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Abstract In this work, a new Multi-start Space Reduction
(MSSR) and surrogate-based search algorithm is introduced
for solving global optimization problems with computational-
ly expensive black-box objective and/or expensive black-box
constraint functions. In this new algorithm, the design space is
classified into: the original design space or global space (GS),
the reduced medium space (MS) that contains the promising
region, and the local space (LS) that is a local area surrounding
the present best solution in the search. During the search, a
kriging-based multi-start optimization process is used for local
optimization, sample selection and exploration. In this pro-
cess, Latin hypercube sampling is used to acquire the starting
points and sequential quadratic programming (SQP) is used
for the local optimization. Based upon a newly introduced
selection strategy, better sample points are obtained to supple-
ment the kriging model, and the estimated mean square error
of kriging is used to guide the search of the unknown areas.
The multi-start search process is carried out alternately in GS,
MS and LS until the global optimum is identified. The newly
introduced MSSR algorithm was tested using various optimi-
zation benchmark problems, including fifteen bound
constrained examples, two nonlinear constrained optimization
problems, and four nonlinear constrained engineering appli-
cations. The test results revealed noticeable advantages of the
new algorithm in dealing with computationally expensive

black-box problems. In comparison with two nature-inspired
algorithms, three space exploration methods, and two recently
introduced surrogate-based global optimization algorithms,
MSSR showed improved search efficiency and robustness.

Keywords Multi-start optimization . Krigingmodel . Space
reduction . Expensive black-box problems . Nonlinear
constrained engineering applications

1 Introduction

With rapid advances of computer modeling techniques, nu-
merical simulations and analyses became common engineer-
ing design tools. However, most of these simulations and
analyses are computationally intensive with black-box char-
acteristics (Edke and Chang 2011; Xiang et al. 2012; Shan and
Wang 2010). For instance, the design of airfoil and aircraft
wings requires expensive black-box computational fluid dy-
namics (CFD) simulation to calculate the lift and finite ele-
ment analysis (FEA) to ensure structure strength and light
weight (Eves et al. 2012). Crash simulation of vehicle bodies
using FEA is another example (Harmati et al. 2010; Zhang
et al. 2008). In both cases, the identification of the optimized
design parameters of the wing shape/structure and vehicle
body requires global optimization using the computationally
expensive black-box simulations and analyses as objective
and constraint functions. Design optimization traditionally
uses a large number of objective/constraint function evalua-
tions in the iterative searches to identify the solution, and the
number of search iterations increases dramatically for a non-
unimodal optimization problem that requires global optimiza-
tion algorithms. More efficient and robust global search
methods thus become essential.
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The classical genetic algorithm (GA) global optimization
method usually needs thousands of evaluations of the objec-
tive and constraint functions, and each of these evaluations, if
conducted using complex simulation and analysis, will take
minutes or hours to complete, making these classical global
optimization method unsuitable as a design tool. One effective
way to reduce the number of the expensive function evalua-
tions in global optimization is to employ the more efficient
surrogate-based optimization (SBO) technology (Queipo et al.
2005; Forrester and Keane 2009). SBO takes advantage of the
prediction capacity of surrogate models (SM), or metamodels,
to avoid redundant evaluations of the expensive functions and
to focus on the most promising region of the global optimum
(Ong et al. 2003; Zhou et al. 2007; Jouhaud et al. 2007).
Generally, the SBO search process consists of three main
steps: a) select sample points using design of experiments
(DOE); b) construct a SM; and c) resample promising points
to refine the SM. To get a better initial SM with fewer sample
points, a variety of DOE methods have been introduced, in-
cluding grid sampling, Latin Hypercube Sampling (LHS)
(Iman 2008), Optimized Latin Hypercube Sampling (OLHS)
(Jin et al. 2005), etc. Among them, grid sampling produces
uniformly distributed points in the design space; and LHS/
OLHS usually yields sample locations with some random-
ness. SMs involve interpolation and regression to envisage
the black-box function. Common SM methods include
kriging, radial basis functions (RBF), polynomial response
surface (PRS), etc. Kriging is a stochastic model that utilizes
the best linear unbiased estimator to predict the function
values at untested locations (Cressie 1990). Composed of
many simple functions, RBF establishes an expression
to emulate the complicated design space (Mullur and
Messac 2005). PRS constructs a polynomial model
using least square fitting to make predictions (Myers
et al. 2009). Among the three, kriging and RBF have
been found to be more appropriate in dealing with non-
linear problems (Forrester and Keane 2009). At the start
of the search, the initial SMs of the objective/constraint
functions with fewer initial sample points would not
likely be able to locate the black-box problem’s regions
of optimum, especially for multimodal or high-
dimensional problems. How to refine the SM with an
adequate number of sample points is the key of the
search technique, while to acquire the promising loca-
tion or local optimum from the SM with a continuous
mathematical expression subsequently using a regular
optimization solver is a relatively straightforward task.
In addition, it is normally difficult to solve multimodal
and high-dimensional optimization problems only by
supplementing the optimal solutions of the SM, and
development of a generic infill strategy for a variety
of optimization problems with fewer expensive function
evaluations thus becomes critical.

