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Abstract Metamaterials usually refer to artificially
engineered composites with unusual properties that cannot
be easily found in nature. This paper will develop a topolog-
ical shape optimization method for design of mechanical
metamaterials of thermoelastic micro-structured composites,
which integrates numerical homogenization method with a
multi-phase level set method (MPLSM). The homogenization
method is applied to evaluate the effective macroscopic prop-
erties of a periodic microstructure, while the MPLSM will be
utilized to implement shape and topology evolutions of the
microstructure. A multi-phase level set representation model
is established to describe the boundaries of the multi-material
microstructure using a combination of all level set functions,
without overlaps and empties. The Hamilton-Jacobi partial
differential equation-based topological shape optimization
problemwill be transformed to a generalized size optimization
problem. Typical numerical examples are used to demonstrate
the effectiveness of the proposed method for designing meta-
materials with expected and extreme thermal expansion
coefficients.
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1 Introduction

Metamaterials are actually artificial composite materials
engineered to have unconventional properties caused by local
resonance phenomenon, which usually consists of arrays of
periodically configured microstructures fashioned with con-
ventional materials. Metamaterials gain their fascinating prop-
erties from the periodic microstructures rather than from their
composition. Thus the layout including the geometric shape
and topology of the microstructure will be of great importance
for triggering the unusual properties of the metamaterials. Due
to the exotic properties, metamaterials are experiencing pop-
ularity in a number of new and emerging areas. Several types
of micro- and nano-structured metamaterials have been devel-
oped, including electromagnetic metamaterials (Smith et al.
2004; Sihvola 2007), mechanical or elastic metamaterials
(Lakes 1987; Milton 1992; Evans and Alderson 2000) and
acoustic metamaterials (Chen and Chan 2007). This paper
focuses onmetamaterial designs to achieve extreme or desired
thermoelastic properties using topological shape optimization
approach with a multi-phase level set method.

The expansion and contraction of materials and structures
must be considered in engineering applications, when changes
in dimension as a result of temperature. The thermal expan-
sion due to temperature changes is of interest from both a
technological and fundamental standpoint. The thermal ex-
pansion coefficient of materials can be defined as the change
of matter in volume with respect to a change in temperature.
Artificial composite materials with unusual thermal expansion
coefficients are rare in nature, such as materials with zero
thermal and negative thermal expansion coefficients, which
play an important role in engineering. The zero thermal ex-
pansion coefficients denote the dimension of a structure keeps
unchanged with temperature changes. A material with nega-
tive thermal expansion coefficient has the counterintuitive
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property that contracts when increasing temperature within
certain temperature ranges. For example, the thermal expan-
sion coefficient of water becomes negative below 277.15 K (4
C), and pure silicon has a negative thermal expansion coeffi-
cient for temperatures between 18 and 120 K. Currently, there
is still a demand for advanced design methods to create micro-
structured thermoelastic composites.

Topology optimization (Bendsøe and Sigmund 2003) has
been identified as one of the most promising structural opti-
mization methods, which can establish an overall framework
of the conceptual design without prior knowledge of a design.
Topology optimization can be regarded as a numerical process
that iteratively distributes a prescribed amount of material in-
side a fixed design domain, so as to determine the best layout
of the material until the objective function is optimized subject
to constraints. Several topology optimization methods have
been developed in the field, including the homogenization
method (Bendsøe and Kikuchi 1988), the evolutionary struc-
tural optimization (ESO) method (Xie and Steven 1993), the
Solid Isotropic Material with Penalization (SIMP) method
(Zhou and Rozvany 1991; Bendsøe and Sigmund 1999), the
nodal density-based interpolation (PDI) scheme (Guest et al.
2004; Kang and Wang 2011; Luo et al. 2013), and the level
set-based method (LSM) (Sethian andWiegmann 2000;Wang
et al. 2003; Allaire et al. 2004). These methods have been
widely applied to the computational design of a broad range
of structures and materials, including the micro- and nano-
structured metamaterials, such as (Larsen et al. 1997; Diaz
and Sigmund 2010; Zhou et al. 2011; Lu et al. 2013;
Otomori et al. 2012; Wang et al. 2014; Xie et al. 2014).
Particularly, the inverse homogenization method (IHM)
(Sigmund 1994) has been combined with other approaches
to create various microstructures for metamaterials with de-
sired properties or extreme properties, e.g. (Sigmund and
Torquato 1997; Sigmund 2000; Guest and Prévost 2007;
Huang et al. 2013). To achieve the optimal design of multi-
functional structures, particularly materials with unusual ther-
mal expansion coefficients, a multiphase design strategy is
required for topology optimization method. Hence, choosing
a proper topological description model is an essential issue for
the topology optimization of metamaterials involving multiple
phases (Sigmund 2001; Luo et al. 2010; Tavakoli and
Mohseni 2014; Gao and Zhang 2011; Wang et al. 2015;
Allaire et al. 2014). In the case of multiphase topology opti-
mization problems the challenge is mainly related to the math-
ematical structure of design space. Till now, a few multiphase
models for describing a microstructure have been developed.
For instance, Bendsøe and Sigmund (Sigmund 2001) pro-
posed a mixture rule for multi-material models based on
SIMP material density distribution approach, and has been
applied to multi-physics compliant actuators (Sigmund
2001; Luo et al. 2010) and multi-material structures
(Tavakoli and Mohseni 2014; Gao and Zhang 2011).

