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Abstract This paper presents an approach to shape and
topology optimization of fluid-structure interaction (FSI)
problems at steady state. The overall approach builds on
an immersed boundary method that couples a Lagrangian
formulation of the structure to an Eulerian fluid model,
discretized on a deforming mesh. The geometry of the fluid-
structure boundary is manipulated by varying the nodal
parameters of a discretized level set field. This approach
allows for topological changes of the fluid-structure inter-
face, but free-floating volumes of solid material can emerge
in the course of the optimization process. The free-floating
volumes are tracked and modeled as fluid in the FSI anal-
ysis. To sense the isolated solid volumes, an indicator field
described by linear, isotropic diffusion is computed prior
to analyzing the FSI response of a design. The fluid is
modeled with the incompressible Navier-Stokes equations,
and the structure is assumed linear elastic. The FSI model
is discretized by an extended finite element method, and
the fluid-structure coupling conditions are enforced weakly.
The resulting nonlinear system of equations is solved mono-
lithically with Newton’s method. The design sensitivities
are computed by the adjoint method and the optimization
problem is solved by a gradient-based algorithm. The char-
acteristics of this optimization framework are studied with
two-dimensional problems at steady state. Numerical results
indicate that the proposed treatment of free-floating vol-
umes introduces a discontinuity in the design evolution, yet
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the method is still successful in converging to meaningful
designs.

Keywords Topology optimization · Nitsche · Extended
finite element method · Level set method · Fluid-structure
interaction · Heart valve

1 Introduction

Design optimization methods for fluid-structure interaction
(FSI) problems have become popular as they provide a sys-
tematic framework for including sophisticated FSI models
in the design process (Sobieszczanski-Sobieski and Haftka
1997; Maute et al. 2003; Martins et al. 2005). Traditionally,
FSI problems are optimized by varying the external (wet)
shape and/or the shape and dimensions of the internal (dry)
structure. Such geometry variations can typically be defined
by a small number of optimization variables and accommo-
dated by traditional FSI analysis methods. To enable larger,
conceptual design changes, the topology of the dry and/or
wet geometry needs to be varied in the optimization process.
Topology optimization for FSI problems leads to interesting
challenges for both the geometry and analysis model, and is
the focus of this study.

Figure 1 illustrates the differences of shape and topology
optimization of FSI problems. Both wet and dry methods
of shape variation preserve the nominal topology regard-
less if the dry or wet geometries are varied. Varying the dry
shape of the structure alters the FSI response; see, for exam-
ple, the studies by Butler et al. (1995), Gern et al. (1999),
Guo et al. (2005), Guo (2007), Gasbarri et al. (2009), and
Dillinger et al. (2013). Wet shape optimization of FSI prob-
lems was considered, for example, by Lund et al. (2001).
Varying simultaneously the wet and dry geometries requires
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Fig. 1 Geometrical variations in FSI problems

a design model that defines both external shape and inter-
nal structure as functions of the optimization variables; see,
for example, the works of Gumbert et al. (2001), Maute
et al. (2001), Martins et al. (2004), Allen and Maute (2005),
Martins et al. (2005), and Ghazlane et al. (2011).

Analogous to shape optimization methods, dry and wet
topology optimization approaches exist for FSI problems;
see the bottom half of Fig. 1. The most popular method for
optimizing FSI problems is dry topology optimization; see,
for example, Krog et al. (2002), Krog et al. (2004), Allen
and Maute (2004), Maute and Reich (2006), Gomes and
Suleman (2008), Stanford (2008), Stanford and Ifju (2009),
James andMartins (2010), Brampton et al. (2012), (Stanford
and Beran 2013), Dunning et al. (2014), Dunning et al.
(2015), Jenkins and Maute (2015), and Munk et al. (2015).

Dry topology optimization is a direct extension of struc-
tural topology optimization, as the wet surface where the
fluid forces and structural deformations interact is not
altered in the optimization process. Therefore, standard FSI
models can be easily integrated into the topology optimiza-
tion framework, irrespective of whether a density approach
or a level set method is used. Purely wet topology vari-
ation of FSI problems has not been considered yet, due
to its limited relevance to solving practical design prob-
lems. Varying the wet and dry topology simultaneously is
the most comprehensive approach to FSI geometry opti-

mization, and poses interesting challenges in representing
geometry changes in the FSI model.

The method of geometry discretization has large implica-
tions on the method of FSI interface condition enforcement.
The FSI response needs to be predicted to evaluate the
performance of a particular fluid-structure configuration in
each design iteration. At the FSI interface, no-slip velocity
boundary conditions must be enforced, and the fluid traction
needs to be applied to the structure. Note that the applied
fluid load is dependent on the structural deformation.

An FSI design can be represented by a density method,
which approximates material boundaries by a fictitious
porous material (Bendsøe 1989; Zhou and Rozvany 1991),
or an implicit boundary method, e.g. the Level Set Method
(LSM) (Osher and Sethian 1988). The geometry of a design
described by a density method is typically mapped onto
the mechanical model by a material interpolation scheme,
such as the Ersatz material method (Allaire et al. 2004) and
the SIMP approach (Zhou and Rozvany 1991). For most
physical models it is sufficient to define material properties
as functions of the density of the fictitious material. How-
ever, enforcing the FSI interface conditions with material
interpolation schemes is less intuitive: a Brinkmann penalty
approach is often employed to enforce the no-slip condition,
and the fluid surface tractions are converted to a volumet-
ric body force to approximate the action of the fluid on the
structure.

To date, the only existing works to perform wet and dry
topology optimization of FSI problems are by Yoon (2010),
Yoon (2014), and, more recently, Picelli et al. (2015). In the
studies of Yoon (2010) and Yoon (2014), a density method
is used to vary the wet and dry topology. Picelli et al. (2015)
vary the design by a smoothed discrete design variable
method. All of these works employ a material interpolation
approach with a Brinkmann penalization to model the fluid-
structure coupling conditions. The solid and fluid governing
equations are discretized with a single, deforming mesh to
allow the fluid to follow the deformation of the structure.
Density methods, however, require a fine mesh resolu-
tion to avoid blurred and/or jagged material boundaries.
For wet and dry topology optimization of FSI problems in
particular, material interpolation schemes may lead to an
inaccurate enforcement of the coupling conditions as the
fluid-structure interface is smeared over multiple cells or
elements.

