be high and/or asymmetric, it
is beneficial to understand the impact of the number of ATC
iterations required for coordination and the number of iter-
ations required for disciplinary feasibility on the quality of
the obtained MDO solution. At each “outer” ATC iteration,
the disciplinary optimization subproblems are solved for a
predefined maximum number of “inner” loop iterations. The
numerical experiments consider different numbers of maxi-
mum outer iterations while keeping the total computational
budget of analyses constant. Solution quality is quantified
by optimality (objective function value) and consistency
(violation of coordination-related consistency constraints).
Since MDO problems are typically simulation-based (and
often blackbox) problems, we compare implementations of
the mesh-adaptive direct search optimization algorithm (a
derivative-free method with convergence properties) to the
gradient-based interior-point algorithm implementation of
the popular Matlab optimization toolbox. The impact of
the values of two parameters involved in the alternating
directions updating scheme of the augmented Lagrangian
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penalty functions (aka method of multipliers) on solution
quality is also investigated. Numerical results are provided
for a variety of MDO test problems. The results indicate
consistently that a balanced modest number of outer and
inner iterations is more effective; moreover, there seems to
be a specific combination of parameter value ranges that
yield better results.

Keywords Distributed multidisciplinary design
optimization · Non-hierarchical analytical target
cascading · Mesh adaptive direct search · Fixed
computational budget

1 Introduction

Engineering systems design often requires the coordination
of numerous computationally-intensive multidisciplinary
analyses to account for their interactions and ensure overall
system consistency. Martins and Lambe provide an excel-
lent overview of MDO coordination methods in Martins
and Lambe (2013). In this paper, we consider the non-
hierarchical formulation of Analytical Target Cascading
(ATC). ATC is a methodology developed originally for man-
aging component requirements in hierarchically decom-
posed optimal system design problems (Michelena et al.
1999; Kim 2001). It deals with the consistency constraints
that arise from a hierarchical object-based decomposition
of a system design problem by coordinating target-response
pairs among hierarchy levels. Its efficiency for solving
decomposition-based optimal system design problems has
been demonstrated in several studies, see, e.g., Kim et al.
(2002, 2003), Kokkolaras et al. (2002, 2004) and Allison
et al. (2005). The system cascades design targets for
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coupling and/or shared variables to subsystems, the sub-
systems to components and so on. Optimization subprob-
lems are formulated for each element in the hierarchy, and
solved iteratively according to a coordination strategy until
consistency has been achieved. This process has been shown
to be convergent under standard convexity and continuity
assumptions (Michelena et al. 2003; Tosserams et al. 2006;
Kim et al. 2006).

The ATC methodology was extended in Tosserams et al.
(2010) by means of a non-hierarchical formulation that
enables the coordination of general distributed multidisci-
plinary design optimization (MDO) problems. This exten-
sion allows direct treatment of functional dependencies
among all components of a decomposed design problem
(see Fig. 1). The formulations presented in Tosserams et al.
(2010) also introduce system-wide functions to manage
design attributes shared among all elements (e.g., weight),
reducing thus the number of target-response pairs that
must be coordinated. Finally, non-hierarchical analytical
target cascading facilitates concurrent processing of all
(as opposed to same-level only) optimization subproblems
within an ATC coordination iteration. Non-hierarchical
coordination introduces local copies of variables that link
and/or are shared by elements. Every optimization subprob-
lem is solved with respect to these local copies of variables.
Consistency is ensured using Augmented Lagrangian Coor-
dination (ALC) with quadratic penalty functions (Tosserams
et al. 2008). The linear and quadratic weights of the penalty
functions are updated using the method of multipliers (for-
mulation details are given in Section 2).

The coordination process consists essentially of two
nested loops. The inner loop consists of the solution of
each optimization subproblem using any appropriate opti-
mization algorithm. The inner loop iterations refer to the

Fig. 1 Analysis flow example of an MDO problem (adopted
from Tosserams et al. 2010)

number of analyses required by the optimization subprob-
lems. The outer loop is responsible for collecting informa-
tion from all subproblems to compute consistency constraint
violations and update the linear and quadratic weights of
the penalty functions. As mentioned earlier, MDO prob-
lems in real industrial environments, such as vehicle or
aircraft design, require costly analyses (Kang et al. 2014b).
Oftentimes, optimization studies are conducted with a lim-
ited budget of analyses due to time restrictions. Of course,
the objective of such optimization studies is not to determine
optimal designs, but to explore large design spaces relatively
quickly, yet with reasonable accuracy; this is especially
beneficial in the early design stages. If the disciplinary opti-
mization subproblems require a large number of iterations
to converge, the computational budget may allow only a few
outer-loop iterations; this is, more often than not, insuffi-
cient to achieve acceptable consistency levels. For a sensible
use of computational resources, it seems relevant to bound
the number of iterations in each inner loop optimization.

This work introduces two integer parameters NI and
NO to define the budget of maximum inner and outer
iterations, respectively. A large value of NO may lead
to higher MDO consistency. On the other hand, a large
value of NI may yield better disciplinary designs. On the
contrary, small values of NI may yield suboptimal disci-
plinary designs. This could lead to consistent but suboptimal
MDO solutions. Balancing this trade-off may be possible
by understanding the impact of the NI and NO parameter
values. To do this, we first relate these two parameters to
computational cost. The number of disciplinary optimiza-
tion subproblems, the number of design variables in each
subproblem and the computational cost of each analysis
required by the optimization will have a major impact on the
total MDO computational cost. For an MDO problem with
j = 1, 2, . . . , Nsp disciplinary subproblems where each
subproblem has nj design variables and tj analysis time, the
total computational time of the process will be

ttotal = NO × NI ×
Nsp∑

j=1

O(σj (nj ))tj , (1)

where σj (n) depends on the optimization algorithm. For
example, it can be the number of evaluations required to
compute or approximate gradients and conduct a line search
in a gradient-based algorithm or the number of orthogonal
polling directions in a direct search algorithm. There are
many values of NO and NI that can lead to similar total
computational times. The main objective of this paper is to
study the impact of the choice of NO and NI under a fixed
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budget B = NO × NI . In addition, we test 3 optimization
algorithms to solve the individual subproblems. Finally, we
also investigate the impact of two parameters used in the
updating scheme of the linear and quadratic weights of the
penalty functions.

