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Abstract Structural optimization based on the shakedown
theory is a powerful and promising technique. However, due
to the nonlinearities of physical materials and the number of
variable loads in real structures, it is computationally complex
and time-consuming. To simplify the occurring non-linear,
non-convex optimization problems, the paper suggests reduc-
ing the number of yield conditions. The so-called a yield cri-
terion of the mean (integral yield condition) is analysed and
explained in detail, which allows taking into account one yield
condition for the entire finite element instead of multiple
point-wise conditions. This approach shows promising results
in numerical application to the optimization of a circular plate,
considering a possibility of employing the yield criteria of the
mean or pointwise yield conditions in different areas of the
plate in particular. The methods applied are based on the
assumptions of perfect plasticity and small deformations.
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1 Introduction

The shakedown theory of discrete structures and its practical
aspects have beenwidely discussed (Koiter 1960;Maier 1969;
Atkočiūnas et al. 1981; Čyras 1983; König 1987; Hung and
Morelle 1990; Polizzotto et al. 1991; Stein et al. 1993; Mróz
et al. 1995; Franco and Ponter 1997a; Franco and Ponter

1997b; Weichert and Maier 2000; Staat and Heitzer 2002;
Weichert and Maier 2002; Chinh 2003; Bousshine et al.
2003; Chen et al. 2008; Weichert and Ponter 2009; Tran
2011; Zhou et al. 2012). Also, works dealing with the issues
of optimizing elastic-plastic structures at shakedown should
be emphasized (Kaliszky and Lógó 1997; Capsoni and
Corradi 1999; Tin-Loi 2000; Kaliszky and Lógó 2002;
Casciaro and Garcea 2002; Atkociunas et al. 2004;
Giambanco et al. 2004; Merkevičiūtė and Atkočiūnas 2006;
Simon and Weichert 2011; Atkočiūnas 2012; Lellep and
Polikarpus 2012; Simon et al. 2013; Palizzolo et al. 2014;
Blaževičius and Atkočiūnas 2015a). Thus, scientific literature
and problem solving experience assist in noticing that struc-
tural optimization based on the shakedown theory is a power-
ful and promising technique; however, due to the nonlinear-
ities of physical materials and the number of variable loads in
real structures, it appears to be computationally complex and
time-consuming. Therefore, the paper properly examines the
case of a circular plate at shakedown thus defining the goal of
the article. With reference to the Melan’s theorem, (Koiter
1960; König 1984), equilibrium finite elements can be suc-
cessfully applied (Belytschko 1972; Gallagher 1975; Venskus
et al. 2010; Blaževičius et al. 2014) to shakedown analysis.
Figure 1 shows the discretization of the circular plate using the
above introduced elements and the circular finite element
itself having three nodes (1 and 3—the principle nodes of
the element).

Current paper investigates thin circular and annular plates
(thin means that thickness is no more than 1/5 of the smallest
plate dimension, e.g., radius R). Elastic calculations of thin
plates are based on the Kirchhoff-Love hypothesis (Gustav
Robert Kirchhoff, 1824–1887; A.E.H. Love, 1863–1940).
Additionally it is assumed that any point of the middle plate
plane displaces only in the vertical direction, which, together
with the assumption of small deformations, means that the
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middle plane is not stressed axially. These assumptions are
valid for the plastic analysis of the plates as well.

In case of the discrete model of the structure, under m
degrees of freedom, variable-repeated load F (t) acts as the
system of external forces F (t) = [F1(t) F2(t) … Fm(t)]

T, each
of which, in time t, varies independently from one other. It is
clear that some components of vector F (t) may have constant
zero values, and therefore such forces should be eliminated
from further calculations. The work accepts that only upper
Fsup and lower Finf ranges of a variation of fluctuations in
external forces can be predicted: Finf≤F(t)≤Fsup. The pro-
nounced effect of external forces, i.e., particular histories of
variations in forces within these bounds are not examined (the
unloading phenomenon of cross-sections is also ignored in the
course of plastic deformation). Load vectors are formed by the
combinations of the upper and lower bounds of external forces
Fj, j=1, 2,…p; p=2m, j∈ J (Finf≤Fj≤Fsup).