Alternatively, the LSM defines material boundaries with
the zero iso-contour of a scalar function, resulting in a
crisp description of the fluid-solid interface for FSI prob-
lems. The main advantage of the LSM in the context of wet
and dry topology optimization is the increased flexibility in
mapping the design onto the FSI model. A material layout
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described by the LSM can be evaluated either by material
interpolation schemes or with immersed boundary methods,
such as the Extended Finite Element Method (XFEM). The
reader is referred to Jenkins and Maute (2015) for a detailed
comparison of density methods and LSMs for dry optimiza-
tion of FSI problems.

This work presents a LSM for wet and dry topology
optimization of FSI problems that resolves well the fluid-
structure interface geometry and the FSI model even on
rather coarse meshes, compared to those typically needed
with density approaches. We combine the LSM with the
XFEM that provides a mathematically rigorous framework
to enforce both velocity no-slip conditions and traction con-
tinuity at the FSI interface. The method presented in this
paper builds on our previous work on dry topology opti-
mization of FSI problems (Jenkins and Maute 2015), and
expands the LS-XFEM approach onto optimizing the shape
and topology of the fluid-structure interface.

An important aspect of numerical FSI models is track-
ing the deformation of the fluid-structure interface. Figure 2
shows three methods to model a deforming structure within
a flow. The most widely used approach is to model the
flow in an Arbitrary Eulerian-Lagrangian reference frame
on a deforming, body-fitted mesh; see Fig. 2a. Deform-
ing mesh approaches track the interface motion and can
be easily combined with standard finite element methods.
As they preserve the refinement of the mesh along the
fluid-structure interface, these approaches allow enforcing
the fluid-structure coupling conditions with high accuracy.
However, interface tracking methods require re-meshing of
the fluid domain for large structural deformations; otherwise
they are limited to small to moderate deformations.

Fig. 2 Three types of meshing schemes for FSI problems

To overcome the restrictions of deforming mesh
approaches, the flow can be modeled in a fixed reference
frame, using immersed boundary techniques to describe
material deformation; see Fig. 2b. This approach belongs
to the class of interface capturing methods, which requires
specialized re-initialization schemes and time integration
approaches (Kamensky et al. 2015).

Figure 2c illustrates the combination of a deforming
mesh scheme and an immersed boundary mesh. This
approach is well suited for topology optimization of FSI
problems as it allows the accurate tracking of the fluid-
structure boundary due to an explicit mesh motion scheme,
but it removes the requirement to generate body-fitted
fluid and structure meshes. Note that the immersed bound-
ary method used here, i.e. the XFEM, provides the same
resolution of the interface geometry as a body-fitted mesh.

In this study, we introduce a formulation for FSI prob-
lems where both the structure and the fluid domains are
discretized by the XFEM. The structure is immersed into
a deforming fluid mesh that follows the structural defor-
mations. The coupling conditions are enforced along the
fluid-structure interface which is crisply defined by the
LSM. We intend to show in this paper that the proposed
LS-XFEM combination is a good compromise in terms of
simplicity and attractiveness for wet and dry topology opti-
mization of FSI systems. However, it is limited to moderate
structural displacements and is not able to handle large
structural deformations and rigid body motion.

A distinct challenge associated with topology optimiza-
tion of wet FSI geometries is dealing with the emergence
of free-floating volumes of solid material and structural fea-
tures that exhibit extreme local deformations. Figure 3a and b

Fig. 3 Emergence of free-floating solid material in wet topology
optimization
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depict designs without and with free-floating volumes of
solid material. The free-floating solid may emerge in the
course of the optimization process. As it is not connected
to an anchor point, the free-floating solid undergoes rigid
body motion, see Fig. 3c. Sophisticated, transient FSI
models would be needed to describe the motion of free-
floating material in the flow. While such models exists,
see e.g. Mayer et al. (2010), they significantly increase
the algorithmic complexity and computational cost without
noticeable benefits for advancing the optimization problem.
Although neither Yoon (2010), Yoon (2014), nor Picelli
et al. (2015) report observing the emergence of free-floating
volumes of solid material in the examples studied in their
papers, this issue exists in all wet topology optimization
methods, irrespective whether a density approach or a LSM
with Ersatz material schemes or immersed boundary models
is used.

As the XFEM scheme used in this study is not suited
to describe rigid body motion of solids, we introduce an
approach where free-floating solid volumes are identified
and removed from the model before the FSI response is
computed. While this approach mitigates issues due to large
mesh deformations, the elimination of free-floating solid
volumes may introduce a discontinuity in the optimization
process. The implications of this technique are studied with
numerical examples.

The remainder of this paper is organized as follows:
Section 2 summarizes the indicator model to sense free-
floating volumes, and the incompressible Navier-Stokes
and linear elasticity models that describe the FSI response;
Section 3 presents the stabilized and coupled, discretized
monolithic system of equations solved at each design iter-
ation; Section 4 details the XFEM enrichment strategy
and the formulation of the immersed coupling conditions;
Section 5 outlines the wet and dry topology optimiza-
tion design approach; Section 6 presents three examples to
demonstrate the viability and characteristics of the proposed
framework for wet and dry topology optimization of FSI
problems, and finally the main conclusions of this study are
discussed in Section 7.

Fig. 4 Fluid-structure problem domain

2 Physical model

This section summarizes the indicator model for identifying
free-floating solid volumes and the monolithic FSI formula-
tion. As depicted in Fig. 4, we consider a two-dimensional
computational design domain that is decomposed into non-
overlapping fluid and solid domains, �f and �s , respec-
tively. The intersection between the fluid and solid domains
defines the fluid-solid interface: �f si = �f ∩ �s .

2.1 Indicator model

To identify free-floating volumes of solid and model them
as fluid in the FSI analysis, an indicator field is com-
puted prior to solving the FSI problem for a given design.
The indicator field is described by a linear isotropic dif-
fusion model, and requires computing the solution to the
associated differential equation presented below. Methods
for dealing with free-floating volumes, and similar types
of ill-posed design features, using a remeshing approach
were presented, for example, by Allaire et al. (2014), Chris-
tiansen (2014), and Dapogny (2014). However, in addition
to the computational complexity of remeshing methods,
they also affect the numerical consistency of the sensitivi-
ties of the mechanical response with respect to the design
variables; see, for example, Schleupen et al. (2000). The
approach outlined in this work is based on a single vari-
ational formulation of the problem, and allows for a uni-
fied approach to compute the design sensitivities. Recently,
Liu et al. (2015) published a similar approach for ensur-
ing manufacturable designs in the topology optimization
process.

The indicator field is modeled with both an ambient con-
vective flux and a prescribed boundary flux. The governing
equation for the indicator field is:

∇∇∇ · QQQ + hI (χ − χ0) = 0. (1)

The indicator variable is χ , and the ambient indicator value,
χ0, is a non-zero constant. The convective coefficient is hI ,
and the internal flux,QQQ, is defined as:

QQQ = κκκ∇∇∇χ, (2)

where the isotropic diffusivity tensor is κκκ . A bold symbol
represents a vector or tensor.