The paper is organized as follows. The next section
presents a revised notation of the non-hierarchical analytical
target cascading (NHATC) formulation that aims at mak-
ing it easier to understand, follow and implement. Section 3
presents numerical investigations conducted for four test
problems. Section 4 provides summarizing remarks and
suggestions for future work.

2 Non-hierarchical ATC formulation

A linking (also called coupling) variable yij in an MDO
problem is the output of disciplinary subproblem i and the
input of disciplinary subproblem j . For such a variable, the
subproblem that takes this variable as an input sets target
values tyij

. The subproblem that yields this variable as an
output reports response values ryij

. In the non-hierarchical
ATC formulation, the coupling of a subproblem j to neigh-
bor subproblems is defined by the set Tj of neighbor sub-
problems to which subproblem j sends targets (and receives
responses from them) and the set Rj of neighbor subprob-
lems to which subproblem j sends responses (and receives
targets from them). At least one of the two sets must be non-
empty for every subproblem, otherwise it is not linked to
any other subproblem. In addition, a subproblem can both
set targets to and receive targets from the same neighbor-
ing subproblem, i.e., a neighboring subproblem can belong
to both sets. In such cases, the sent and received targets can
only be related to different variables, i.e, yij and yji can
obviously not be the same quantities.

In the example of Fig. 1, subproblem 1 is coupled to
subproblems 2, 3 and 6: it receives inputs y21 and y31
from subproblems 2 and 3, respectively, and it sends out-
puts y12 and y16 to subproblems 2 and 6, respectively (i.e.,
T1 = {2, 3} and R1 = {2, 6}). Therefore, it sets targets ty21
and ty31 to subproblems 2 and 3, respectively, and it reports
responses ry12 and ry16 to subproblems 2 and 6, respectively.
The following 4 target-response pairs must thus be coordi-
nated in optimization subproblem 1: ty21 and ry21 , ty31 and
ry31 , ty12 and ry12 and ty16 and ry16 .

In addition to linking (also called coupling) variables,
two subproblems may be linked by the existence of shared
variables. However, shared variables are not the output of
a disciplinary subproblem; they are common inputs to mul-
tiple disciplinary subproblems. The set Sj is defined to

include all neighbor subproblems that share variables with
subproblem j (note that Sj can be an empty set). When two
subproblems i and j share variables, these are denoted by
xsij , while keeping i < j to avoid doublecounting. Then, a
local copy is defined for each subproblem as xsij i

and xsijj .
The formulation of (each) disciplinary optimization sub-

problem j , given updated information from all other
subproblems (i.e., updated values for ryij

, i ∈ Tj , tyjk
, k ∈

Rj , xsjll
, j < l ∈ Sj and xslj l

, j > l ∈ Sj ), is

min fj (xj , tyij
, xsjlj ,j<l, xsljj ,j>l)+∑

i∈Tj

φyij
(tyij

− ryij
)+

∑
k∈Rj

φyjk
(tyjk

− ryjk
)+

∑
l∈Sj ,j<l

φsjl
(xsjlj

− xsjll
)+

∑
l∈Sj ,j<l

φslj (xslj l
− xsljj )

wrt xj , tyij
, xsjlj ,j<l, xsljj ,j>l

st gj (xj , tyij
, xsjlj ,j<l, xsljj ,j>l) ≤ 0

hj (xj , tyij
, xsjlj ,j<l, xsljj ,j>l) = 0

where ryjk
= Sjkaj (xj , tyij

, xsjlj ,j<l, xsljj ,j>l),

k ∈ Rj , i ∈ Tj , l ∈ Sj ,

(2)

where xj are local design variables. Here it is assumed
that a single disciplinary analysis aj yields all responses
of subproblem j ; the binary selection matrix Sjk is then
used to select which responses are reported back to which
neighbor subproblems. The two sums for the shared vari-
ables are required to keep the variable order correct in the
penalty function of each subproblem. In the Appendix, we
provide the formulations and analysis flow diagrams for
all four examples considered in Section 3 to facilitate the
interested reader’s comprehension of the formulation and its
notation.

The quadratic penalty functions are defined as

φ(·)ij (q) = vT
(·)ijq + ‖w(·)ij ◦ q‖22, (3)

where the subscript (·) is either y or s, q is the argument
(steming from the consistency constraints q = 0), v(·)ij
and w(·)ij are linear and quadratic weights, respectively, and
◦ denotes the Hadamard product (component-wise vector
multiplication).

2.1 Coordination

The coordination process is depicted in Fig. 2. The outer
loop collects the most recent target-response pair values
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Start
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Solve subproblem 2
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Penalty update

Stop

Fig. 2 Non-hierarchical ATC coordination process

from all subproblems, computes consistency constraint val-
ues (i.e., the difference between requested targets and
reported responses), and updates the weights of all penalty
functions using (4) and (5). The number of iterations of
the outer loop is denoted NO; it is also referred to as
the number of ATC iterations. The inner loop performs all
disciplinary optimization subproblems, i.e., solves subprob-
lem (2) associated to each discipline of the MDO problem.
A budget of NI maximum iterations is allocated to each
disciplinary optimization subproblem.

At an outer iteration k, the linear penalty weights vk are
updated according to Tosserams et al. (2008) and Bertsekas
(2003)

vk
i = vk−1

i + 2
(
wk−1

i

)2
qk−1
i , (4)

where qk−1 are the values of the consistency constraints
after all disciplinary optimization subproblems have been
solved using the penalty weights of iteration k − 1.