The stress state of a discrete circular plate is expressed by

the vector of forces M ¼ M1 M2 … Mζ½ �T , ζ= s× v,
where s is the number of finite elements (k=1, 2,…, s, k∈K)
and ν is the number of the nodes (design sections) of each
element (circular plate ν=3, Fig. 1). Thus, overall, there are
ζ design sections: i=1, 2, …, ζ, i∈ I.

The yield stress fy of the examined steel plates remains
constant in the whole plate. Meanwhile, the thickness tk of
finite element k is constant only within the bounds of the
element (area of the element is marked Lk, k∈K). Thus, the
limiting bending moment is assumed to be constant per finite
element area, i.e., M0, 1, M0, 2 and M0, 3 of all three nodes are
the same and simply equal toM0, k. RadialMρ and circularMθ

bending moments describe the stress state of the circular plate.
Traditionally, von Mises nonlinear yield condition will be
verified in all nodal points of the plate i= 1, 2, …, ζ, i ∈ I
(the so-called pointwise yield conditions):

φi ¼ M 0;i
� �2−MT

i ΠiMi≥0; ð1Þ

where von Mises yield matrix is
1 0.5

0.5 1i

Thus, the disclosed form of the (1) is:

φi ¼ M 0;i
� �2 − Mρ;i M θ;i½ � 1 −0:5

−0:5 1

� �
Mρ;i

M θ;i

� �
≥0;

i ¼ 1; 2; …; ζ; i∈I :

ð2Þ

It is convenient to pick out residual bending moments Mr,
displacements ur and strains Θr=DMr+Θp when analysing
a plate at shakedown. If j=1, 2,… p (j∈ J) vertices of elastic
force F(t) locus exist, then, the combinations of elastic bend-
ing moments Me and displacements ue are determined by
equations Mej=αFj and uej=βFj, where α and β are
influence matrices of elastic response. While omitting
detailed investigation into the loading history, yield conditions
take the form

φi; j ¼ M 0; i
� �2−MT

i; jΠiMi; j≥0; ð3Þ

Mi; j ¼ Mri þMei; j; i∈I ; j∈J : ð4Þ

This indicates that the abundance of yield conditions
(3) enormously expands the scope of the shakedown
analysis problem when the structure is under the effect
of multidimensional loading. To simplify such non-
linear optimization problems, the current paper suggests
reducing the number of yield conditions. The so-called
yield criterion of the mean (sometimes called integral
yield condition) is analysed and explained in detail
(Blaževičius and Atkočiūnas 2015b). The general math-
ematical model (Atkočiūnas et al. 2015) of the optimal
design problem for perfectly elastic-plastic structures ex-
posed to repeated alternating loading has been devel-
oped by the authors of the article and applied to the
elastic-plastic circular plates at shakedown employing
the yield criterion of the mean. The idea of the yield
conditions of the mean were introduced a long time ago
(Nguyen Dang Hung and König 1976; Kačianauskas
and Čyras 1988; Atkočiūnas et al. 1994) but did not
attract the interest of researchers working on optimal
shakedown design. The authors of this paper find this
condition promising in the sense it can reduce the num-
ber of conditions for mathematical programing problems
thus simplifying shakedown ones. The present paper
compares solutions using pointwise and mean yield con-
ditions for circular plate optimization problems. The
task is to find how these conditions affect a particular
design project and to compare the efficiency of numer-
ical calculations, which is the main goal of the article.
All calculations have been made using Matlab software
package. Numerical experiments are based on the assump-
tion of small displacements.
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1 and 3 – principle nodes of an element

Fig. 1 A symmetric circular plate
and a circular finite element
having three nodes
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2 The main discrete dependencies of the symmetric
circular plate

A discrete model of a circular symmetric plate is made of
equilibrium finite elements having three calculated nodes each
(Figs. 1 and 2). As mentioned in the introductory part of the
paper, there are ζ number of calculated nodes, which makes
i=1, 2,…, ζ, i∈ I. However, for deriving dependencies of the
element, referring to index k is a more appropriate option. At a
later stage, pointwise yield conditions will be verified in every
node i, and conditions of the mean—in every element k; there-
fore, distinguishing between these two is an important task.
Figure 2 shows positive internal forces acting in the element.
The article examines symmetric plates in terms of geometry,
boundary conditions and loading. Thus, when the symmetry
axis of the plate is taken as the starting point of the polar
coordinate system, a single radius of the plate is enough for
examination due to the fact that internal forces and displace-
ments do not depend on the angular coordinate.