Another implicit representation method, namely the phase
field method, which represent the domain and interfaces by
using a set of field variables, were also applied to multi-
material design problems (Zhou and Wang 2007; Tavakoli
2014).

After the works of (Sethian and Wiegmann 2000; Wang
et al. 2003; Allaire et al. 2004), several different and alterna-
tive LSMs, e.g. (Wang and Wang 2004; Xia et al. 2006;
Yamasaki et al. 2010; Dijk et al. 2012; Zhou and Wang
2012; Dunning and Kim 2013; Luo et al. 2008a, 2009,
2012; Belytschko et al. 2003), have been developed within
the standard framework of LSM (Sethian 1999; Osher and
Fedkiw 2002) for different topology optimization problems
(Dijk et al. 2013). In particular, the parametric level set meth-
od (PLSM) (Luo et al. 2007, 2008b) has shown its ability as a
powerful method for topological shape optimization of struc-
tural and material designs, e.g. (Wang et al. 2015, 2016; Li
et al. 2015). The PLSM can remain the favorable features of
most LSMs while avoid the difficulties of their standard
forms, and enable the direct application of more efficient
gradient-based optimization algorithms in LSMs. In this pa-
per, a multiphase topology description model, based on a
Multi-Material Level Set (MM-LS) topological description
model (Wang et al. 2015), is extended for topological design
of multiphase microstructure.

In the MM-LS topological description model, higher-
order surfaces are used to implicitly represent the structural
boundary as zero level sets, and the material property at
any point in the design domain is calculated according to a
combination rule of different level set functions. Thus, a
total number of I level set functions are used to indicate I+
1 distinct phases, including I solid phases and one void
phase. Aside from topology description, it has been shown
that this level set based method can remain the advantages
of traditional level set method in terms of smooth boundary
and distinct interface, and can track the changes of shapes
and topologies by merging and splitting of the moving
boundaries. The drawback of the level set based methods
would be the dependency of the optimized topologies to
the initial designs.

This paper focuses on the design of thermoelastic metama-
terials using a level-set topology optimization method, by ap-
plying the MM-LS topology description model. The numeri-
cal homogenization method, to determine the effective prop-
erties of the composite, is combined with the PLSM to imple-
ment the inverse design of composite materials. The proposed
level set method will be employed to optimize the shape and
topology of the microstructure. It is noted that multi-material
composite can often gain extraordinary properties beyond
those of their individual components. Several numerical ex-
amples will be used to demonstrate the effectiveness of the
proposed method for the design of multi-phase composite
materials.
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2 A multiphase level set method using CSRBFs

2.1 Level-set boundary representation

In level-set based topology optimization methods, one of the
key concepts is to implicitly embed the initial position of the
structural boundary as the zero level set of a higher-
dimensional level set function. For example, ifΦ(x) is defined
as a Lipschits continuous level set function over a reference
domain D, Fig. 1 shows a two-dimensional (2D) boundary of
the structure that is represented by the three-dimensional (3D)
level set surface, where the level set function is used to uni-
formly denote the different material phases inside the refer-
ence domain (Sethian 1999; Osher and Fedkiw 2002), as fol-
lows:

Φ xð Þ > 0 ∀ x ∈ Ω n ∂ Ω Solid regionð Þ
Φ xð Þ ¼ 0 ∀ x ∈ ∂ Ω Boundaryð Þ
Φ xð Þ < 0 ∀ x ∈ Dn Ω∪∂Ωð Þ Voidð Þ

8><
>: ð1Þ

To enable the dynamic motion, the pseudo-time t is intro-
duced into the level set function Φ(x). Then the evolution of
the level set functionΦ(x, t) is linked to the propagation of the
boundary located at Φ(x) = 0, leading to the following first-
order Hamilton-Jacobi partial differential equation (H-J PDE)
(Sethian 1999; Osher and Fedkiw 2002) by differentiating
Φ(x, t) on both sides with respect to t:

∂Φ x; tð Þ
∂t

−vn ∇Φ x; tð Þj j ¼ 0; where vn ¼ v⋅n ¼ dx
dt

� �
⋅ −

∇Φ
∇Φj j

� �

ð2Þ

It is noted that only the normal velocity component vn
contributes to shape evolution of the boundary. Hence, mov-
ing boundary along the normal direction n is equivalent to
transporting Φ(x, t) by solving the H-J PDE with finite differ-
ence schemes on a fixed Eulerian rectilinear grid.

As aforementioned, the numerical solution of the H-J PDE
requires appropriate choice of finite difference schemes, CFL
condition, re-initializations and velocity extension methods,
which involve complicated numerical procedures and require
excessive amount of computational efforts, and thus limit the
utility of LSMs. Moreover, due to the prohibition of nucleat-
ing new holes inside the material domain, the final design
strongly depends on the initial guess.