The quadratic penalty weights w are then increased by a
factor β if the reduction of the inconsistency is considered
insufficient according to the following rule

wk
i =

{
wk−1

i if |qk−1
i | ≤ γ |qk−2

i |
βwk−1

i otherwise,
(5)

where β > 1 and 0 ≤ γ ≤ 1 are parameters held fixed
during the entire ATC process. The values recommended in
Tosserams et al. (2010) are β = 2.2 and γ = 0.4. The
couple (β, γ ) has an important impact on the efficiency of
the coordination. This is investigated by means of numerical
experiments in Section 3.6.

3 Numerical investigations

3.1 Test problems

Numerical experiments are performed for three analyt-
ical problems and one simulation-based problem (see
Appendix A for detailed problem formulations). The main
properties of these problems are listed in Table 1.

The first problem, called “bi-quadratic”, is a simple and
smooth optimization problem with only one design variable
that has been artificially decomposed to an MDO problem
with three disciplinary subproblems.

The second problem is a geometric program with equal-
ity and inequality constraints. The equality constraints are
used to decompose this problem to an MDO problem with
three disciplinary subproblems (Kim 2001; Kim et al. 2003).

The third problem, is a simplified wing design prob-
lem with three disciplinary optimization subproblems. This
problem has been formulated so that the design objectives
(maximum take-off weight, fuel weight and wing weights)
are similar to those of a 100-150 seat jetliner. The first
disciplinary optimization subproblem aims at minimizing
maximum take-off weight. The disciplinary optimization
subproblems 2 and 3 minimize wing weight (which depends
on the structural design of the wing) and fuel weight (which
depends on the aerodynamic properties of the wing), respec-
tively. The wing twist distribution is a design variable shared
by both the structural and aerodynamic disciplinary sub-
problems. The planform is a design variable in disciplinary
subproblem 2 (structures), but it is also required for the
aerodynamic analysis in subsubproblem 3. The CST coeffi-
cients (Kulfan 2007) that enable fine-tuning the local shape
of the wing are design variables in disciplinary subproblem
3 (aerodynamics).
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Fig. 3 MADS poll and mesh sizes for a two-dimensional problem

The fourth problem, called “supersonic business jet”, is
an MDO problem with 4 disciplinary optimization subprob-
lems; it was used in Tosserams et al. (2010) to demonstrate
non-hierarchical ATC formulations.

3.2 Optimization algorithm

Since MDO problems are typically simulation-based (and
often blackbox) problems, rigorous derivative-free meth-
ods with convergence properties are desirable for the
solution of the optimization subproblems. The optimiza-
tion algorithm used in this work is based on the seminal
paper on Mesh Adaptive Direct Search (Audet and Dennis
2006) and has been used in many engineering applications
(Pourbagian et al. 2015; Gheribi et al. 2016; Aasi et al.
2013; Kang et al. 2014a; Spencer et al. 2013). The design
variables of a given optimization problem are denoted
by x ∈ R

n. Box constraints are provided such that
xi ≤ xi ≤ x̄i ∀i = 1...n. A starting point x0
which respects those bounds is provided. As depicted in
Fig. 3, �p and �m = min{�p, �2

p} are the poll and mesh
sizes, respectively, used to generate poling directions. The
mesh size quantifies the granularity between two possible
polling directions, while the poll size defines the norm of
these directions. The convergence of the MADS algorithm
is guaranteed by the fact that the set of possible directions
grows dense in the unit sphere as the mesh size decreases
faster than the poll size (Audet and Dennis 2006; Clarke
1983). S is a diagonal matrix used for scaling. The initial

Fig. 4 MADS algorithm

poll size is set at �init
p = 1.H is the set of polling directions

and P is the polling set, i.e., the set of candidates evaluated
at each iteration.

We define as fmin the objective function value of the
best feasible point so far. The aggregate constraint h(x) =∑

j max{cj (x), 0}2 takes into account all nonlinear inequal-
ity and equality constraints cj (inequality constraints are
satisfied when cj ≤ 0); x is feasible if and only if h(x) = 0.
We define as hmin the aggregate constraint of the most
feasible point found so far. If a point is not feasible, its
objective is considered infinite. The detailed algorithm is
presented in Fig. 4. Unlike more elaborate implementations
of MADS (Talgorn et al. 2015; Audet et al. 2014; Le Digabel
2011), this version does not use optimistic direction, oppor-
tunistic evaluation, progressive barrier or surrogate models.

Table 1 Test problems
Name # of # of Inequality Best known

subproblems variables constraints solution f ∗

Bi-quadratic 3 2 no 2.0

Geometric programming 3 12 yes 17.59

Simplified wing design 3 6 no 101,027

Supersonic business jet 4 39 yes 33,600
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This algorithm has the advantage of relying only on com-
parison between the objective values of two points. This
is necessary when consistency is difficult to reach, as the
penalty functions can reach very high values, which can
cause other optimization algorithms to become inefficient
or crash. Moreover, a tailored optimization algorithm such
as this one provides an advantage in terms of computational
time: for each problem and for each design evaluated, the
objective, constraints and penalty functions are memorized
separately. When several optimizations are run on the same
problem, it is possible to keep the objective and constraints
previously calculated, and thus reevaluate only the penalty
function; this results in significant computation savings.

3.3 Test protocol

The inner-loop disciplinary optimizations are performed
using a Matlab implementation of the MADS algorithm
with orthogonal polling directions described in the previous
subsection. The tolerance on the inequality constraints is set
to 10−6. The maximum number of iterations allocated to
each MADS call is 2×nj ×NI + 1, where nj is the number
of design variables in subproblem j . This allows the evalu-
ation of the initial point, then exactly NI full iterations of
the algorithm described in Section 3.2.