Two bending moments (radial Mρ,k(ρ) and tangential
Mθ,k(ρ)) that depend on the coordinate p of the radius
are sufficient to consider the symmetric plate. Bending
moments Mk(ρ) are expressed in nodal moments Mk

applying approximation matrix Hk(ρ) at any point of
element k:

Mk ρð Þ ¼ Mρ;k ρð Þ
M θ;k ρð Þ

� �
¼ Hk ρð Þ⋅Mk : ð5Þ

Vector Mk of the nodal bending moments of every finite
element k is made of six components (Fig. 2):

Mk ¼ Mρ;k;1 M θ;k;1 Mρ;k;2 M θ;k;2 Mρ;k;3 M θ;k;3½ �T ,
and therefore the approximation matrix of internal forces
Hk(ρ) in global coordinates is expressed as follows:

Hk ρð Þ ¼ A1 0 A2 0 A3 0
0 A1 0 A2 0 A3

� �
; ð6Þ

where coefficients A1, A2, A3 are

A1 ¼ ρ−ρ2ð Þ ρþ ρ1−2ρ2ð Þ
2 ρ1−ρ2ð Þ2 ; A2 ¼ − ρ−ρ1ð Þ ρþ ρ1−2ρ2ð Þ

ρ1−ρ2ð Þ2 ; A3 ¼ ρ−ρ1ð Þ ρ−ρ2ð Þ
2 ρ1−ρ2ð Þ2 :

The correlation between global ρk and local ξk coordinates
(Fig. 2) can be expressed as

ξk ¼
ρk−ρk;2

bk
; ρk ξð Þ ¼ ρk;2 þ ξk ⋅bk ¼ ρk;2 þ ξk ⋅ ρk;2−ρk;1

� �
:

ð7Þ

where ρk,2 is the coordinate of the second (median) node of
the element; bk is a half of the width of the finite element.
The approximation matrix of the bending moments of local
coordinates is received changing the above mentioned
coordinates:
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Fig. 2 A finite element of a
circular symmetric plate and its
positive internal forces. Relation
between global and local
coordinates
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Then, the nodal internal forces of the element at any local
point ξ are

Mk ξð Þ ¼ Hk ξð Þ½ �⋅Mk :

If the degree of freedom of the structure is m, then, the
vectors of global displacements and external loads are u ¼
u1 u2 … um½ � T and F ¼ F1 F2 … Fm½ � T re-

spectively. Finally, taking into account boundary conditions,
the following equilibrium equations for the discrete model of
the circular plate at shakedown are received:

AM ¼ F or
X
k

AkMk ¼ F ; k∈K; ð9Þ

where A(m×n) is the matrix of the coefficients of equilibrium
equations for the discrete model of the plate. The state of
structural deformations is expressed in nodal displacements u

and deformations of elements Θ ¼ Θ1 Θ2 … Θζ½ �T :
Θ=DM. Then, geometrical equations for the discrete model
of the elastic plate are as follows:

ATu−DM ¼ 0; ð10Þ

where D=diag[Dk] is the quasi-diagonal matrix of element
flexibility (n×n). The flexibility matrix of every k-th element
is expressed by the formula

Dk ¼
Z

Ak

Hk ρð Þ½ �Tdk Hk ρð Þ½ �dAk ¼
Z
ρ1

ρ3

2πρ Hk ρð Þ½ �Tdk Hk ρð Þ½ �dρ;

ð11Þ
where dk is the flexibility of an infinitesimal element:

dk ¼ 1

Kk 1−ν2k
� � 1 −νk

−νk 1

� �
; Kk ¼ Ekt3k

12 1−ν2k
� � :

νk is Poisson’s ratio, Kk —flexural rigidity of the plate element
(Kączkowski 1980; Szilard 2004).The replacement of global
coordinates for the local ones ρ(ξ) =ρ2+ ξ ⋅bk, ρ′(ξ) =bk, allows
re-writing the expression (11):