The indicator field domain is equivalent to the structural
domain. As shown in Fig. 4, the indicator boundary flux
is applied at the same locations as the structural essential
boundary conditions:

�n
I = �c

s . (3)
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The applied indicator boundary flux describes the natural
boundary condition for the diffusion model:

QQQ · nnnI = t̂I ∀ xxx ∈ �n
I , (4)

where t̂I is the indicator boundary flux. The outward fac-
ing normal is nnnI , and xxx is the vector of spatial coordinates.
An adiabatic condition is imposed at the fluid-structure
boundary, and consequently no indicator flux can diffuse
through the fluid domain. Note that the ambient convective
model ensures that if an isolated solid volume emerges, the
diffusion problem remains well posed.

Figure 5 illustrates the effect of the indicator field for two
potential FSI designs: one with all solid volume connected
(left) and one with a free-floating solid volume (right). The
top row shown in Fig. 5 depicts the configurations defined
by the optimization variables; the structure is denoted by
�̃s . The middle row shows the result of the indicator field
calculation, and the bottom row shows the resulting configu-
ration to be modeled in the FSI analysis, where the structural
domain is denoted by �s .

If the design is such that all solid volume is connected
to an anchor point (as illustrated in the left column, middle
row of Fig. 5), the indicator field solution will be χ > χ0.
This case results in no change to the topology of the design
for the FSI analysis. If in the course of the optimization pro-
cess, the configuration of the right column, top row of Fig. 5
emerges, the indicator field is χ = χ0 in a subset of the solid
domain. Solid material with an indicator value equal to the

Fig. 5 Design without (left) and with free-floating solid volume
(right)

ambient value, χ0, is identified as free-floating solid, and
thus is considered to be fluid in the subsequent FSI analysis.

2.2 Fluid-structure interaction model

The fluid is modeled by the incompressible Navier-Stokes
equations, and the solid is modeled by linear elasticity. The
fluid mesh deformation at the interface results from the
structural deformation. Within the fluid domain, the fluid
mesh displacements are described by linear elasticity to
ensure smooth mesh deformations.

The steady state response of the system is governed by
the following set of partial differential equations:

ρf vvv · ∇∇∇vvv − ∇∇∇ · σσσf = 0, (5)

∇∇∇ · vvv = 0, (6)

∇∇∇ · σσσ s = 0, (7)

∇∇∇ · σσσm = 0. (8)

The conservation of momentum (5) and mass (6) in the fluid
domain govern the fluid velocity vvv and pressure p, which
are defined over the fluid domain �f . The structural dis-
placements uuu are defined over the solid domain �s and the
fluid mesh displacements, ddd, over the fluid domain �f . The
fluid density and the fluid stress tensor are denoted by ρf

and σσσf , respectively. The stress tensor of the structural dis-
placement is σσσ s , and σσσm is the fluid mesh displacement
stress tensor. The fluid stress tensor is defined assuming a
Newtonian fluid:

σσσf (vvv, p) = 2μfεεε (vvv) − 111p. (9)

The dynamic viscosity of the fluid is denoted by μf , and εεε

is the strain (rate) tensor:

εεε (vvv) = 1

2

(
∇∇∇vvv + (∇∇∇vvv)T

)
. (10)

The linear constitutive relations for the solid and fluid mesh
are:

σσσ s = CCCsεεε (uuu) , σσσm = CCCmεεε (ddd) . (11)

The structural strain tensor is εεε (uuu), and the fluid mesh
strain tensor is εεε (ddd). The solid constitutive tensor, CCCs , is
a function of the solid elastic modulus, Es , and Poisson’s
ratio, νs . Likewise, Em and νm determine the entries in the
constitutive tensor,CCCm, for the fluid mesh.

Essential boundary conditions prescribed on �c, and are
denoted by the hat symbol,

(·̂):
vvv = v̂vv, uuu = ûuu, ddd = d̂dd ∀ xxx ∈ �c.

Prescribed boundary tractions, t̂tt , describe the natural condi-
tions on �n:

σσσf · nnnf = t̂ttf , σσσ s · nnns = t̂tt s , σσσm · nnnf = t̂ttm ∀ xxx ∈ �n.
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The outward facing normals for the fluid and solid are nnnf

and nnns , respectively. The FSI boundary normal is denoted
by nnns→f , defined as outward for the solid and inward for
the fluid.

The fluid load is applied to the solid, resulting in struc-
tural deformation. To accommodate the resulting changes of
the flow domain, the fluid mesh is deformed by enforcing
that the fluid mesh displacements are equal to the struc-
tural displacements at the fluid-solid interface. This fluid-
structure interaction is enforced by the following interface
conditions:

σσσf · nnns→f = σσσ s · nnns→f ∀ xxx ∈ �f si, (12)

vvv = 0 ∀ xxx ∈ �f si, (13)

uuu |= ddd ∀ xxx ∈ �f si . (14)

The balance of fluid and solid surface tractions is described
by (12), and the no-slip condition on �f si is enforced
by (13). The continuity of the structural and fluid mesh dis-
placements is imposed by (14), where “|=” symbolizes that
the fluid mesh displacement is set to the solid displacement.
This one-way coupling ensures that the fluid mesh does not
exert a reactive load on the structure.

3 Spatial discretization

In this section we present the finite element discretization
of the FSI problem for the two-dimensional case, includ-
ing the indicator field model. The computational domain,
� = �f ∪ �s , is discretized by quadrilateral finite ele-
ments. Given suitable spaces for trial solutions, Sh, and test
functions, Vh, the variational problem is defined as follows:

Find {vvv, p,uuu,ddd, χ} ∈ Sh, such that

af ({vvv, p}, {www, q}) + as(uuu,yyy) + am(ddd,zzz) + aI (χ, g)

+ a
f si
V ({vvv, p}, {www, q,yyy})

+ a
f si
D ({uuu,ddd}, {yyy,zzz}) = 0,

∀ {www, q,yyy,zzz, g} ∈ Vh,

where af , as , am, and aI are the bi-linear forms of the
fluid, solid, fluid mesh, and indicator field governing equa-
tions, respectively. The bi-linear forms associated with the
interface coupling conditions are a

f si
V and a

f si
D . Here, (·, ·)

denotes the inner product over the volume � = �f ∪ �s ,
and < ·, · > denotes the inner product along the boundary
�. The test functions associated with the fluid velocity, fluid
pressure, fluid mesh displacement, solid displacement, and

indicator value arewww, q, zzz, yyy, and g, respectively. The weak
forms of the governing equations are defined as:

af = (
ρf vvv · ∇∇∇vvv,www

) + (
σσσf (vvv, p),εεε (www)