A set of 40 different initial guesses is used to conduct 40
optimization runs for each test problem. From these 40 runs,
statistics are computed for two metrics: the inconsistency
of the solution εq and the discrepancy from the best known
solution εf :

εq = max
i

∣∣∣∣
qi

ui − li

∣∣∣∣ (6)

εf = |f − f ∗|
|f ∗| , (7)

where ui and li are appropriate quantities to normalize
target-response pairs so that they are of the same order
of magnitude. It is important to note that non-consistent
solutions can be associated with better objective values.
Therefore, it is necessary to compute the absolute value of
the discrepancy from the best known solution and to always
consider the inconsistency of the solution when assessing a
set of parameter values.

3.4 Impact of NI and NO

In this section, the impact of the values of NI and NO

on MDO solution quality are investigated. The couples
(NI, NO) tested in this work are listed in Table 2. The
product NI × NO is constant and equal to 4096.

Table 2 Tested values of NI and NO

NO 8 16 32 64 128 256 512

NI 512 256 128 64 32 16 8

The parameters are set to β = 2.2 and γ = 0.4 as
suggested in Tosserams et al. (2010). In all numerical exper-
iments, the initial penalty weight values are v0 = 0 and
w0 = 1.

Figure 5 shows the evolution of εq and εf during the
optimization. Each point of each curve represents the state
of the optimization at the end of an outer-loop iteration.
The x-axis reports cumulative number of iterations; the
distance between two points is thus equal to NI . As the
penalty weights are updated at each outer-loop iteration, it
can be observed that larger NO values yield higher MDO
solution consistency. However, except for the very sim-
ple bi-quadratic problem, large NO values lead to poor
MDO solution quality as measured by discrepancy from
best known solution. This is caused by the small iteration
budget allocated in each inner-loop optimization: MDO is
driven by consistency. Accordingly, we observe that small
NI values lead to poor MDO solution quality (especially
for NI = 8 where the εf curves are nearly flat). On the
contrary, it appears that for a small number of outer-loop
iterations, the penalty function terms are dominated by local
design objective terms. This also leads to poor consistency
and thus to a large discrepancy from best known solutions.
All numerical results are provided in Appendix B.

Figure 6 depicts the statistical distributions of MDO solu-
tion consistency and quality at the end of the ATC process.
Each subfigure represents the distribution of εq and εf over
the 40 runs for a given couple of values (NI, NO). The
thick horizontal line indicates the median value. The top and
bottom of the box indicate the 25th and 75th percentiles.
The short horizontal lines indicate the 10th an 90th per-
centiles. To allow the display in logarithmic scale, values
of εq smaller than 1e-20 are displayed as being 1e-20. For
the three first problems, we observe a clear trend: moder-
ate values of NI and NO lead to good consistency. Indeed,
these parameters allow both to have enough outer loop iter-
ations to increase the penalty parameters v and w, and to
have enough inner loop iterations to efficiently minimize the
penalty function. For the most challenging supersonic busi-
ness jet problem, which has a very narrow feasible domain,
moderate to low values of NI lead to a slightly better con-
sistency. We observe that for NI = 512, inconsistency is
high. As a consequence, εf is also high as the ATC process
converged toward poorly-consistent MDO solution, which
can result in large deviations of f relative to f ∗. This effect,
along with a very narrow range of values, can be observed
for NI = 512 for all problems. As opposed to the first two
problems (which are contrived MDO problems), for the two
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Fig. 5 Evolution of inconsistency and discrepancy from best known solution
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Fig. 6 Inconsistency and discrepancy from best known solution as a function of NI and NO
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“natural” MDO problems (the simplified wing design and
supersonic business jet), we observe a dramatic reduction of
the range of εf values for NI = 512. This can be explained
by the fact that a large value of NI leads to a very good
convergence of the inner-loop optimization (hence the nar-
row range of values), but the small value of NO leads to a
poor consistency and consequently a poor value of εf . This
leads to the conclusion that too much effort has been spent
in each inner-loop optimization, which is detrimental to both
consistency and quality of the MDO solution.

For the first three problems, it is clear that consistency
is best when there is a balance between NI and NO. For
the supersonic business jet, this balance seem to be of less
importance, yet high NI values seem to be detrimental. In
most cases, and in particular for the two last problems, the
value of NI does not seem to have a great impact on the dis-
crepancy εf . However, a design is only valid if it has a good
consistency. Moreover, the measures εq and εf are linked. In
particular, in Fig. 5, we often observe a bounce of εf before
it converges. This bounce is caused by the absolute sign in
the definition of εf in (7). With a very inconsistent design,
the objective f is generally smaller than f ∗. Then the objec-
tive increases as the consistency improves, which leads to a
diminution of εf , until f crosses f ∗, then εf starts to grow
again.

These observations lead us to choose the values NI =
NO = 64 for the investigation of the parameters β and γ

in Section 3.6. Finally, it is important to remember that all
the presented results are associated with a fixed computa-
tional budget. The fact that the most challenging supersonic
business jet problem did not achieve as high consistency
as the other three within the fixed coimputational budget
merely manifests the need for more coordination iterations.
Results obtained with unlimited budgets were reported in
Tosserams et al. (2010). Nevertheless, in Section 3.7 we
report high-consistency results for the supersonic business
jet problem obtained by means of an increased computa-
tional budget.

3.5 Using modified MADS and gradient-based
interior-point algorithms

In this section, the results obtained using the MADS algo-
rithm are compared to those obtained using two other opti-
mization algorithms. First, we use the algorithm MADS�

which is a variation of MADS with a novel feature that
defines the initial poll size of each problem optimization.
This feature is motivated by the the loss of efficiency caused
by the sequential optimization (i.e., the interruption of the
optimization to update the penalty functions). In particular,

the poll size in the MADS algorithm decreases as the opti-
mization unfolds. However, when the optimization is inter-
rupted and restarted (by taking the last design returned as the
new starting point) the poll size is re-initialized at 1. To have
a perfect continuity between two sequential optimizations
(if the two optimization problems were perfectly identical),
the poll size would need to be initialized with the final value
of the previous algorithm. To improve the convergence,
we propose the following definition of the initial poll
size:

�init
p =

{
1 if �max

p is undefined or equal to 0,
2�max

p otherwise,
(8)

where�max
p is the largest poll size that led to a success in the

previous optimization of the same problem. In other words,
the value �max

p that is returned at the end of an optimiza-
tion is an estimate of (is of the the same order of magnitude
than) the width of the attraction basin at the beginning of
this optimization. The factor 2 aims at improving global
exploration.