2.2 Parameterization/Interpolation of level set surface

This paper will extend the parametric level set method devel-
oped by (Luo et al. 2007, 2008b) to the computational design
of thermoelastic metamaterials. The core concept behind this
method is to implement the discretization or parameterization
of the implicit level-set surface through the interpolation of a

known set of compactly supported radial basis functions
(CSRBFs) (Wendland 2006). The level set function (surface)
can be described by the interpolation of CSRBFs at a set of
pre-specified knots fixed in the whole design domain, as fol-
lows:

Φ x; tð Þ ¼ φ xð Þc tð Þ ¼
XN
i¼1

φi xð Þci tð Þ ð3Þ

The vectors of the CSRBFs and the corresponding expan-
sion coefficient are given by

φ xð Þ ¼ φ1 xð Þ;φ2 xð Þ;…;φN xð Þ½ �∈ℝN ð4Þ
c tð Þ ¼ c1 tð Þ; c2 tð Þ;…; cN tð Þ½ �T∈ℝN ð5Þ
where x denotes the position of any knot, i=1,2,…,N, andN is
the total number of the CSRBF knots.

In the numerical implementation, an appropriate radius of
support is required for CSRBFs, in order to ensure non-
singularity and the computational efficiency of the interpolant
(Wendland 2006). The interpolation leads to a separation of
the space and time of the level set function, in which the
CSRBFs are spatial only while the expansion coefficients
are time dependent. Thus, the decoupling of the H-J PDE is
given by

φ xð Þ dc tð Þ
dt

−vn ∇φ xð Þc tð Þj j ¼ 0 ð6Þ

It can be found that vn is related to the time derivative of the
expansion coefficients, as follows:

vn ¼ φ xð Þ
∇φ xð Þc tð Þj j c

:
tð Þ; where c

:
tð Þ ¼ dc tð Þ

dt
ð7Þ

From the above equation, it can be found that all the terms
involved in vn will actually by evaluated at the knots over the
whole domain. Thus, vn will be naturally applied to the entire
design domain. In this way, the H-J PDE has been changed
into a system of algebraic equations, and therefore the original
topological optimization is transformed into an easiest size
optimisation, in which the only unknowns are the expansion
coefficients c(t) that are actually defined as the design vari-
ables. Hence, the propagation of the boundary and the evolve-
ment of the level set function, as well as the changes of the
shape and topology of the structure are just a problem of
updating c(t) using appropriate optimization algorithms.

3 Topology optimization for multi-phase
thermoelastic composites

In this Section, for simplicity but without losing any generality,
we will use three-phase material structure to describe the
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numerical procedure for topology optimization of thermoelastic
metamaterials. The design domain of three-phase material mi-
crostructure consists of two different solid material phases and
void which is filled with a very weak material phase. Firstly, the
numerical homogenization method (Guedes and Kikuchi 1990;
Andreassen and Andreasen 2014) is applied to evaluate the ef-
fective properties of the microstructure. Secondly, the proposed
multi-phase level set method will be employed to achieve the
optimized shape and topology of the microstructure, in order to
achieve optimal design of metamaterials with prescribed effec-
tive properties.

3.1 A multi-material level set description model

To solve the multi-material design problem using the paramet-
ric level set method, we will propose a level set representation
model for the multiphase design domain of microstructure,
based on (Wang et al. 2015), in which each individual phase
was represented via a simple artificial mixture assumption of
all level set functions.

This paper introduces the concept of multi-phase material
representation model in SIMP (Sigmund 2001; Gibiansky and
Sigmund 2000) into the level set methods. The tensors of
elasticity C and thermal expansion coefficient α at point x
for design problem with two solid phases can be written as a
combination of the two level set functions Φ1 and Φ2 as:

Cijkl x;Φð Þ ¼ Η Φ1ð Þ 1−Η Φ2ð Þð ÞC1
ijkl þ Η Φ1ð ÞΗ Φ2ð ÞC2

ijkl ð8Þ
αi j x;Φð Þ ¼ 1−Η Φ2ð Þð Þα1

i j þ Η Φ2ð Þα2
i j ð9Þ

where i, j, k, l=1, 2,…, d (d is the dimension of space). The
two solid material phases have different elastic moduli and
thermal expansion coefficients, described by Cijkl

1 and Cijkl
2 ,

and αij
1 and αij

2. H is the Heaviside function, given as follows:

Η Φ xð Þð Þ ¼
θ x < −Δ

3 1−θð Þ
4

Φ xð Þ
Δ

−
Φ xð Þ3
3Δ3

 !
þ 1þ θ

2
−Δ≤x < Δ

1 x≥Δ

8>><
>>: ð10Þ

where θ is a small positive number used to ensure the non-
singularity of the stiffness matrix in the numerical implemen-
tation, and Δ is the width in the numerical approximation for
the Heaviside function. The Heaviside function is actually
smoothed to facilitate the calculation of the first-order deriva-
tives of the objective function. The smoothed Heaviside

function can smear the boundaries of level sets and a too large
value of Δ will result in numerical errors for the boundaries
between phases. Based on our experience, θ= 0.0001 and
Δ=0.1 in this study.