) + (∇∇∇ · vvv, q)

+
∑
ne

f

(
τSUPG vvv · ∇∇∇www + τPSPG ∇∇∇ · q,RRRv

f

)

− 〈
σσσf (v̂vv, p̂) · n̂nnf ,www

〉
�f

, (15)

as = (σσσ s, εεε (yyy)) − 〈
σσσ s(ûuu) · n̂nns,www

〉
�s

, (16)

am = (σσσm,εεε (zzz)) −
〈
σσσm(d̂dd) · n̂nnm,www

〉
�f

, (17)

aI = (QQQ,∇∇∇g) − 〈
QQQ · n̂nns, g

〉
�s

− (hI (χ − χ0) , g) , (18)

a
f si
V = 〈

σσσf (www, q) · n̂nns→f ,vvv
〉
�f si

+ γV 〈www − yyy,vvv〉�f si

+ 〈
www − yyy,σσσf (vvv, p) · n̂nns→f

〉
�f si

, (19)

a
f si
D = 〈

σσσm (zzz) · n̂nns→f ,ddd − uuu
〉
�f si

+ γD 〈zzz,ddd − uuu〉�f si

+ 〈
zzz,σσσm (ddd) · n̂nns→f

〉
�f si

. (20)

The convective term in (15) introduces an inf-sup instability,
and may lead to numerical oscillations. In addition, employ-
ing equal order interpolation spaces for both fluid velocity
and fluid pressure leads to oscillations in the pressure solu-
tion. These numerical instabilities are remedied by the
streamline upwind Petrov-Galerkin (SUPG) and pressure
stabilizing Petrov-Galerkin (PSPG) stabilization methods.
The stabilization term in (15) is the sum of the elemental
inner products, where RRRv

f is the strong form the fluid resid-
ual (5), and the total number of fluid elements is ne

f . The

stabilization parameters, τSUPG and τPSPG are defined in
Tezduyar et al. (1992).

The interface conditions (19)–(20) are enforced with
Nitsche formulations; the reader is referred to Hansbo et al.
(2004) and Bazilevs et al. (2013) for further details of this
method for FSI problems. The weak form of the FSI no-
slip interface condition leads to the terms collected in a

f si
V .

Following Hansbo et al. (2004), the traction at the interface
is approximated by just the fluid traction. This approach
relaxes the strength of FSI coupling, and reduces the mag-
nitude of the spatial gradients near the interface. Imposing
the continuity of the structural and fluid mesh displace-
ments leads to the terms collected in a

f si
D . The consistency

condition in a
f si
D (last term) is only weighted with the test

functions of the fluid mesh displacements, and the inter-
face traction is set to the fluid mesh surface traction. This
enforces the one-sided structural-fluid mesh displacement
coupling condition described in (14). The penalty factors for
the no-slip condition and the displacement continuity, γV

and γD , depend on the discretization scheme and are given
in Section 4.
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4 Extended finite element enrichment

In this section we present the XFEM framework used to
discretize the fluid-structure problem. The XFEM permits
modeling physical or material boundaries with a non-body
fitted mesh. The state variable interpolation is enriched to
account for discontinuities of the variables across interfaces
within an element. Here, the geometry of the immersed
boundaries is described by the zero iso-contour of the level
set field, φ, as follows:

φ(xxx) < 0, ∀ xxx ∈ �f ,

φ(xxx) > 0, ∀ xxx ∈ �s,

φ(xxx) = 0, ∀ xxx ∈ �f si .

(21)

To allow for discontinuous state variable fields across phase
boundaries, we approximate the state variable field within
an intersected element as follows:

fff (xxx) =
M∑

m=1

H(−φ (xxx)) δ
f
mi NNNe · f̄ff m,e

f

+
M∑

m=1

H(φ (xxx)) δs
mj NNNe · f̄ff m,e

s , (22)

with H being the Heaviside function:

H(ξ) =
{
1 if ξ > 0
0 if ξ ≤ 0

. (23)

The local shape functions of element e are NNNe. The ele-
mental vector of nodal degrees of freedom for enrichment
level m, in phase k ∈ [f, s], is f̄ff

m,e

k . The maximum num-
ber of enrichment levels is M , and takes the value of M =
10 for the two dimensional examples presented here. The
Heaviside function turns on/off two sets of shape functions
associated with the phases “f ” and “s”. Note that no more
than one degree of freedom per node is used to interpo-
late the solution at a point in a finite element. The active
degrees of freedom are denoted by i for the fluid phase, and
j for the solid phase. The Kronecker Delta is denoted by δb

ij

with b = [f, s]. For each phase, multiple enrichment lev-
els, i.e. sets of shape functions, are necessary if the degrees
of freedom interpolate the solution in multiple, physically
disconnected regions of the same phase; see Terada et al.
(2003) and Tran et al. (2011). This generalization prevents
spurious coupling and load transfer between disconnected
regions of the same phase. A detailed explanation of this
phenomenon is provided by Makhija and Maute (2014).

Here, we interpolate the level set field bi-linearly on
meshes with quadrilateral elements. Therefore, each edge
of the quadrilateral element can only be intersected once,

which inhibits some geometric configurations. The reader
is referred to Villanueva and Maute (2014) and Jenkins and
Maute (2015), where this issue is discussed in further detail.

The XFEM framework presented here triangulates inter-
sected quadrilateral elements in order to accurately integrate
the weak form of the static equilibrium equations given in
Section 3. The elemental interface is �e

f si in an element,
�e, intersected by the fluid-solid interface. Following the
method proposed by Annavarapu et al. (2012), we define the
Nitsche penalty parameters as:

γV = ωV μf

∣∣∣�e
f si

∣∣∣
|�e| , (24)

γD = ωDEm

∣∣∣�e
f si

∣∣∣
|�e| . (25)

The choice for weighting parameters, ωD and ωV , is prob-
lem dependent; typical values range between 100 and 103.