Then, we compare MADS and MADS� to the interior-
point algorithm implemented in Matlab’s fmincon func-
tion. For each fmincon optimization, the evaluation bud-
get is the same as that defined for MADS (2 × n × NI ).
The performance of these three algorithms is displayed in
Fig. 7 in a fashion similar to that of Fig. 6. For each prob-
lem, optimization method and value of NI , the 10th, 25th,
75th, 90th percentiles and the median value are represented
for the inconsistency εq and for the discrepancy from best
known solution εf .

For small values of NI the MADS� algorithm leads to
very good values of consistency for the three first problems.
However, for large values of NI , the advantage of having a
good initialization of the poll size is muted by the large num-
ber of iterations available for the optimization and MADS�

is outperformed by MADS. Moreover, MADS� is predomi-
nantly a local method, which leads to poor values of εf . It
seems that MADS� performance could be improved by grad-
ually changing �init

p from 1 to 2�max
p as the ATC process

unfolds. In addition to that, the very local nature of MADS�

may keep it from reaching consistency. For the bi-quadratic
problem, the objective is convex so MADS� always leads to
a very good consistency for NI ≤ 32. But for the geomet-
ric programming and simplified wing design problems, the
non-convexity in the objective causes an unexpected behav-
ior of MADS�: it will reach 1e-20 in 50% of the runs but will
be stuck in a local inconsistent minimum in the other 50 %.
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Fig. 7 Comparison of 3 methods for the optimization of the problems: MADS (white, left of each column), MADS� (light gray, center) and
fmincon (dark gray, right)