With the discretization of finite elements, Η(Φ1) can be
used to indicate whether an element is solid or void, namely
Η(Φ1) = θ being a void element while Η(Φ1) =1 being a solid
element. Based on the definition ofΗ(Φ1) =1, Η(Φ2) is further
used to distinguish if the solid element is occupied by the solid
material 1 or by the solid material 2. Thus, the combination of
Η(Φ1) =1 and Η(Φ1) = θ represents an element with the solid
material 1, and the mixture of Η(Φ1) =1 and Η(Φ1) =1 is the
solid material 2. In this way, each material phase in the design
domain can be uniquely represented by the above model.

3.2 Effective material properties using numerical
homogenization method

Homogenization theory is based on the asymptotic expansion
of the governing equation, enabling a separation of the macro-
and microscopic length scales, so as to extract homogeneous
effective material properties from heterogeneous media. To
evaluate the effective thermal expansion properties of the
composite using the homogenization method, we assume that
(1) the metamaterials consist of an assembly of microstruc-
tures (base cell), as shown in Fig. 2; (2) the size of the periodic
microstructure is much smaller than the characteristic size of
composite to allow scale-decomposition; and (3) the effective
homogenized property of the composite can be predicted by a
single unit cell.

In this study, the topological shape optimization will be
performed within the unit cell Y that is regarded as the design
domain. The period Y is assumed to be very small in compar-
ison with the dimension of the overall domain Ω of the medi-
um. According to the theory of homogenization, the effective
homogenized properties of the thermoelastic composite mate-
rial can be computed as follows:

CH
ijkl ¼

1

Yj j
Z

Y
Cpqrs ε0 i jð Þ

pq −ε* i jð Þ
pq

� �
ε0 klð Þ
rs −ε* klð Þ

rs

� �
dY ð11Þ

βH
kl ¼

1

Yj j
Z

Y
Cpqrs αpq−εαpq

� �
ε0 klð Þ
rs −ε* klð Þ

rs

� �
dY ð12Þ

αH
i j ¼ CH

ijkl

� �−1
βH
kl ð13Þ

Fig. 1 2D boundary
representation using 3D level set
surface

940 Y. Wang et al.



where Cijkl
H is the effective elasticity tensor, βkl

H is the effective
thermal stress tensor, and αij

H is the effective thermal strain ten-
sor; |Y| is the volume (area) of the cell;Cpqrs is the locally varying
elasticity tensor; ε0 is the prescribed macroscopic strain field
including the unit strain in the horizontal and vertical directions
and the unit shear strain. In the above equations:

(1) The locally varying strain fields εrs
* (kl) are defined by

ε* klð Þ
rs ¼ ε*rs χkl� � ¼ 1

2

∂χkl
r

∂ys
þ ∂χkl

s

∂yr

� �
ð14Þ

in which the displacement fields χkl can be obtained by
solving the following equationZ

Y
Cpqrsεpq vð Þε*rs χkl� �

dY ¼
Z

Y
Cpqrsεpq vð Þε0 klð Þ

rs dY ; ∀v∈U Yð Þ

ð15Þ
where v is the virtual displacement field.

(2) The locally varying thermal strain tensor αpq corre-
sponds to a unit strain caused by a unit thermal load,
and the strain fields εpq

α based on the displacement fields
are defined by

εαpq ¼
1

2

∂Λp

∂yq
þ ∂Λq

∂yp

 !
ð16Þ

where Λ are the displacement fields in the unit cell,
which can be obtained by solving the following equa-
tions for a unit thermal load, as follows:Z

Y
Cijpqεi j τð Þεαpq Λð ÞdY ¼

Z
Y
Cijpqεi j τð ÞαpqdY ; ∀τ∈U Yð Þ

ð17Þ
where τ is a virtual temperature field, and Ū is the dis-
placement vector with Y-period.

3.3 Formulation of the optimization problem by using
the MPLSM

The aim of this work is to optimize the topology and shape of
the microstructure under specified effective thermal strain

tensors αij
H or thermal stress tensors βkl

H and with a given
amount of multiple material phases (three-phase in total) with-
in the design domain. It should also be possible to constraint
elastic symmetries such as orthotropy, square symmetry or
isotropy of the resulting materials. An optimization problem
including these features can be written as:

Find : c1i ; c
2
i i ¼ 1; 2;…;Nð Þ

Minimize : f αH
i j c

1
i ; c

2
i

� �
;βH

i j c
1
i ; c

2
i

� �� �
i; j ¼ 1; 2;…; d; d is the dimension of spaceð Þ

Subject to : V1
min≤V

1≤V1
max;

V2
min≤V

2≤V2
max;

gm minð Þ≤gm CH
ijkl

� �
m ¼ 1;…;Mð Þ

c1min≤c
1
i ≤c

1
max;

c2min≤c
2
i ≤c

2
max;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð18Þ
The objective function f can be any combination of the ther-

mal strain and stress coefficients αij
H and βij

H. The numerical
examples will show how to achieve zero, negative, extreme ther-
mal expansion coefficient, and extreme thermal stress coefficient,
respectively, by optimizing the shape and topology of the micro-
structure. For simplicity, the following derivation will focus on
the topological optimization problem to design zero thermal ex-
pansions, as an example to showcase the implementation of the
design sensitivity analysis. In this case the optimization is to
minimize the objective function: f=(α11

H )2+ (α22
H )2.