5 Geometry model

The geometry of the fluid solid interface is described by
the zero level set iso-contour. The level set field is dis-
cretized by the same mesh as used for the FSI model
response calculation. We adopt the explicit LSM of Kreissl
and Maute (2011), and define the nodal level set values as
explicit functions of the optimization variables. Each node
in the finite element mesh is assigned one optimization vari-
able, si . Explicit LSMs, which have been also studied, for
example, by Wang and Wang (2006), Luo et al. (2007),
and Pingen et al. (2010), are a deviation from traditional
LSMs; see, for example, Allaire et al. (2002), Wang et al.
(2003), Allaire et al. (2004), and Burger and Osher (2005).
Instead of updating the level set field via the solution of
the Hamilton-Jacobi equation, as done in traditional LSMs,
explicit LSMs solve the parametrized optimization prob-
lem by standard nonlinear programming schemes. Note that,
similar to traditional LSMs, the method presented here uses
shape sensitivities for computing the gradients of objec-
tive and constraints with respect to optimization variables;
details of the sensitivity analysis are provided by Coffin and
Maute (2015).

We distinguish between two level set fields: φ̃(xxx) and
φ(xxx). The field φ̃(xxx) is used to evaluate geometric quanti-
ties, such as the volume of the structural domain and the
perimeter of the fluid-structure interface, and may contain
free-floating volumes of solid material. These free-floating
volumes are removed in the construction of the level set
field φ(xxx), which is used in the XFEM analysis; see
also (21).
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The nodal level set values, φ̃i , depend explicitly on the
optimization variables si , and are computed via a linear
filter:

φ̃i =
⎛
⎝

Nnodes∑
j=1

ηij

⎞
⎠

−1
Nnodes∑
j=1

ηij sj , (26)

with

ηij = max
(
0, (r − |xi − xj |)

)
, (27)

where xxxi is the location of node i and r is the filter radius.
The total number of nodes in the mesh is Nnodes . The level
set field, φ̃(xxx), defines the structural domain, �̃s , on which
the indicator field, χ(xxx), is computed; see Fig. 5 and (1).

The geometry of the fluid-structure interface used in the
XFEM analysis is defined by the level set field, φ(xxx). The
nodal level set values, φi , are determined as follows:

φi =
⎧⎨
⎩

φ̃i ∀ φ̃i < 0
φ̃i ∀ φ̃i > 0 ∧ χi > χo

−φ̃i ∀ φ̃i > 0 ∧ χi = χo

. (28)

Thus, for all nodes within the structural domain, �̃s , the sign
of the level set function, φ̃i is flipped if the indicator func-
tion identifies the node belonging to a free-floating volume,
i.e. χi = χo.

The level set filter (26) widens the zone of influence
of the optimization variables on the level set field and
thus enhances the convergence of the optimization pro-
cess. It neither guarantees the convergence of the opti-
mized geometry with mesh refinement nor provides local
size control; see, for example, the discussions in van Dijk
et al. (2013), Sigmund and Maute (2013), and Villanueva
and Maute (2014). To control globally, i.e. in an integral
sense, the geometry of the optimized design, we penalize
the perimeter of the FSI boundary in the formulation of
the LS-XFEM optimization problems studied in Section 6.
Numerical experiments suggest that penalizing or constrain-
ing the perimeter leads to smooth shapes and impedes the
emergence of small features and free-floating material; see,
for example, Makhija and Maute (2014).

While the level set field φ̃(xxx) is a smooth function of
the optimization variables, the level set field φ(xxx) is not if
free-floating volumes of solid material emerge. To reduce
the impact of discontinuities in the evolution of φ(xxx), we
found through numerical studies that it is beneficial for the
convergence of the optimization process to compute geo-
metric quantities based on φ̃(xxx). As penalizing the perimeter
gradually removes free-floating volumes described by φ̃, the

inconsistency in the geometries described by φ̃(xxx) and φ(xxx)

vanishes as the design converges.

6 Numerical examples

In this section we study the proposed LS-XFEM with three
two-dimensional numerical examples. The first example
verifies that the framework discussed in Section 5 senses
free-floating volumes of solid material, and converts them
into fluid for the FSI analysis. This example also illustrates
the evolution of the FSI response as solid disconnects from
an anchored volume.

The second example is the design of a bio-prosthetic aor-
tic heart valve. The fluid average maximum shear stress,
which is a measure of blood cells suffering blood cell
damage, is minimized by manipulating the wet shape of a
flexible “leaflet”. This example demonstrates that the LS-
XFEM is well suited for shape optimization problems where
the objective characterizes the flow solution.

The third example is the design of a support structure for
a deflecting beam immersed in a fluid channel. We design
the topology of the fluid-solid materials immediately down-
stream of a beam to minimize compliance, subject to a
constraint on solid volume. This example showcases the wet
and dry topology optimization capability of the LS-XFEM
for FSI problems.

In all examples we discretize the computational domain
with 4-node bi-linear quadrilateral elements. The steady-
state response of the FSI problem is computed by Newton’s
method, equipped with an adaptive under-relaxation strat-
egy. This feature is crucial for handling (intermediate)
designs with thin structural members that lead to large, local
deformations. In the FSI analysis, such deformations can
result in large distortions of the fluid mesh which may cause
the fluid solution to diverge.

The design sensitivities of the objective and constraints
are determined by the adjoint method. The Jacobian of the
state equations and gradients of objective and constraints
with respect to the state variables are computed based on
analytically derived expressions. The partial derivatives of
the residual, objective, and constraints with respect to the
optimization variables within the adjoint framework are
evaluated by a central finite difference scheme. The reader
is referred to Coffin and Maute (2015) for further details
on the adjoint framework employed here. The linear sub-
problems in the forward and adjoint sensitivity analysis are
solved by a direct parallel solver (Amestoy et al. 2000; Sala
et al. 2008).

The parameter optimization problems resulting from the
proposed LS-XFEM approach are solved by the Globally
Convergent Method of Moving Asymptotes of Svanberg
(2002). We use an initial adaptation of 0.5, and a value of 0.7
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thereafter. Relative step size and penalty values are defined
specifically for each example. No inner GCMMA iterations
are used in the examples shown here.

6.1 Disconnecting cylinders in flow

This example verifies that the evaluation of the level set
function φ(xxx) in (28) converts free-floating solid volume
to fluid and illustrates the behavior of the design criteria
used in the next two examples as a solid volume becomes
disconnected.

The problem setup is illustrated in Fig. 6a, where a
structure is immersed in a rectangular flow channel. The
geometry of the structure is defined by the union of two
initially overlapping cylinders of equal radius, LR . One
cylinder is stationary whereas the other one is moved. The
structure is supported by constraining the displacements
of the nodes within a square region at the center of the
stationary cylinder. Figure 6b shows the structural mesh,
where black dots denote the location of the structural essen-
tial boundary condition and the indicator natural boundary
condition, i.e. applied indicator flux.