2 Related work

Many researchers have contributed to the continuous devel-
opments of surrogate-based global optimization methods.
Alexandrov et al. (1998) introduced a trust region approach
to manage the use of SMs in engineering optimization. Jones
et al. (1998) presented a widely cited global optimization al-
gorithm for expensive black-box problems, which is known as
EGO. EGO constructs the SM by kriging and updates the SM
by maximizing an expected improvement function. Wang
et al. (2001) provided an adaptive response surface method
(ARSM), which creates a quadratic approximation model for
the expensive objective function in a reduced space. Gutmann
(2001) introduced a global optimization method based on
RBF to solve problems with expensive function evaluations.
Jin et al. (2001) explored the accuracy of SMs and how it
affects the sampling strategies. Wang et al. (2004) developed
the mode-pursuing sampling strategy (MPS) to refine the qua-
dratic response surface. In the same year, Wang and Simpson
(2004) utilized a fuzzy clustering method to get a reduced
search space, which can efficiently find the global optimum
on non-linear constrained optimization problems. A stochastic
RBF method for the global optimization of expensive func-
tions was proposed by Regis and Shoemaker (2007a), who also
improved the Gutmann-RBF method by varying the size of the
subdomain in different iterations (Regis and Shoemaker 2007b).
Younis and Dong (2010) developed a kind of space reduction
method called space exploration and unimodal region elimina-
tion (SEUMRE), which establishes a unimodal region to speed
up the search. SEUMRE has been successfully used on sev-
eral black-box automotive design optimization applications
(Younis et al. 2011). Gu et al. (2012) introduced the hybrid
and adaptive meta-model-based (HAM) method to divide the
design space into several subdomains with different weights.
In each iteration of the search, sample points are obtained from
these sub-regions based on performance determined weights.
HAMperformedwell in a FEA crash simulation based vehicle
body design optimization problem. Villanueva et al. (2012)
defined different sub-regions for the original design space
and explored them using multiple SMs. Long et al. (2015)
combined a type of intelligent space exploration strategy with
ARSM to provide reduced regions for global optimization.
These researches showed that the space reduction approach
presents to be an efficiency global optimization search scheme
for computationally expensive problems. In this work, a new
multi-start approach is combined with a special space reduc-
tion strategy to form a new surrogate-based global optimiza-
tion method. This multi-start approach provides multiple
starting locations and utilizes local optimization solver to per-
form parallel searches in different sub-regions. The global
optimal solution is identified from all obtained local optima.
The general idea has been used in several global optimization
algorithms, such as the GLOBAL algorithm (Csendes 1988),
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the Tabu cutting method (Lasdon et al. 2010), and the quasi-
multistart framework (Regis and Shoemaker 2013). In this
work, the multi-start approach is found to be ideal for the
kriging-based optimization method. In the global optimiza-
tion, the initial kriging-based prediction model will normally
not be very precise, leading to solutions with some local op-
tima. When the SM becomes more accurate after the updates,
one of the estimated optima may approach the true global
optimum while most of the others will either disappear or go
closer to the nearby local optima. If all predicted local optima
in the entire design space are added to refine the SM, the
number of sample points will become considerably large and
the search efficiency will be lower.

In this new kriging-based multi-start optimization process,
the three spaces, GS, MS and LS, with different ranges are
explored alternately. The sizes of MS and LS change adap-
tively based on the current best obtained value in optimizing
the kriging-based SM; selecting the promising results; and
exploring the unknown area. Exploration of the design space
at three different space levels facilitates the handling of the
multimodal objective function. Bound and nonlinear
constrained benchmark global optimization problems are used
to test the search efficiency and robustness of this new
algorithm.