The volume of the design domain is |Y|, the volume frac-
tions of the two solid phases can be calculated as

V1 ¼ 1

Yj j
Z

Y
Η Φ1ð Þ 1−Η Φ2ð Þð ÞdY ;V2

¼ 1

Yj j
Z

Y
Η Φ1ð ÞΗ Φ2ð ÞdY ð19Þ

In (18), Vmin
1 , Vmax

1 , Vmin
2 and Vmax

2 are lower and upper
bounds to limit the volume fractions of solid phase 1 and solid
phase 2, respectively. Sometimes, the volume fraction of each
individual phase can be fixed by setting the lower bound to be
the upper bound. To design the composite material with ex-
treme thermal expansion coefficients, we will introduce a low-
er bound to constrain the components of the effective elasticity

Fig. 2 Schematic of multi-
material periodic structures with
microstructures
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matrix or on the bulk modulus of the material, which can be
written as gm(min)≤gm(Cijkl

H ).
Due to the parameterization (interpolation) of the level set

function, the topological shape design for the level set function
has been changed to a generalized size optimization, where the
expansion coefficients ci (i=1,2,…N) given in (4) will act as
the design variables (the generalized sizes) to be updated in the
optimization. Hence, having regard to the above size optimiza-
tion of structures, more efficient gradient-based optimization
algorithms, such as the Method of Moving Asymptotes
(MMA) (Svanberg 2005), can be directly applied to solve the
optimization problem. Once the coefficients ci are updated by
the MMA, the level set function will be updated accordingly
according to the interpolant in (3). As a result, the update of the
level set function will lead to the evolution of shape and topol-
ogy of the design. It is noted that the implementation of the
MMA requires the first-order derivatives of the objective func-
tion and constraints with respect to ci that are the coefficients of
the CSRBF interpolant, which will be discussed as below.

The variation of Cijkl
H with respect to the perturbation of the

boundaries of the two level set functions Φm (m=1,2) can be
given by

dCH
ijkl

dΦm
;Ψm

* +

¼ 1

Yj j
Z

Y
ε0 i jð Þ
pq −ε*pq χi j� �� � ∂Cpqrs

∂Φm
ε0 klð Þ
rs −ε*rs χkl� �� �

Ψdy

ð20Þ
when

m ¼ 1 :
∂Cpqrs

∂Φ1
¼ δ Φ1ð Þ 1−ΗðΦ2Þ

� �
C1

ijkl þ δ Φ1ð ÞΗ Φ2ð ÞC2
ijkl

m ¼ 2 :
∂Cpqrs

∂Φ2
¼ −Η Φ1ð Þδ Φ2ð ÞC1

ijkl þ Η Φ1ð Þδ Φ2ð ÞC2
ijkl

ð21Þ
where δ is the Dirac function which is the first-order
derivative of Heaviside function H (Wang et al. 2003;
Allaire et al. 2004; Larsen et al. 1997) and δχij is the
variation of χkl.

In the above equations, Ψ denotes the variation of the
boundaries with respect to the pseudo-time. Here based on
the normal velocity field vn which has been expressed in (7),
Ψ can be computed as Ψ = dΦ/dt = vn|∇Φ|. Therefore, by
substituting Ψ into (20), we can obtain

dCH
ijkl

dΦm
;
dΦm

dt

* +
¼ 1

Yj j
Z

Y
ε0 i jð Þ
pq −ε*pq χi j� �� � ∂Cpqrs

∂Φm
ε0 klð Þ
rs −ε*rs χkl� �� �

φi xð Þ dci tð Þ
dt

dY i ¼ 1; 2;…;Nð Þ ð22Þ

where N is the total number of the CSRBF knots.
By using the chain rule, we can equivalently have

dCH
ijkl

dt
¼ dCH

ijkl

dΦm

dΦm

dt
¼ ∂CH

ijkl

∂χ
∂χ
∂t

þ ∂CH
ijkl

∂Φ
∂Φ
∂t

ð23Þ
In (23), ∂χ/∂t is the variation of the displacement field

within time t, which is represented as δχ; ∂Φ/∂t is the variation
of the design boundaries, defined as Ψ. Then, if considering c

as the only unknown parameters, the (23) can also be
expressed as

dCH
ijkl

dt
¼ dCH

ijkl

dci tð Þ
dci tð Þ
dt

ð24Þ
Comparing the corresponding terms in (22) and (24), the

derivative ofCijkl
H with respect to the design variables ci

m of any
solid material phase m can be easily obtained:

dCH
ijkl

dcmi
¼ 1

Yj j
Z

Y
ε0 i jð Þ
pq −ε*pq χi j� �� � ∂Cpqrs

∂Φm
ε0 klð Þ
rs −ε*rs χkl� �� �

φi xð ÞdY i ¼ 1; 2;…;Nð Þ ð25Þ

Similarly, the design sensitivities of the thermal stress βkl
H

with respect to cm are given by

dβH
kl

dc1i
¼ 1

Yj j
Z

Y
αpq−εαpq Λð Þ
� �

δ Φ1ð Þ 1−Η Φ2ð Þð ÞC1
ijkl þ δ Φ1ð ÞΗ Φ2ð ÞC2

ijkl

� �
ε0 klð Þ
rs −ε*rs χkl� �� �

φi xð ÞdY ð26Þ

dβH
kl

dc2i
¼ 1

Yj j
Z

Y
αpq−εαpq Λð Þ
� �

−Η Φ1ð Þδ Φ2ð ÞC1
ijkl þ Η Φ1ð Þδ Φ2ð ÞC2

ijkl

� �
ε0 klð Þ
rs −ε*rs χkl� �� �

φi xð Þdy

þ 1

Yj j
Z

Y
Cijkl −δ Φ2ð Þα1

i j þ δ Φ2ð Þα2
kl

� �
ε0 klð Þ
rs −ε*rs χkl� �� �

φi xð Þdy
ð27Þ
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The sensitivities of αij
H with respect to the design variables

can be found by differentiating (13) as

∂αH
i j

∂cmi
¼

d CH
ijkl

� �−1
dcmi

βH
kl

þ CH
ijkl

� �−1 ∂βH
kl

∂cmi
i ¼ 1; 2;…;Nð Þ ð28Þ

The derivative of the objective function is therefore
expressed by

∂ f
∂cmi

¼ 2αH
11

∂αH
11

∂cmi
þ 2αH

22

∂αH
22

∂cmi
i ¼ 1; 2;…;Nð Þ ð29Þ

The derivatives for the volume constraints about the design
variables can be easily obtained as in (Wang et al. 2015).

4 Design examples of multi-phase thermoelastic
composites

For numerical simplicity but without losing any generality, the
numerical cases of this paper will focus on three-phase topol-
ogy optimization problems of linear elastic structures.

4.1 Numerical Implementation

A widely used “artificial” material model will be
employed in the numerical implementation of topology
optimization. The design problem is formulated by
selecting an appropriate objective function under a lower
bound on the stiffness. For thermoelastic composite
consisting of periodic microstructures, it is important to
consider symmetry to each base cell, which include either
geometry (e.g. square symmetry) or material elasticity
(e.g. orthotropy or isotropy) symmetry. The periodic
boundary conditions (Fig. 3a) for the domain can be
achieved by the elimination scheme (Andreassen and

Andreasen 2014), to ensure orthotropy of materials.
Furthermore, this paper will consider the specially
orthotropic (e.g. design domain with 2 symmetry axes in
Fig. 3b) and balanced orthotropic (e.g. design domain
with 4 symmetry axes in Fig. 3c) materials, which can
be obtained by directly specifying the geometrical sym-
metries. It is noted that the square symmetry of the base
cell is equal to the balanced material orthotropy of linear
elastic structures. More details about geometrical symme-
try and material property symmetry for orthotropy and
isotropy refer to (Sigmund and Torquato 1996; Paulino
et al. 2009). In the following examples, the design domain
is discretized by a number of 60 × 60 = 3600 four-node
bilinear finite elements.

Since the FEM is difficult to accurately evaluate the strain
for those elements crossed by the level set boundary (Dijk
et al. 2013; Makhija and Maute 2013), additional numerical
schemes are often required. In this study, the “ersatz”material
model (Allaire et al. 2004) has been widely used to compute
element stiffness matrices cut by the boundary, as well as the
integrations given in (25), (26) and (27). For this design prob-
lems with two solid phases and one void phase, the elastic
stiffness of the eth element Ce (x) (e=1, 2,…, Ne) is computed
by

Ce ¼ 1

Ae

Z
Ωe

H Φ1ð Þ 1−H Φ2ð Þð ÞdΩ
� 	

C1

þ 1

Ae

Z
Ωe

H Φ1ð ÞH Φ2ð ÞdΩ
� 	

C2 ð30Þ

where Ωe is the region covered by the eth element, Ae is the
area of the eth element, and Ne is the number of elements.

In the numerical homogenization, the equilibrium equations
can be solved using the finite element method to calculate the
effective material properties. In MPLSM, no re-initialization is
required, the propagation of the level set surface is driven by
dynamically updating the design variables using MMA
(Svanberg 2005), which is unconditionally stable and without
the limitation of CFL condition. Moreover, the proposed level

(b) (c)(a)

Fig. 3 a Periodicity conditions of
the base cell; b Orthotropy with
two symmetry axes; c Orthotropy
with four symmetry axes (also
square symmetry)
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Plots of design variables Level set surface indicating Φ1 Level set surface indicating Φ2

(1) initial design 

(2) Iteration 10 

(3) Iteration 20 

(4) Iteration 30 

(5) Iteration 40 

(6) Optimal design 
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Fig. 4 Plots of design variables and their level set surfaces (Φ1 and Φ2)



set method can freely create new holes inside the material re-
gions of the multi-phase design domain, as a result of the natural
extension of the velocity field as well as the removal of the
periodically applied global re-initializations. The convergence
criteria is the objective function values of two consecutive iter-
ations is lower than 0.001, or the maximum number of iterations
is 100 based on our numerical experience.