The FSI response is determined for a sequence of posi-
tions for the non-fixed cylinder. The two cylinders start
concentric (Lc = 0), and the non-fixed cylinder is moved
away from the fixed cylinder along a straight path inclined
by 45.0o with respect to the channel axis in 32 increments of
�Lc. Initially, as the non-fixed cylinder protrudes outward,
only the shape of the structure is varied. As the distance, Lc,
between the cylinder centers exceeds 2 LR , the structural
topology changes, and a volume of free-floating material is
created. Once this topological change occurs, the indicator
field solution causes the sign of the level set value in the
disconnected solid region to change. Note that the cylinder

Fig. 6 Setup of the disconnecting cylinders example

does not move in time, but rather the steady-state response
is computed for each configuration.

A parabolic inflow velocity profile is imposed at the left
edge of the channel, and no slip velocity conditions are pre-
scribed on the top and bottom walls. A constant pressure
outlet is enforced (p̂ = 0). Using the cylinder diameter for
the reference length, the Reynolds number of the flow is 1.0.
The remaining problem parameters are given in Table 1.

The structural compliance, U, and the fluid average max-
imum shear stress, T, are considered as design criteria, and
are computed as:

U =
∫

�s

σσσ s εεε (uuu) d�, (29)

T = 1

‖�f ‖
∫

�f

τmax
(
σσσf

)
d�, (30)

The local maximum shear stress, τmax , is computed as:

τmax
(
σσσf

) =
√√√√

(
σxx

f − σ
yy
f

2

)2

+
(
σ

xy
f

)2
(31)

The flow, structure, and indicator fields for different
cylinder locations are given in Figs. 7 and 8. The fluid
velocity solutions show a constriction in the top of the chan-
nel as the second cylinder protrudes further into the upper
flow region until Lc = 0.102 [m], when the two cylinders
disconnect. In the last fluid solution in Fig. 7, the non-
fixed cylinder is sensed as free-floating and vanishes. After
the disconnect, the flow and deformation fields are identi-
cal to the initial configuration, where the two cylinders are
concentric.

Table 1 Physical parameters of disconnecting cylinders example

channel height LH 0.41 [m]
channel length LL 2.2 [m]
cylinder radius LR 0.05 [m]
cylinder center horizontal position Lx 0.2 [m]
cylinder center vertical position Ly 0.2 [m]
square pin region side length LP 0.008 [m]
incremental distance �Lc 0.003 [m]
fluid density ρf 1000.0 [kg/m3]
fluid dynamic viscosity μf 1.0 [m2/s]
solid and fluid mesh elastic modulus Es, Em 900.0 [Pa]
solid and fluid mesh Poisson ratio ν 0.33

scaling of Nitsche velocity condition ωV 2.1

scaling of Nitsche velocity condition ωD 5.1

mean inlet velocity v̄vvin 0.01 [m/s]
indicator diffusivity κ 1.0 [1/(m s)]
indicator convection coefficient hI 1.0 [1/(s m3)]
indicator ambient value χ0 0.1

indicator boundary flux t̂I 1.0 [1/(s m2)]
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Fig. 7 Contours of fluid velocity and fluid mesh displacement magni-
tudes at various cylinder center separation distances

The solid compliance and fluid average maximum shear
stress are plotted over the separation distance between the
cylinder center points in Fig. 9. As the cylinders discon-
nect, the FSI response is non-differentiable due to the on/off

Fig. 8 Indicator value and structural displacement magnitude for the
disconnecting cylinder example
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Fig. 9 Evolution of design criteria for various cylinder center separa-
tion distances

nature of the indicator field solution. In particular, T is
rather sensitive to design changes; the severity of oscilla-
tions could be reduced with mesh refinement. The impact of
the non-differentiability of topological changes on the con-
vergence of the optimization process is studied subsequently
with two design optimization problems.

6.2 Bio-prosthetic aortic heart valve design

We study the proposed optimization approach by optimizing
the wet shape of a bio-prosthetic aortic heart valve (BAHV),
illustrated in Fig. 10.

Fig. 10 Illustration of the aortic valve location within a human heart
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Fig. 11 Setup of the BAHV example

During ventricular systole, the pressure in the left ven-
tricle increases. When the pressure difference between the
aorta and the left ventricle is sufficiently high, the leaflet is
displaced by the fluid force and blood flows from the left
to the right ventricle of the heart. Once the pressure differ-
ence is relieved, the leaflet displaces back to its undeformed
position. Modeling the BAHV as an FSI system is crucial to
predicting sticking or premature opening of the valve.

We aim to minimize the average maximum shear stress
(30) in the fluid, which characterizes the amount of blood
platelet damage as the blood flows through the valve

Table 2 Parameters for the BAHV example

shear stress objective scaling ks 5 · 104
FSI boundary objective scaling kP 10

constraint scaling k�p 1000

desired pressure drop �p∗ 0.0025 [Pa]
level set smoothing radius r 8.0 · 10−4 [m]
GCMMA relative step size 0.009

GCMMA penalty 100.0

design domain offset Ld 0.002 [m]
sinus radius LR 0.02 [m]
initial leaflet thickness Lt 0.003 [m]
initial leaflet length LL 0.02 [m]
fluid density ρf 0.001 [kg/m3]
fluid dynamic viscosity μf 0.0043 [m2/s]
solid and fluid mesh elastic modulus Es, Em 29.0 [Pa]
solid and fluid mesh Poisson ratio ν 0.33

scaling of Nitsche velocity condition ωV 200.0

scaling of Nitsche velocity condition ωD 8.0

mean inlet velocity v̄vvin 0.001 [m/s]
indicator diffusivity κ 1.0 [1/(m s)]
indicator convection coefficient hI 1.0 [1/(s m3)]
indicator ambient value χ0 0.1

indicator boundary flux t̂I 1.0 [1/(s m2)]

(Morbiducci et al. 2015). The average maximum shear
stress is one of many metrics for blood damage; see, for
example, Arora et al. (2004). An equality constraint on the
pressure drop across the value is included to guarantee that
the leaflet has a sufficient stiffness needed to open and close
(Griffith 2012). The design problem is defined as follows:

minimize
sss

z(sss) = ks T + kP

∫
�f si

d�,

subject to g (sss) = k�p

(
�p
�p∗ − 1.0

)2 ≤ 0,
(32)

where ks and kP scale the fluid average maximum shear
stress and the fluid-solid interface length, respectively.

As GCMMA cannot handle equality constraints, we
express the equality constraint on the pressure drop via an
equivalent inequality constraint. The inequality constraint in
(32) is only satisfied if the pressure drop across the valve,
�p, is equal to the desired value, �p∗. We scale the con-
straint by the parameter k�p to control the rate the GCMMA
satisfies this condition.