Dk ¼ 2πbk

Z1

−1

Hk ξð Þ½ �Tdk Hk ξð Þ½ �⋅ ρ2 þ ξ⋅bkð Þdξ: ð12Þ

The disclosed matrix Dk is as follows:

Bending moments Mej=αFj and displacements uej=βFj
of the elastic plate for every combination j ∈ J can be cal-
culated using the influential matrices of internal forces α
and displacements β:

β ¼ AD−1AT� �−1
; α ¼ D−1ATβ: ð13Þ

Residual bending moments of the state of the structure at
shakedown Mr are self-equilibrium:

AMr ¼ 0: ð14Þ

Kinematically admissible residual displacements ur must
satisfy geometrical equations:

ATur ¼ Θr: ð15Þ
where residual deformationsΘr=DMr+Θp and the vector of

plastic deformations Θp ¼ Θp1 Θp2 … Θpζ½ �T . For
each cross-section, Θpi is equal to

Θpi ¼ 2
X

j

λi; jΠiMi; j; i∈I ; j∈J ; ð16Þ

where λi,j ≥ 0 are plastic multipliers. Residual deforma-
tions and displacements, similarly to the case of bar
structures, are not the only aspects at shakedown: they
also depend on the history of loading F (t), however,
their variation bounds can be defined (Merkevičiūtė and
Atkočiūnas 2006).

3 Complete set of equations for the shakedown
analysis problem of the plate

The analysis problem defines the determination of the
shakedown stress-strain state of the plate when physical
parameters t k , f y and var iable repeated loading
Finf ≤F(t) ≤Fsup are known in advance. The problem of
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static formulation represents the principle of minimum
complementary energy: from all statically admissible vec-
tors of plate residual bending moments Mr, the actual one
corresponds to the minimum of complementary deforma-
tion energy of the structure at shakedown. The mathemat-
ical model of the problem stated on the basis of the above-
mentioned principle is

min
1

2
MT

r DMr; ð17Þ

subject to

AMr ¼ 0; ð18Þ
φ j ¼ M0ð Þ2−Γ M T

j

� �
ΠM j≥0; j∈J : ð19Þ

Total moments Mj=Mr+Mej in the mathematical mod-
el of the shakedown analysis problem (17)–(19), under
predetermined Mej, are calculated taking into account each
combination of loadings j ∈ J. The optimal solution to the
problem (17)–(19) consists of residual bending moments
Mr

∗ that ensure the state of shakedown and a possibility of
determining sections where plastic deformations Θp ap-
pear. Block-diagonal matrix Π(n × n) consists of blocks
Πi. Operator Γ(Mj

T) arranges the components of vector
Mj

T in such a way that yield conditions (19) would be ver-
ified in every section i of the discrete model j= 1, 2,… p
times in total. Thus, vector φj is the vector of the values of
yield conditions for an entire structure considering one
combination j of loading.

The constraints (18)–(19) of the problem (17)–(19) along
with Kuhn-Tucker conditions constitute the complete system
of equations defining the stress-strain state of the plate at
shakedown (Euler-Lagrange equations):

AM*
r ¼ 0; ð20Þ

M0ð Þ2−Γ M*
r þMe j

� �T
Π M*

r þMe j
� �

≥0; ð21Þ

DM*
r þ 2

X
j

ΠΓT M*
r þMe j

� �T
λ j−A Tur ¼ 0; ð22Þ

λ T
j M0ð Þ2−Γ M*

r þMe j
� �T

Π M*
r þMe j

� �h i
¼ 0; ð23Þ

λ j≥0; λ j ¼ λ1 j λ2 j … λ ζ j
� 	 T

; j∈J : ð24Þ

The components of vector λj
T under conditions (22) are

arrayed so that plastic deformations in every section i would
be obtained according to (16): Θpi ¼ 2∑

j
λi; jΠiMi; j, i∈ I,

j∈ J. Recall that Kuhn-Tucker conditions state that solution
Mr

∗ is global if multipliers λj≥0 (j∈ J) and displacements ur,
satisfying conditions (22)–(24), exist (Atkočiūnas et al. 2015).