Distributed MDO with fixed computational budget 215

0
0.2

0.4
0.6

0.8
1 1.4

1.8

2.2

2.6

10
−20

10
−10

10
0

5.2e−16

1.2e−15

3.5e−20

3.9e−14

2.4e−19

4.0e−11

2.8e−19

1.3e−17

1.6e−06

0

9.5e−15

1.2e−17

7.5e−03

0

3.2e−07

0

3.5e−17

6.2e−03

0

2.4e−08

4.2e−19

4.5e−03

4.5e−07

4.5e−03

0
0.2

0.4
0.6

0.8
1 1.4

1.8

2.2

2.6

10
−5

10
0

8.5e−04

5.3e−05 1.4e−03

2.3e−03

2.4e−04
6.2e−03

3.1e−03

2.7e−03

1.7e−04

4.1e−04

1.3e−02

5.5e−04

3.7e−03

9.4e−01

1.2e−02

2.0e−04

2.5e−02

4.4e−03

8.4e−01

1.9e−02
5.4e−03

7.0e−01

6.8e−04

7.0e−01

0
0.2

0.4
0.6

0.8
1 1.4

1.8

2.2

2.6

10
−40

10
−20

10
0

2.5e−13

2.1e−11

8.9e−22

5.5e−10

4.9e−20

1.4e−08

0

1.2e−16

2.1e−07

1.4e−21

1.7e−14

0

1.2e−06

1.4e−19

8.7e−12

0

5.2e−18

1.4e−06

1.1e−21

1.6e−15

3.6e−20

1.2e−06

3.8e−18

1.4e−06

0
0.2

0.4
0.6

0.8
1 1.4

1.8

2.2

2.6

10
−5

10
0

10
5

4.9e−02

5.6e−02

1.7e+00

6.9e−02

5.3e−01

6.9e−02

1.1e+02

3.4e−01

1.3e−01

2.0e+01

1.3e−01

3.0e+03

4.9e−01

4.5e+00

1.3e−01

9.1e+02

1.5e+00

4.8e−01

2.1e+01

3.3e−01

5.9e+00

4.0e−01

8.7e−01

3.1e−01

0
0.2

0.4
0.6

0.8
1 1.4

1.8

2.2

2.6

10
−20

10
−10

10
0

4.7e−15

1.2e−12

0

2.7e−12

0

1.7e−11

0

8.5e−16

4.5e−09

0

1.0e−12

0

3.7e−01

0

1.1e−11

0

3.3e−16

3.7e−01

0

9.3e−12

0

2.0e−02

1.8e−13

1.3e−02

0
0.2

0.4
0.6

0.8
1 1.4

1.8

2.2

2.6

10
−2

10
−1

10
0

7.5e−02

6.9e−02

2.0e−01

6.4e−02

2.1e−01

7.0e−02

2.2e−01

2.3e−01

9.6e−02

5.5e−02

2.9e−01

1.4e−01

2.2e−01

3.7e−01

2.6e−01

1.2e−01

2.5e−01

2.3e−01

3.6e−01

3.3e−01

1.8e−01

3.5e−01

1.1e−01

2.8e−01

0
0.2

0.4
0.6

0.8
1 1.4

1.8

2.2

2.6

10
−2

10
−1

10
0

6.1e−02
4.3e−02

6.2e−02

4.3e−02

5.5e−02

4.4e−02

6.5e−02

6.6e−02

5.7e−02

7.4e−02

9.8e−02

7.5e−02

1.4e−01

8.6e−02

5.9e−02

7.8e−02

9.2e−02

1.4e−01

1.0e−01

8.2e−02

1.1e−01

1.4e−01

9.4e−02

1.4e−01

0
0.2

0.4
0.6

0.8
1 1.4

1.8

2.2

2.6

10
−2

10
−1

10
0

6.2e−02
1.7e−01

1.1e−01

7.4e−02

1.7e−01

8.2e−02

1.4e−01

1.3e−01

8.3e−02

1.9e−01

6.1e−02

1.6e−01

5.3e−01

1.1e−01

1.3e−01

1.4e−01

1.1e−01

5.0e−01

1.8e−01

1.1e−01

1.9e−01

4.7e−01

1.5e−01

3.1e−01

Fig. 8 Inconsistency and discrepancy from best known solution as a function of β and γ
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For the challenging supersonic business jet problem,
MADS� does not improve consistency with the fixed com-
putational budget; fmincon tends to yield better consis-
tency than MADS but worse objective values. Indeed, MADS
is more able to explore the nonsmooth design space, but
when the consistency is not reached, the objective function
becomes mainly quadratic and fmincon is then more effi-
cient at improving consistency. For MDO applications with
non-smooth subproblems, MADS seems to be the most effi-
cient method. However, it must be noted than in general, the
optimization algorithm can be different for each subproblem
depending on its characteristics.

3.6 Impact of β and γ

The following values have been used for the parame-
ters β and γ of the updating scheme of the quadratic
penalty weight: γ ∈ {0.0; 0.2; 0.4; 0.6; 0.8; 1.0} and β ∈
{1.4; 1.8; 2.2; 2.6}. Figure 8 depicts εq and εf values
for each test problem and each possible couple (β, γ ).
Equation (5) implies that larger β values and/or smaller γ

values yield high consistency. Thus, εq values should be
smaller for the bars in the front of the figure and higher for

Table 3 Values of NI and NO for the supersonic business jet with
increased computational budget

NO 64 128 256

NI 256 128 64

those in the back. The results shown in Fig. 8 seem to be
aligned with this trend, and confirm the recommendation of
Tosserams et al. (2010).

3.7 Additional results for the supersonic business jet
problem

As mentioned in Section 3.4, the allocated computational
budget is not sufficient to achieve high consistency for the
supersonic business jet problem. Therefore, we increase it
to be four (4) times higher, namely NI × NO = 16384.
The values of NI and NO tested are listed in Table 3. We
used the values β = 1.4 and γ = 0.4 which seemed to yield
high consistency in previous runs (see Fig. 8). The results
are presemted in Fig. 9.

Fig. 9 Inconsistency and discrepancy for the supersonic business jet problem with an increased computational budget
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4 Concluding remarks

The work presented in this paper consists of three parts.
We first investigated the effect of the number of coordi-
nation iterations (NO) and optimization iterations (NI )
on the quality of the solution of MDO problems for fixed
computational budgets. Solution quality was quantified by
consistency and closeness to best known solution. Two con-
trived and two “natural” MDO test problems were used. It
seems that a balanced number of moderate NO and NI

values yields best results for most comsidered problems.
Extreme values of NI and NO lead to inconsistent or sub-
optimal MDO designs. However, NO must be large enough
so that, as the coordination process progresses, the gradi-
ent of the penalty functions is adequately larger than the
gradient of the local design objectives.

We then considered both rigorous derivative-free and
gradient-based algorithms to perform the subproblem opti-
mizations. The MADS and MADS� derivative-free algo-
rithms seem to yield higher-consistency solutions, but with
greater variance, than the Matlab interior-point gradient-
based algorithm, with the exception of the supersonic busi-
ness jet problem. Conversely, the interior-point method
seems to yield higher-quality solutions, again with the
exception of the supersonic business jet problem. A method
to initialize the poll size was proposed that leads to good
consistency but may be too local to yield the best objective
values.

Finally, numerical experiments were conducted to deter-
mine guideline values for the parameters β and γ of the
updating scheme related to the quadratic weights of the
penalty functions. It seems that values from the following
ranges yield higher-consistency solutions for most con-
sidered problems: β ∈ [2.2, 2.6] and γ ∈ [0.0, 0.4].
For more difficult problems like the supersonic business
jet problem, higher computational budgets are required;
in addition, smaller values of β seem to yield better
results.

In future work, the initialization of the quadratic weight
(w0) should be investigated; we hypothesize that a gra-
dient norm of the penalty function that is slightly lower
than that of the local objective in the beginning of the
optimization can be beneficial to the performance of the
coordination algorithm. This would allow to achieve con-
sistent MDO designs within a smaller number of outer loop
iterations, without adverse effect on optimality. Moreover,
the initialization of the poll size can be improved to rem-
edy the loss of efficiency due to sequential optimization.
Finally, it should be investigated whether a dynamic man-
agement of NI as the coordination process progresses can

improve both consistency and optimality of the final MDO
design.
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Appendix A: Test problem formulations

In Figs. 10, 11, 12 and 13, an arrow from subproblem i

to subproblem j indicates that the output of subproblem i

is an input to subproblem j . Double-headed arrows denote
variables shared by two subproblems.

A.1 Bi-quadratic problem

Original problem:

min (x − 1)2 + (x + 1)2

wrt x

st x ∈ [−100 ; +100]
(9)

Subproblem 1:

min ty21 + ty31+
φy21(ty21 − ry21) + φy31(ty31 − ry31)

wrt ty21 , ty31

(10)

Subproblem 2:

min φy21(ty21 − ry21) + φs23(xs232 − xs233)

wrt xs232

where ry21 = (xs232 − 1)2

st xs232 ∈ [−100 ; +100]
(11)

y21 y31

xs23

Subproblem 2 Subproblem 3

Subproblem 1

Fig. 10 Bi-quadratic problem analysis flow
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y21 = z3 y31 = z6

xs23 = z11 

Subproblem 2

z8, z9, z10

Subproblem 3

z12, z13, z14

Subproblem 1

z4, z5, z7

Fig. 11 Geometric programming problem analysis flow

Subproblem 3:

min φy31(ty31 − ry31) + φs23(xs232 − xs233)

wrt xs233

where ry31 = (xs233 + 1)2

stxs233 ∈ [−100 ; +100]
(12)