A simplified BAHV model is shown in Fig. 11, where
the semicircle of radius LR is referred to as the sinus. The

Fig. 12 Initial (top), and final designs for coarse (center) and fine
(bottom) meshes, with undeformed level set zero-contour shown in red
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leaflet design is initially a rectangle with thickness Lt and
length LL, which includes a semi-circle of radius Lt/2 on
the tip. The design domain is a square with side length LR .
The upper left corner of the design domain is Ld behind
and above the corner node that joins the top of the valve
body with the sinus to provide some overlap for connect-
ing the leaflet to the arterial wall. Figure 11b shows the
design domain offset, and the pin conditions for the leaflet
root. Note that the leaflet is not seeded with fluid inclusions
because we intend to optimize the bulk profile of the leaflet,
and the volume of the leaflet is not relevant.

The BAHV model employed here is idealized, but is
sufficient to demonstrate the advantages of the proposed

Fig. 13 Pressure contours with streamlines of initial design (top), and
final designs for coarse (middle) and fine (bottom) meshes

optimization framework for this class of design problems.
The leaflet structural deformation is modeled by linear elas-
ticity, and we assume a Newtonian flow model. In general,
blood viscosity is shear rate dependent; however, a rate inde-
pendent model is a reasonable approximation given the size
of the bulk flow of the heart (Vasava et al. 2012). We assume
the arterial walls are rigid. This simplifying assumption may
affect the accuracy of our model for practical applications
(Hsu et al. 2014).

The physical properties of the model are provided in
Table 2, where the dimensions and physical parameters
are primarily taken from Hart (2002). The approximate
Reynolds number of the flow is 10.0, where the length of
the leaflet is used as reference length. This Reynolds num-
ber indicates that the flow is laminar. A symmetry (slip)
condition is imposed at the bottom surface, and a parabolic
inflow is prescribed at the left edge of the valve model. A
no-slip velocity condition is enforced at the upper arterial
walls, including the sinus cavity. A zero-pressure condition
is prescribed at the outflow. The pressure drop across the
valve in (32) is computed as:

�p =
∫

�in

p + 1

2
vvv2d� −

∫

�out

p + 1

2
vvv2d�. (33)

The structural displacements at the nodes on the arterial wall
(upper wall and sinus cavity) are prescribed to be zero. Note
that the indicator boundary flux is also applied to these same
locations.

0 50 100 150 200 250 300 350
160

180

200

220

240

260

0 50 100 150 200 250 300 350

0

100

200

300

Course Grid

Fine Grid

Course Grid

Fine Grid

Course Grid

Fine Grid

Course Grid

Fine Grid

Fig. 14 BAHV valve objective and constraint evolution
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We optimize the problem on two computational grids,
a coarse and fine version, in order to gain insight into
mesh dependency of the proposed optimization method.
The coarse mesh has 17,089 nodes, yielding approximately
225,000 degrees of freedom at the initial design stage.
The fine mesh has 32,800 nodes, yielding approximately
410,000 degrees of freedom at the initial design configuration.

The final designs for the coarse and fine meshes are given
in Fig. 12, where the black color depicts the deformed solid,
and the red line represents the undeformed FSI boundary.
The pressure contours with fluid velocity streamlines are
plotted in Fig. 13. The evolution of the objective and the
constraint value is shown in Fig. 14.

Both the coarse and fine mesh lead to designs with sim-
ilar behavior: the root of the leaflet expands to stiffen the
leaflet and to increase the pressure drop such that the con-
straint is satisfied. To reduce the average maximum shear
stress, the bottom of the leaflet is elongated and a thin tip
section is formed. This process enables the pressure drop to
still be satisfied, but leads to more deformation near the tip
which impedes the flow less.

Figure 14 shows that, in the course of the optimization
process, the pressure drop constraint is quickly satisfied at

Fig. 15 Initial and optimized fluid shear stress distributions for fine
BAHV mesh

the cost of an increase of the average maximum shear stress.
The convergence of the coarse mesh suffers from oscil-
lations which are due to fluctuations of the insufficiently
resolved fluid stresses near the interface.

Figure 15 illustrates that in both the initial and the opti-
mized configurations the shear stress distribution exhibits
large spatial gradients near the fluid-structure interface. This
feature leads to ill-conditioning of the interface coupling
conditions and oscillatory behavior in Fig. 14, in particular
for the coarse mesh.

While the shape of the leaflet changed in the optimiza-
tion process, the topology remained unchanged. This is to
be expected, given new holes cannot be generated with the
LSM employed here. For this particular problem the inter-
nal topology of the leaflet is not important because the bulk
deformation profile of the valve governs the pressure drop
and blood shear. The capability of describing topological
changes in the optimization process are illustrated in the
next example in Section 6.3.

6.3 Beam support design

In this example we study the proposed LS-XFEM for opti-
mization of a beam support structure. We seek to maximize
the structural stiffness while constraining the volume of the
solid. Figure 16 shows the problem setup along with the ini-
tial topology. A beam of thickness Lb,t is immersed at a
horizontal distance Lb,c in the fluid channel. A parabolic
velocity profile is prescribed along the left edge of the flow
channel. No slip conditions at the upper and lower walls are
imposed, and a zero-pressure outflow condition is enforced
at the right edge of the channel. The nodes along the bottom
structural boundary are clamped, and an indicator flux is
applied to them. The design domain begins at the rear edge
of the beam, and extends LD,w downstream. The design
domain height is LD,H , referenced from the channel bottom
boundary. The beam support is seeded with eighteen equi-
spaced holes (three in horizontal direction, six in vertical
direction) of fluid with radius ri .