4Mathematical models for the optimization problem
of the plate at shakedown

The problem of determining the distribution of optimal limit-
ing bending moment M0 = [M01 M02 … M0s]

T is relevant in
practical design. The optimal shakedown design problem of
the circular plate is formulated as follows: for the given load,
variation bounds Fsup, Finf, the vector of limiting forces M0,
satisfying optimality criterion min ℱ (M0) and the con-
straints of shakedown and stiffness should be found. A general
mathematical model of plate optimization, in case of
pointwise yield conditions, is as follows:

min ℱ M0ð Þ; ð25Þ
subject to

AMr ¼ 0; ð26Þ
φ j ¼ M0ð Þ2−Γ Mr þMe j

� �T
Π Mr þMe j

� �
≥0; ð27Þ

DMr þ 2
X

j

ΠΓT Mr þMe j
� �T

λ j−A Tur ¼ 0; ð28Þ

λT
j φ j ¼ 0; λ j≥0; ð29Þ

M0≥0; ð30Þ
umin≤ue j þ ur ≤umax; j∈J : ð31Þ

The objective function (25) min ℱ (M0) can express the
optimal distribution of limiting forces (e.g., min LTM0, where
L is a vector of the areas of the element or an optimal volume
of structure min LTtwhere t is a vector of the thickness of the
element). It is a continuous optimization problem where un-
knowns include M0, Mr, ur, λj. The multi-extremity of the
problem is determined by complementary slackness condi-
tions for mathematical programing (29). According to
Eurocode requirements, the ultimate limit state is secured by
(27) and serviceability limit state—by (31). A shortcoming of
the model (25)–(31) is the incapability to determine the
unloading phenomenon, i.e., a vector of residual displace-
ments ur, determined by the non-monotonic process of plastic
deformations in the shakedown state, which may be
non-unique.

The elimination of geometrical (28) results in the trans-
formed problem of defining the distribution of optimal
limiting bending moments of the plate at shakedown:

min ℱ M0ð Þ; ð32Þ
subject to

AMr ¼ 0; ð33Þ
φ j ¼ M0ð Þ2−Γ Mr þMe j

� �T
Π Mr þMe j

� �
≥0; ð34Þ

BrSr ¼ BpΘp; ð35Þ
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λT
j φ j ¼ 0; λ j≥0; ð36Þ

M0≥0 ð37Þ

umin≤ue j þ A 1ð ÞT
� �−1

D 1ð ÞMr þΘ 1ð Þ
p

� �� �
≤umax; j∈J : ð38Þ

where A(1)T is a sub-matrix of geometric matrix AT ¼
A 1ð Þ A 2ð Þ� 	T

that has an inverse matrix (corresponds to
the sub-matrix D(1) of flexibility matrix D and to sub-vector
Θp

(1); the selection method of lines for sub-matrix A(1)T is
based only on the existence of its inverse matrix)
(Blaževičius et al. 2014). The unknowns of problem
(32)–(38) include M0, Mr, λj. The structure of the vector
of plastic deformationsΘp ¼ 2∑

j
ΠΓT Mr þMe j

� �T
λ j is as fol-

lows: Θp ¼ Θð1Þ
p Θð2Þ

p

h iT
¼ Θp1Θp2…Θpn
� 	T .

5 Von Mises yield criterion of the mean
for the circular plate

When limiting bendingmomentM0k is assumed to be constant
per finite element area, von Mises yield criterion for point
i=1, 2, 3 (1) of the element of the circular symmetric plate
can be expressed in a form of the matrix in the following way:

MT
k Hk ρð Þ½ �TΠi Hk ρð Þ½ �Mk ≤ M0;k

� �2
; ð39Þ

Integrating both sides of inequality (39) over the width of
the element gives the yield condition of the mean (or the
so-called integral yield condition):

MT
k

Z

Lk

Hk ρð Þ½ �TΠi Hk ρð Þ½ �dLk

8<
:

9=
;Mk ≤ Lk M 0;k

� �2
;

MT
k

Z
ρ1

ρ3

Hk ρð Þ½ �TΠi Hk ρð Þ½ �dρ

8><
>:

9>=
>;Mk ≤ 2bk M 0;k

� �2
;

Changing variable ρ(ξ) =ρ2+ ξ ⋅bk, ρ′(ξ) =bk gives

MT
k

Z1

−1

Hk ξð Þ½ �TΠi Hk ξð Þ½ �⋅ρ0
ξð Þ dξ

8<
:

9=
;Mk ≤ 2bk M 0;k

� �2
;

MT
k

Z1

−1

Hk ξð Þ½ �TΠi Hk ξð Þ½ �⋅bk dξ

8<
:

9=
;Mk ≤ 2bk M0;k

� �2
;

MT
k

1

2

Z1

−1

Hk ξð Þ½ �TΠi Hk ξð Þ½ � dξ

8<
:

9=
;Mk ≤ M 0;k

� �2
;

Introducing Φk ¼ 1
2 ∫

1

−1
Hk ξð Þ½ �TΠi Hk ξð Þ½ � dξ simplifies

the inequality to

MT
k Φk Mk ≤ M 0;k

� �2
; k∈K: ð40Þ

The matrix of the yield criterion of meanΦk has a constant
numerical expression:

Then, the yield condition of the mean for element k can be
written as follows:

Such a formulation of the yield criterion reduces the
number of yield conditions: only one mean condition in-
stead of three (39) pointwise conditions for the element is
verified. Thus, the scope of the mathematical programming

problem decreases, which is a relevant point in making real
structures at shakedown optimal, discretized by a high
number of finite elements and affected by multidimen-
sional loading spaces.
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6 Verification of yield conditions conducting
numerical experiments on the plate

6.1 Plate optimization under cyclic-plastic collapse

While ignoring limits (28)–(31) in the mathematical model for
the optimization problem of the plate at shakedown (25)–(31),
the optimization problem of the limiting bending moments
of the circular bending plate is received considering
cyclic-plastic collapse conditions:

min LTM0; ð42Þ
subject to

AMr ¼ 0; ð43Þ

Mri þMei; j
� �T

Πi Mri þMei; j
� �

≤ M 0;k
� �2

; i∈I ; j∈J ; ð44Þ

M0≥0 ð45Þ

Problem (42)–(45) contains pointwise yield conditions
where unknowns are the vectors of limiting M0 and residual
moments Mr. Under the examination of the cyclic-plastic
collapse of the plate in the case of mean yield conditions,
inequalities (44) are replaced with

MT
k j Φk Mk j ≤ M 0;k

� �2
; k∈K; j∈J : ð46Þ

where Mk,j= (Mrk +Mek,j) are the vectors of the total
moments of the finite element.

Numerical experiment 1 examines a symmetric annular
hinge supported plate (R=0.9 m, opening diameter∅=0.3 m)
(Fig. 3). The plate is affected by a symmetric evenly distributed
load varying within the range of −75 kN/m2≤q(t)≤150 kN/
m2. The elasticity module of the plate material is E=210 GPa,

yield stress– fy=210 MPa (physical model of the perfectly
elastic-plastic material is applied), Poisson’s ratio ν=1/3. The
discrete model of the plate is made of six equilibrium finite
elements: k=1,2,…, 6. Initial thicknesses of all elements are
tk= 0.03 m, which results in 0.0134 m maximum elastic
deflection if q= 150 kN/m2.

The problem of the optimal distribution of the limiting
moments of the plate (42)–(45) is solved within the process
of cyclic-plastic collapse when all finite elements apply to
pointwise (44) or mean (46) von Mises yield criteria.

Each of optimization problems is solved in an iterative
way, because the results of calculating the elasticity of the
plate are used in yield conditions and depend on the thick-
ness of the elements of plate tk. However, optimal solutions
to both problems converge rather fast as 5 iterations are
enough for reaching convergence (the results of the achieved
solution are shown in Table 1). According to the received
limiting moments M0, k the thickness tk of the finite elements
of the discrete model for the plate can be calculated because
M0,k= fytk

2/4.
Real problem solving time required for an average PC to

deal with the problem through 5 iterations is shown in the
last column of Table 1. The presented results demonstrate
that the problem having the yield criterion of the mean was
solved 32 % faster. The function value of the purpose of this
problem is slightly lower than that of the problem having
pointwise yield conditions; nevertheless, the received distri-
butions of bending moments are very similar in both cases of
yield conditions (Fig. 4 shows the detailed results of bending
moments Mq = 150=Me,q = 150 +Mr). It should be noted that
equilibrium finite elements allow for jumps of tangential
(Mθ) bending moments at the joints of neighbouring
elements, but ensures the equilibrium between radial
moments (Mρ) at every point.