4.2 Numerical Examples

For the three-phase composites, the artificial material
properties are given as: Young’s moduli E1 = E2 = 1,
Poisson’s ratios ν1 = ν2 = 0.3, and thermal expansion co-
efficients α1 = 1 (red colour) and α2 = 10 (blue colour).
We first consider the design problems to achieve the

Solid material phases Solid material phase 1 Solid material phase 2Fig. 5 Contour plots (first row)
and level set surfaces (second
row) for solid material phases

Fig. 6 Convergence of the
objective function for Case (a)

Fig. 7 Convergence of the
volume constraints for case (a)
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zero, negative and extreme effective thermal expansions,
under the specified horizontal, vertical or square
(diagonal) geometrical symmetry.

In this study, the mesh resolution is 60 by 60 deter-
mined based on our numerical experience. It is noted that
for most numerical approximation methods a finer mesh
may be more suitable for a better description of the
boundary condition and a better approximation of the
field quantities. Hence, a higher resolution should benefit
the topology and shape design, but the computational cost
will increase. The convergence criterion is that the differ-
ence of two successive objective function values is less

than 0.0001, or the maximum iteration number is no more
than 200 which is based on our numerical testing
experience.

Materials with maximum/minimum effective thermal
expansion properties

In this example, a base cell with square symmetry
is adopted as the design domain. Three examples are
implemented to achieve the extreme effective thermal
expansion coefficient, under the constraint of volume
fraction V1 = 25% and V2 = 25%. We will discuss the
following cases:

Fig. 8 Convergence of the
objective function for case (b)

Fig. 9 Convergence of the
volume constraints for case (b)

Fig. 10 Convergence of the
objective function for case (c)
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(a) Maximization of βH with horizontal, vertical and di-
agonal geometric symmetry.

(b) Maximization of α22
H in the vertical direction, under

constraints of horizontal and vertical geometrical
symmetry, as well as the lower bound of C2222

H
.

(c) Minimization of α22
H in the vertical direction, under

constraints of horizontal and vertical geometrical
symmetry, as well as the lower bound of C2222

H
.

The results of Case (a) given in Fig. 4 from (1) to
(6) as the initial design, four intermediate designs,

Initial Design Optimal Design An array of 3×3 microstructures

(a) 

(b) 

(c) 

Fig. 12 Optimal microstructures
with extreme effective thermal
expansion properties with
different initial guesses ((a), (b),
and (c) are corresponding to the
design case (a), (b) and (c) shown
in Table 1)

Fig. 11 Convergence of the
volume constraints for case (c)
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and the optimized design, respectively. In Fig. 4, all
plots given in the first column represent the distribu-
tions of the design variables, in which the red colour
indicates the solid material 1, while the blue colour
shows the solid material 2. Φ1 >0 in the second col-
umn represent the level set surfaces of the total area
of the two solid material phases, and Φ1 <0 is the
void. However, Φ2 at the third column of Fig. 4 dis-
tinguishes the exact solid material phase fromΦ1>0,
namely,Φ1 >0 andΦ2>0 for the solid material 2 and

Φ1 >0 and Φ2<0 for the solid material 1. It is noted
that here Φ1 and Φ2 are only two level set functions
to implicitly indicate the two types of design vari-
ables, rather than each individual material phase.
Figure 5 is further used to show the distributions of
two solid materials in the optimal design that is given
in Fig. 4(6). The thermal strain and stress coefficients
of the optimal design are given in Table 1.

It can be found that the implicit level set represen-
tation showing unique features, such as a smooth
boundary and distinct material interface, as well as
integrated shape and topology optimization as a to-
pological shape procedure. In the process of optimi-
zation, the proposed method is able to not only
merge existing holes but also create new holes to
achieve topological shape evolutions of the base cell.

The convergence of the objective function and vol-
ume fractions over the iterations are given in Figs. 6

Initial Design Optimal Design An array of 3×3 microstructures

(d) 

(e) 

(f) 

Fig. 13 Optimal microstructures
for zero effective thermal
expansion with different initial
designs ((d), (e), and (f) are
corresponding to the design case
(d), (e) and (f) shown in Table 2)

Table 1 Thermoelastic parameters of optimal microstructures

Case Objective Constraint α11
H α22

H βH BH

(a) Max (βH) Blow
H = 0.05 7.5505 7.5505 1.8420 0.163

Case Objective Constraint α11
H α22

H C1111
H C2222

H

(b) Max (α22
H ) C2222

H = 0.05 3.5556 15.5395 0.3903 0.0585

(c) Min (α22
H ) C2222

H = 0.05 8.0927 −3.2901 0.3350 0.0596

948 Y. Wang et al.



and 7, respectively. It can be easily found that the to-
pological evolution of the structure is basically com-
pleted within the first 20 iterations, while the objective
function is maximized from −8.0 to −2.75 mainly be-
cause of the violation of the volume constraint of the
initial design. After that, the objective function is then
minimized from −2.75 to −3.68, which is to further
change the local regions of the topology and evolve
the shape of the boundary. From the results, we can
find that the optimization is converged within 100 iter-
ations, with a better computational efficiency com-
pared to the conventional LSMs which often require
over 1000 iterations for convergence (Wang et al.
2003; Allaire et al. 2004), the volume constraints are
conservative. In addition, the convergence of the ob-
jective function and volume fractions are presented in
Figs. 8, 9, 10, and 11, respectively.