A.2 Geometric programming problem

Original problem:

min z21 + z22

wrt z1, z2, z3, z4, z5, z6, z7, z8, z9, z10, z11, z12, z13, z14

stzi ∈ [10−6 ; 106] ∀i

z21 = z23 + z−2
4 + z25

z22 = z25 + z26 + z27

z23 = z28 + z−2
9 + z−2

10 + z211

z26 = z211 + z212 + z213 + z214

z−2
3 + z24 − z25 ≤ 0

z25 + z−2
6 − z27 ≤ 0

z28 + z29 − z211,2 ≤ 0

z−2
8 + z210 − z211 ≤ 0

z211 + z−2
12 − z213 ≤ 0

z211 + z212 − z214 ≤ 0

(13)

Subproblem 1:

min t2y21 + t2y31 + z−2
4 + 2z25 + z27 +

φy21(ty21 − ry21) + φy31(ty31 − ry31)

wrt ty21 , ty31 , z4, z5, z7 ∈ [10−6 ; 106]
st t−2

y21
+ z24 − z25 ≤ 0

z25 + t−2
y31

− z27 ≤ 0

(14)

y21 y31

xs23

Subproblem 2

(Structures)

x2

Subproblem 3

(Aerodynamics)

x3

Subproblem 1

(Aircraft)

Fig. 12 Simplified wing design problem analysis flow

Subproblem 2:

min φy21(ty21 − ry21) + φs23(xs232 − xs233)

wrt z8, z9, z10, xs232 ∈ [10−6 ; 106]
st z28 + z29 − x2

s232
≤ 0

z−2
8 + z210 − x2

s232
≤ 0

where ry21 =
√

z28 + z−2
9 + z−2

10 + x2
s232

(15)

Subproblem 3:

min φy31(ty31 − ry31) + φs23(xs232 − xs233)

wrt z12, z13, z14, xs233 ∈ [10−6 ; 106]
st x2

s233
+ z−2

12 − z213 ≤ 0
x2
s233

+ z212 − z214 ≤ 0

where ry31 =
√

x2
s233

+ z212 + z213 + z214

(16)

A.3 Simplified wing design problem

Subproblem 1 - aircraft:

min ty21 + ty31+
φy21(ty21 − ry21) + φy31(ty31 − ry31)

wrt ty21 , ty31 ∈ [0 ; 105]
(17)

Subproblem 2 - structures:

min φy21(ty21 − ry21) + φs23(xs232 − xs233)

wrt x2, xs232 ∈ [0 ; 10]2
where ry21 = 4, 000

(
1 + ‖xs232 − 1‖22

)(
1 + ‖x2 − 1‖22

)

(18)

y21 = [SFC, We]

y31 = [L/D, Wt]

y41 = [Ws, Wf]

y23 = ESF

xs34 = [t/c, ARw, Λw, Sref, Sht, ARht]

Subproblem 1

(Aircraft)

Subproblem 3

(Aerodynamics)

Λht, Lw, Lht

Subproblem 2

(Propulsion)

T

Subproblem 4

(Structures)

t, ts, λ

y34 = L

y32 = D y43 = θ

Fig. 13 Supersonic Business Jet problem analysis flow
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Subproblem 3 - aerodynamics:

min φy31(ty31 − ry31) + φs23(xs232 − xs233)

wrt x3, xs233 ∈ [0 ; 10]2
where ry31 = 20, 000+380, 952 Drag+9, 523, 809 Drag2

Drag = 0.025 + 0.004 log10(ω)

ω= (
1+‖xs233−2‖22

)(
1+ ‖x3−2‖22

1,000

)(
1+1, 000|EH |)

u = 10(xs233 + x3)
EH = fEH (u)

fEH (u) = −(u2 + 47) sin
(√∣∣u2 + u1

2 + 47
∣∣
)

−u1 sin
(√|u1 − u2 − 47|)

(19)

A.4 Supersonic business jet problem

Box constraints apply to each design variable of each prob-
lem. See Tosserams et al. (2010) for details.

Subproblem 1 - aircraft:

min WT + φy21(ty21 − ry21) + φy31(ty31 − ry31)+
φy41(ty41 − ry41)

wrt ty21 , ty31 , ty41
st gaircraft(ty21 , ty31 , ty41) ≤ 0
where WT = f (ty21 , ty31 , ty41)

(20)

Subproblem 2 - propulsion:

min φy21(ty21−ry21) + φy23(ty23−ry23) + φy32(ty32−ry32)

wrt ty32 , x2 = T

st gprop(ty32 , x2) ≤ 0
where ry21 = f21(ty32 , x2)

ry23 = f23(ty32 , x2)

(21)

Subproblem 3 - aerodynamics:

min φy31(ty31 − ry31) + φy32(ty32 − ry32)+
φy34(ty34 − ry34) + φy23(ty23 − ry23)+
φy43(ty43 − ry43) + φs34(xs343 − xs344)

wrt ty23 , ty43 , x3 = [	ht, Lw, Lht]T ,

xs343 = [t/c, ARw, 	w, Sref, Sht, ARht]T
st gprop(ty23 , ty43 , x3, xs343) ≤ 0
where ry31 = f31(ty23 , ty43 , x3, xs343)

ry32 = f32(ty23 , ty43 , x3, xs343)

ry34 = f34(ty23 , ty43 , x3, xs343)

(22)

Subproblem 4 - structures:

min φy41(ty41 − ry41) + φy43(ty43 − ry43)+
φy34(ty34 − ry34) + φs34(xs343 − xs344)

wrt ty34 , x4 = [t, ts, λ]T ,

xs344 = [t/c, ARw, 	w, Sref, Sht, ARht]T
st gstruc(ty34 , x4, xs344) ≤ 0
where ry41 = f41(ty34 , x4, xs344)

ry43 = f43(ty34 , x4, xs344)