1 2 3 4 5 6

q(t)

R = 0.9 0.15 6 × 0.125

Fig. 3 A discrete model of a
symmetric annular plate

Table 1 Results of the first numerical experiment (cyclic plastic collapse model)

Von Mises yield
criterion

Objective function
LTM0, kNm

2
Limiting bending moments M0,k, kN;
Optimal element thickness tk at cyclic plastic collapse

Time, s

Mean 39.450 M0,1 M0,2 M0,3 M0,4 M0,5 M0,6 1.95
46.979 25.346 21.675 16.960 11.152 4.486

t1 t2 t3 t4 t5 t6
0.0299 0.0220 0.0203 0.0180 0.0146 0.0092

Pointwise 41.358 M0,1 M0,2 M0,3 M0,4 M0,5 M0,6 2.85
48.510 23.176 21.093 17.326 12.526 6.769

t1 t2 t3 t4 t5 t6
0.0304 0.0210 0.0200 0.0182 0.0154 0.0114
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Thus, with reference to numerical experiment 1, the appli-
cation of the yield criterion of the mean seems to be reasonable
due to the fact that calculation time is significantly reduced,
and the accuracy of the obtained results is fully adequate.

Numerical experiment 2 examines a symmetric annular
hinge supported plate (Fig. 5a). Plate is loaded with an evenly
distributed symmetric load q(t) varying within the range of
− 95 kN/m2≤ q(t)≤ 100 kN/m2 and a constant distributed
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Table 2 Results of the second numerical experiment (cyclic plastic collapse of the circular plate)

Von Mises yield
criterion

Objective function
LTM0, kNm

2
Limiting bending moments M0,k, kN;
Optimal element thickness tk at cyclic plastic collapse

Pointwise 117.52 M0,1 M0,2 M0,3 M0,4 M0,5 M0,6

51.01 51.01 51.05 49.32 45.54 40.74

t1 t2 t3 t4 t5 t6
0.0312 0.0312 0.0312 0.0306 0.0295 0.0279

Mean 116.80 M0,1 M0,2 M0,3 M0,4 M0,5 M0,6

53.99 54.05 52.03 48.87 44.62 39.31

t1 t2 t3 t4 t5 t6
0.0321 0.0321 0.0315 0.0305 0.0292 0.0274

Mixed 117.17 M0.1 M0.2 M0.3 M0.4 M0.5 M0.6

53.68 53.68 51.59 48.43 44.18 40.75

t1 t2 t3 t4 t5 t6
0.0320 0.0320 0.0313 0.0304 0.0290 0.0279
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externally shaped bendingmomentM=36.25 kN/m. The elas-
ticity modulus of the plate material is E=210 GPa, yield stress
- fy=210 MPa, Poisson’s ratio ν=1/3. The discrete model is
made of six equilibrium finite elements. Initial thicknesses of
all six elements are tk=0.03 m.

The problem of the optimal distribution of the limiting
moments of the plate (42)–(45) is solved within the process
of cyclic-plastic collapse considering three cases of creating
yield conditions:

& applying pointwise von Mises yield conditions (44) to all
nodes of structural elements;

& applying yield criteria of the mean (46) to all six elements
of the plate,

& under mixed yield conditions (pointwise yield conditions
for the elements No 1, 2, and 6, and yield conditions of the
mean for the elements No 3, 4, and 5).

The obtained results—limiting bending moments and
corresponding thicknesses—are summarized in Table 2.
Detailed results of the bending moments can be found in
Table 3, where elastic bending momentsMθ,e2 andMρ,e2 are
due to load combination when q = 100 kN/m2 and
M= 36.25 kN/m are acting together. The total bending mo-
ments are the sum of elastic and residual parts:Mθ=Mθ,e2 +
Mθ,r and Mρ=Mρ,e2 +Mρ,r.

Due to the fact that only the radius (it’s enough because of a
symmetric plate) of the plate is investigated, difficulties in

assessing conditions for the symmetry of the centre of the
plate are encountered in equilibrium equations. Thus, using
the yield criterion of the mean for the first element is not quite
correct and therefore mixed yield conditions are applied.
Mixed conditions combine pointwise yield conditions at the
symmetry point, supports and (if any) concentrated load
positions and mean conditions elsewhere.