Fig. 16 Setup of beam support design example
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Fig. 17 Increase of volume constraint scaling in the optimization
process

This problem is similar to one of Yoon (2010). Here
we consider a Reynolds number, Re = 10.0, which
results in a laminar, steady-state flow, and we only allow

Table 3 Parameters for the beam support example

level set smoothing radius r 0.045 [m]
GCMMA relative step size 0.008

GCMMA penalty 120.0

compliance objective scaling kD 5000

FSI boundary objective scaling kP 2.0

initial constraint scaling parameter kV,o 1.0

final constraint scaling parameter kV,f 200.0

number of GCMMA iterations to increase scaling s∗ 350
constraint volume V ∗

s 0.33

design domain height LD,H 0.95 [m]
design domain width LD,w 0.5 [m]
initial fluid inclusion circle radius ri 0.045 [m]
channel height LH 2.0 [m]
distance to beam front Lb,c 1.95 [m]
distance from design domain to outflow LD,c 3.45 [m]
beam thickness Lb,t 0.1 [m]
beam height Lb,H 1.0 [m]
fluid density ρf 1000.0 [kg/m3]
fluid dynamic viscosity μf 1.0 [m2/s]
solid and fluid mesh elastic modulus Es, Em 150 [Pa]
solid and fluid mesh Poisson ratio ν 0.33

scaling of Nitsche velocity condition ωV 80.0

scaling of Nitsche velocity condition ωD 2.0

mean inlet velocity v̄vvin 0.01 [m/s]
indicator diffusivity κ 1.0 [1/(m s)]
indicator convection coefficient hI 1.0 [1/(s m3)]
indicator ambient value χ0 0.1

indicator boundary flux t̂I 1.0 [1/(s m2)]

Fig. 18 Optimal beam support design in the undeformed state

topological changes to the structure just downstream of the
nominal beam structure.

The design objective is to minimize the structural com-
pliance, augmented by a perimeter penalty, subject to a
constraint on total solid volume. The design problem is as
follows:

minimize
sss

z(sss) = kD U + kP

∫
�f si

d�,

subject to g (sss) = kV

(
1

V ∗
s

∫
�s

d� − 1.0
)

≤ 0,
(34)

where kD scales the compliance and kP scales the perimeter
in the objective calculation. The volume constraint scaling
is kV , and V ∗

s is the maximum allowable volume of solid.
We linearly ramp up the scaling parameter on the volume

Fig. 19 Optimal beam support designs in the deformed state with
stress contours
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Fig. 20 Initial and final beam support designs in the deformed state
with the fluid colored by pressure contours and velocity streamlines

constraint, shown in Fig. 17, in order to control the rate at
which GCMMA satisfies this condition. If the constraint is
satisfied too quickly, too much material is removed early in
the optimization process, affecting the performance of the
final design. Throttling the constraint ensures that both the
objective and the constraint are considered in a balanced
fashion. The scaling parameter is linearly increased from
kV,o to kV,f over s∗ iterations.

The XFEM model has approximately 200,000 total
degrees of freedom; the exact number depends on the inter-
section geometry and changes throughout the optimization
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Fig. 21 Evolution of objective, constraint, and volume of free-floating
solid material in the course of the optimization process for the beam
support design example

process. The remaining parameters for the beam support
problem are given in Table 3.

The final structural design in the undeformed configura-
tion is given in Fig. 18. The normal, shear, and von Mises
stress contours are plotted in the optimal, deformed configu-
ration in Fig. 19. The initial and optimized structural designs
in the deformed configuration, with the fluid colored by
pressure contours and velocity streamlines, are shown in
Fig. 20. The objective and constraint are plotted in the top
row of Fig. 21. The bottom left plot of Fig. 21 is the con-
straint divided by the scaling parameter kV , and the bottom
right plot is the evolution of the free-floating volume over
the optimization process.

Between the 10th and 50th design iterations free-floating
pieces of solid material emerge, are sensed by the indi-
cator field, and converted to fluid prior to the FSI anal-
ysis. However, as these solid volumes are described by
the level-set field, φ̃, their perimeter still contributes to
the objective; see Section 5. In the process of minimizing
the objective, all of the free-floating solid volumes vanish
eventually.

Figure 22 shows the evolution of the objective and
free-floating volume together with snapshots of design for
distinct iterations. A single snapshot of the FSI response
for the 12th design iteration is shown in the bottom of
Fig. 22. At this iteration, free-floating solid volumes have
been converted to fluid in the FSI analysis, yet thin, hinge-
like structural members lead to large local deformations
and a sudden increase in the objective. Such disconti-
nuities were observed previously by Jenkins and Maute
(2015) for dry topology optimization problems when inter-
nal structural members disconnect. Thus, discontinuities
in the optimization process are not solely due to elim-
inating free-floating volumes of solid material, but may
emerge whenever the dry or wet topology changes. While
Newton’s method in combination with an adaptive under-
relaxation scheme was successful in computing an FSI
response for the configuration studied here, the emergence
of such features may severely impact the robustness of the
FSI analysis.

Despite oscillations in the design convergence history,
caused by both the removal of free-floating solid volume
(seen in the two previous examples) and the emergence of
thin compliant structural features, the method converged
to a well-defined support structure topology. This example
shows that the proposed LS-XFEM is well-suited for wet
and dry topology optimization of FSI problems that exhibit
moderate structural deformations. However, an additional
strategy for preventing large local deformations of inter-
mediate designs with thin, flexible structures needs to be
developed to take full benefit of the approach.
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Fig. 22 Snapshots of the beam support design along the evolution of the objective and free-floating volume (right), and the FSI response of the
12th iteration (left)

7 Conclusions

An immersed boundary approach for optimization of FSI
problems was presented. The approach combines the level
set and extended finite element methods to allow for shape
and topological changes of the fluid-structure interface.
The proposed FSI analysis scheme integrates an immersed
boundary method with a deforming fluid mesh motion tech-
nique, which allows for moderate structural deformations.
The immersed fluid-structure interface is defined by the
zero iso-contour of a level set function which is constructed
such that free-floating volumes of solid materials which
may undergo rigid body motion are eliminated from the
FSI model. In this study the fluid was modeled by the
incompressible Navier-Stokes equations and the structure
by linear elasticity. The coupling conditions were enforced
weakly at the fluid-structure interface.

The main characteristics of the proposed methods were
studied with two-dimensional problems at steady-state. It
was shown that the conversion of isolated solid volumes to
fluid in the FSI analysis may introduce discontinuities in
design criteria as the design evolves. These discontinuities
may affect the convergence of gradient-based optimization
schemes, as used in this study.

The emergence of thin structural members was identi-
fied as another issue that may affect the convergence of the
optimization process and the robustness of the FSI analy-
sis. As the thickness of structural features drops below some
threshold, their deformations may increase significantly,
due to the inherent nonlinearity of the fluid-structure cou-
pling. This FSI phenomenon may cause a discontinuity in
the evolution of the design criteria and may affect severely
the convergence in the FSI analysis. In this study Newton’s
method with adaptive under-relaxation was successfully
employed to stabilize the FSI analysis.

While discontinuities due to the removal of free-floating
solid material and due to large local deformations were

observed, the optimization examples studied here demon-
strated that the designs still converge to interesting and
meaningful solutions. However, improved methods for
treating free-floating volumes and for stabilizing the FSI
analysis against large local deformations should be inves-
tigated in future studies. The approaches and results pre-
sented here may provide some guidance for these studies.
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