(23)

Appendix B: Complete numerical results

Table 4 Inconsistency and discrepancy from best known solution for
all test problems with β = 2.2 and γ = 0.4

Bi-Quadratic Geometric Simplified Supersonic

prog. MDO business jet

NI = 8, εq 1.9e–04 5.6e–05 1.5e–04 9.1e–02

NO = 512 εf 4.6e–02 2.2e+06 3.1e–01 1.5e–01

NI = 16, εq 8.2e–07 7.6e–08 5.6e–07 8.3e–02

NO = 256 εf 1.1e–02 3.4e+02 1.2e–01 1.2e–01

NI = 32, εq 1.4e–11 6.7e–13 9.9e–12 8.6e–02

NO = 128 εf 1.2e–02 1.7e+00 1.5e–01 9.0e–02

NI = 64, εq 0 1.4e–19 0 8.6e–02

NO = 64 εf 1.2e–02 4.5e+00 2.6e–01 1.1e–01

NI = 128, εq 1.3e–11 3.9e–09 4.5e–09 1.0e–01

NO = 32 εf 1.2e–02 1.6e+00 3.2e–01 1.5e–01

NI = 256, εq 2.3e–06 1.5e–04 1.3e–03 1.3e–01

NO = 16 εf 1.2e–02 8.5e+01 1.7e–01 1.6e–01

NI = 512, εq 2.9e–03 2.2e–03 3.8e–01 3.6e–01

NO = 8 εf 5.7e–01 3.8e+05 4.1e–01 7.0e–01

Table 5 Inconsistency and discrepancy from best know solution for
the bi-quadratic problem with NI = NO = 64

γ

0 0.2 0.4 0.6 0.8 1

β 1.4 εq 5.2e–16 1.2e–15 3.9e–14 4.0e–11 1.6e–06 7.5e–03

εf 8.5e–04 1.4e–03 2.4e–04 5.3e–05 4.1e–04 9.4e–01

1.8 εq 3.5e–20 2.4e–19 1.3e–17 9.5e–15 3.2e–07 6.2e–03

εf 2.3e–03 6.2e–03 2.7e–03 5.5e–04 2.0e–04 8.4e–01

2.2 εq 2.8e–19 0 0 3.5e–17 2.4e–08 4.5e–03

εf 3.1e–03 1.3e–02 1.2e–02 4.4e–03 1.7e–04 7.0e–01

2.6 εq 1.2e–17 0 0 4.2e–19 4.5e–07 4.5e–03

εf 3.7e–03 2.5e–02 1.9e–02 5.4e–03 6.8e–04 7.0e–01

Table 6 Inconsistency and discrepancy from best know solution for
the geometric programming problem with NI = NO = 64

γ

0 0.2 0.4 0.6 0.8 1

β 1.4 εq 2.5e–13 2.1e–11 5.5e–10 1.4e–08 2.1e–07 1.2e–06

εf 4.9e–02 5.6e–02 6.9e–02 6.9e–02 1.3e–01 4.9e–01

1.8 εq 8.9e–22 4.9e–20 1.2e–16 1.7e–14 8.7e–12 1.4e–06

εf 1.7e+00 5.3e–01 3.4e–01 1.3e–01 1.3e–01 4.8e–01

2.2 εq 0 1.4e–21 1.4e–19 5.2e–18 1.6e–15 1.2e–06

εf 1.1e+02 2.0e+01 4.5e+00 1.5e+00 3.3e–01 4.0e–01

2.6 εq 0 0 1.1e–21 3.6e–20 3.8e–18 1.4e–06

εf 3.0e+03 9.1e+02 2.1e+01 5.9e+00 8.7e–01 3.1e–01
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Table 7 Inconsistency and discrepancy from best know solution for
the simplified wing design problem with NI = NO = 64

γ

0 0.2 0.4 0.6 0.8 1

β 1.4 εq 4.7e–15 1.2e–12 2.7e–12 1.7e–11 4.5e–09 3.7e–01

εf 7.5e–02 6.9e–02 6.4e–02 7.0e–02 5.5e–02 3.7e–01

1.8 εq 0 0 8.5e–16 1.0e–12 1.1e–11 3.7e–01

εf 2.0e–01 2.1e–01 2.3e–01 1.4e–01 1.2e–01 3.6e–01

2.2 εq 0 0 0 3.3e–16 9.3e–12 2.0e–02

εf 2.2e–01 2.9e–01 2.6e–01 2.3e–01 1.8e–01 1.1e–01

2.6 εq 0 0 0 0 1.8e–13 1.3e–02

εf 2.2e–01 2.5e–01 3.3e–01 3.5e–01 2.8e–01 9.6e–02

Table 8 Inconsistency and discrepancy from best know solution for
the supersonic business jet problem with NI = NO = 64

γ

0 0.2 0.4 0.6 0.8 1

β 1.4 εq 6.1e–02 4.3e–02 4.3e–02 4.4e–02 5.7e–02 1.4e–01

εf 1.7e–01 6.2e–02 7.4e–02 8.2e–02 8.3e–02 5.3e–01

1.8 εq 6.2e–02 5.5e–02 6.6e–02 9.8e–02 5.9e–02 1.4e–01

εf 1.1e–01 1.7e–01 1.3e–01 6.1e–02 1.3e–01 5.0e–01

2.2 εq 6.5e–02 7.4e–02 8.6e–02 9.2e–02 8.2e–02 1.4e–01

εf 1.4e–01 1.9e–01 1.1e–01 1.1e–01 1.1e–01 4.7e–01

2.6 εq 7.5e–02 7.8e–02 1.0e–01 1.1e–01 9.4e–02 1.4e–01

εf 1.6e–01 1.4e–01 1.8e–01 1.9e–01 1.5e–01 3.1e–01
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