An in-depth examination of optimization results (Table 2)
allows making a conclusion that the application of the yield
criterion of the mean results in almost an identical value of the
objective function (differs 0,6 %). Under mixed yield condi-
tions, the objective function value completely approaches to
the case of the pointwise conditions (less by 0,3 % than
pointwise). The authors suggest applying pointwise yield con-
ditions in the nodes of the elements where stress concentration
or complex boundary conditions (including symmetry condi-
tions) are observed while under a constant state of stresses—
yield criteria of the mean are recommended. The calculation
of elastic bending moments in any case is performed consid-
ering all three nodes of the element, and therefore such a
twofold recording of yield conditions do not cause difficulties
in the practical application of the mathematical programming
problem. On the other hand, this allows reducing the number
of nonlinear yield conditions in the problem thus simplifying
the solution. The results in Fig. 5b show that mixed yield
conditions ensure the sufficient accuracy of the obtained
results.

6.2 Optimization of the plate at shakedown
under displacement limits

Numerical experiment 3 examines an annular hinge support-
ed plate (Fig. 5a) identically loaded as the one presented in
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Fig. 6 The convergence of the objective function

Table 4 Results of the third
numerical experiment (Fig. 6) Experiment Yield conditions Objective

function
LTM0, kNm

2

Limiting bending moments M0,k, kN

M0,1 M0,2 M0,3 M0,4 M0,5 M0,6

Blaževičius
et al. (2014)

Pointwise 117.711 52.41 52.42 52.45 50.04 45.81 39.17

Present study Yield criterion
of the mean

116.773 49.63 54.34 52.35 49.10 44.77 39.18
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Fig. 7 The graphical representation of optimization results
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numerical experiment 2. However, in this particular case, a
total (elastic plus plastic) vertical displacement of the middle
point of the plate (first node of the first element) will be limited
to −0.03 m≤ur,1 +uej,1≤0.03 m. Initial thicknesses of all six
elements are tk = 0.03 m, which results in −0.013 m or
+0.028 m elastic deflection if load is M=36.25 kN/m and
q = 100 kN/m2 or M = 36.25 kN/m and q = − 95 kN/m2

accordingly.
The optimal distribution problem of the limiting moments

of the plate at shakedown (32)–(38) is solved assessing dis-
placement limits. For the elements of the plate, von Mises
yield criteria of the mean (46) are applied, whereas the obtain-
ed results of solving the optimization problem will be com-
pared with the findings referring to pointwise yield conditions
published in the previous work of the authors of this article
(Blaževičius et al. 2014).

Continuous optimization has been used, and therefore the
process of reaching a solution to the mathematical program-
ming problem (32)–(38) is illustrated by the results of individ-
ual iterations shown in Fig. 6. Table 4 displays limiting bend-
ing moments of the finite elements received accordingly to
optimal solution min LTM0=116.773 kNm2 that is supposed
to be reached when the results of adjacent iterations differ in
the expected precision (Venskus et al. 2010). Figure 7 shows
the obtained optimal thickness of the cross-section of the plate
elements (corresponding to limiting moments presented in
Table 4).

7 Conclusions

1. In the cases of creating pointwise yield conditions and
yield criteria of the mean for the circular bending plate
at shakedown, the internal forces of elastic calculation are
estimated identically, i.e., taking into account all nodal
points of the finite elements of the discrete model for the
plate. For that purpose, precise analytical formulae for
plates or the findings of equilibrium finite elements of
the elastic plate can be considered.

2. The nodes containing stress concentration or complex
boundary conditions (in some cases, symmetry condi-
tions) are recommended to refer to pointwise yield
conditions, whereas the area of the continuous distri-
bution of internal forces is suggested yield criteria of
the mean. In that case, mixed yield conditions ensure
the sufficient precision of the obtained results under
both the cyclic-plastic collapse of the plate and its state
of shakedown.

3. Yield criteria of the mean do not disturb the
convergation processes of solutions to the optimiza-
tion problems of circular bending plates at shakedown.
They can be successfully applied to the structures of a
similar type.
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