The final topologies for (a), (b) and (c) are shown in
Fig. 12, respectively, while their effective properties
are given in Table 1. Since the extreme thermal expan-
sion can be obtained at the cost of a very low bulk

modulus, the lower limit of the stiffness should be
constrained in the optimization. In the case (b) and
(c), to achieve a material with directional extreme ther-
mal expansions, the extreme thermal strain coefficients
at one direction will lead to extreme stiff at the other
direction.

Materials with zero effective thermal strain coefficients
In this example, a square base cell with horizontal,

vertical and diagonal symmetry is adopted. The volume
fractions for the two solid materials are V1 = 35% and
V2 =10%. There is a lower bound to the effective bulk
modulus BLow

H =0.05. The objective function here is to
achieve the zero thermal expansion property of the mi-
crostructure with the lower limit of the effective bulk
modulus. It is well-known that in such inverse material
design there will often be multiple local solutions which
can satisfy the design with zero thermal expansion prop-
erty. Three different cases (d), (e) and (f) are used to
illustrate such phenomenon, by design the zero thermal
expansion materials under different initial guesses.
Figure 13 shows that how topologically different micro-
structures can have almost the same values of the thermal
expansion property with different effective bulkmodulus,
under three different initial designs.
Materials with negative effective thermal strain
coefficients

To obtain the materials with negative effective thermal
strain coefficients, the optimization problem is conducted
under different initial guesses and volume ratios. The hor-
izontal, vertical and diagonal symmetry are applied to the

Table 2 Thermoelastic parameters for optimal microstructures

Case Objective function αH BH

(d) αH= 0 0.0005000 0.067

(e) αH= 0 0.0002996 0.0622

(f) αH= 0 0.0005088 0.0992

Initial Design Optimal Design An array of 3×3 microstructures

(g) 

(h) 

Fig. 14 Optimal microstructures
for negative effective thermal
expansion with different initial
designs ((g) and (h), are
corresponding to the design case
(g) and (h) shown in Table 3)
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microstructure. The optimal solutions for the two cases are
shown in Fig. 14, and the corresponding parameters are
given in Table 3.

Beside the common features of the level set methods, it
can be seen that similar optimized topologies are achieved
due to dependency of final topology to initial design. Even
though theMMAwith a strong ability for searching a glob-
al optimal solution is employed as the optimizer, the depen-
dency of initial designs is mainly caused by the non-
convexity of optimization problem with the homogenized
material. However, under the different objectives, obvious
different detailed boundary shapes can be found in these
two optimal designs. To achieve higher thermal expansion
coefficient, thinner bars and hinge-like structures are gen-
erated in Case (g) to enhance larger deformation of the
cellular structure when heated.

The actual mechanisms behind the negative thermal ex-
pansion coefficients of the composite materials are very
complex. From optimized topologies of the microstructure,
we may find that the different material parts of the micro-
structure inside the design domain may become contact,
due to the temperature increase of the microstructure.
When a low bulk modulus is allowable, the main mecha-
nism behind the negative thermal expansion phenomenon
is the re-entrant cell structure having multi-material compo-
nents, which will cause relatively large deformation when
heated. The multi-material interfaces of the structure may
bend and make the cell contract, similar to the behavior of
the negative Poisson’s ratio materials (Lakes 1987; Milton
1992; Evans and Alderson 2000).

From the above numerical examples, it can be found that
the effective elastic and thermal expansion coefficients of
the microstructure are dependent on both the internal struc-
ture (e.g. shapes and topologies) of the base cell and the
way of deformation when loaded. Thus, in order to design a
composite material with extreme properties, the microstruc-
ture will be prone to generate structures functionally similar
to rotating rigid mechanisms (Wang et al. 2014). However,
the topological shape optimization is a computational de-
sign mainly for structures, and it is difficult to generate the
large rotating deformation like rigid-link mechanisms. This
may be used to explain a phenomenon during the optimi-
zation process: the generation of re-entrant type structure
that may be necessary for achieving the extreme
thermoelastic property. The rotating effect of the designwill
make the microstructure have hinge-type connections

locally inside the design domain. Since the microstructure
is required to maintain the lower limit of bulk modulus,
from the point of view of continuum structures, it is difficult
to use structural shape and topology optimizationmethod to
generate microstructures that can exactly reach the extreme
bounds of the material properties. However, the topology
optimization is a powerful computational design tool,
which can systematically generate new and novel micro-
structures for composites to achieve various desired and
extreme properties.

5 Conclusions

We have developed a multi-phase topological shape optimi-
zation method for designing metamaterials with unusual prop-
erties using the numerical homogenization method and a level
set method, in a way that is more efficient and effective. In this
approach, the homogenization method is used to calculate the
effective material properties of the microstructure, while
MPLSM is established to achieve topological shape evolu-
tions of the microstructure in the multi-material design do-
main. The proposed method is as a matter of fact a general
computational design methodology, which is applicable to
create any artificially structured composite metamaterials un-
der periodicity. Our ongoing research is to extend the pro-
posed topological shape optimization method to design prob-
lems of photonic metamaterials.
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