3 Multi-start space reduction approach

The proposed MSSR approach uses a kriging-based SM, a
multi-start scheme, and alternating sampling over the GS,
MS and LS spaces to carry out the global optimization search.
The local optima obtained from the SM are stored in a data-
base as “potential sample points”. In each iteration, several
better sample points are selected from these “potential sample
points” to refine the SM to allow it to have a better approxi-
mation in the close neighborhood of the global optimum. The
detailed search algorithm is introduced in this section.

3.1 Kriging-based model

Kriging is an interpolation method widely used for prediction.
The kriging predictor and its estimated mean square error
(MSE) function have the following forms:

f̂ xð Þ ¼ μ̂þ rT xð ÞR−1 y−1μ̂
� �

ð1Þ

ŝ
2
xð Þ ¼ σ̂

2
1−rT xð ÞR−1r xð Þ þ 1−1TR−1r xð Þ� �2

1TR−11

" #
ð2Þ

Given M sample points, R is a correlation matrix with
M×M elements and the element in the j-th column of the i-
th row isC(Θ,x(i),x(j)) that is a correlation function value. r(x)
is anM-dimensional vector and C(Θ,x,x(i)) is the i-th element

of r(x), where x is the untested location. The values of μ̂; σ̂2; Θ

are estimated using the maximum likelihood estimation
(MLE) method and its detailed derivation can be found from
(Jones et al. 1998; Forrester and Keane 2009).

Since f̂ xð Þ is the approximation of the true function f (x),
f̂ xð Þ can be exploited to estimate the true optimum. ŝ2(x) re-
flects the uncertainty of the predictor f̂ xð Þ. When the tested
location x is far away from the known points, ŝ2(x) will have
a large value, indicating a large prediction error. The magni-
tude of ŝ2(x) can thus be used to guide the exploration of the
unknown region. The global optimization search process for
the benchmark Banana function (Fig. 1) is used to show the
kriging prediction scheme graphically. Fifteen sample points
are used to construct the initial kriging model shown in Fig. 2
to capture the rough shape of the original function illustrated
in Fig. 1. As the number of sample points increases, the pre-
dicted shape of the model will better approximate the true
shape of the banana function in Fig. 1. The estimated MSE
function of the kriging model is given in Fig. 3, and the local
maxima of the MSE always appear in the unexplored area. As
Forrester has suggested that the kriging predictor can be
exploited to acquire promising solutions and the unknown
design space can be explored by the estimated MSE of
kriging. An optimization search process that can effectively
utilize these two properties of the kriging model will be able to
take the full advantage of the kriging method (Forrester and
Keane 2009)

3.2 The proposed multi-start optimization process

The proposed multi-start optimization process for kriging-
based model consists of three parts: local optimization using
SM, selection of better potential sample points, and explora-
tion of the unknown area.

To obtain the randomly selected starting points that
also well cover the search space, the LHS is used.

Fig. 1 Original Banana function
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These different starting points will be used in each iter-
ation during the iterative search process. The local op-
tima from the kriging SM are identified using
Sequential Quadratic Programming (SQP). All of the
local optima obtained from the SM are stored in a da-
tabase of “Potential Sample Points”. The SQP opti-
mizers may sometimes converge to the same local opti-
mum from different starting points, leading to repeated
points in the database, and the local optimum may also
be found at the existing sample points. To address these
issues, new sample points need to have a defined dis-

tance from all obtained sample points. In other cases,
there may not be any suitable local optimum in the
defined space. For these occasions, the estimated MSE
of kriging is maximized by the multi-start optimization
process to explore the unknown area. As shown in de-
tails in the following pseudo codes a special sample
point selection scheme has been introduced to identify
more promising sample points from the acquired “poten-
tial sample points” list. These codes including optimiza-
tion, selection and exploration on unknown area are
summarized as follows.

Optimization:

Begin

Initialize Dimension n, Database “potential samples”, Design Space, Kriging Predictor, MSE;

Acquire m starting points by LHS; (Here, it is suggested that m can be defined in the range [20, 40] on 

two-dimensional problems, [6n, 8n] when the dimension of the problem is 2<n<10, and [50, 70] on 

high-dimensional problems.)

for i=1: m

Employ SQP algorithm;

Optimize the Kriging Predictor from the ith starting point;

Store the local optimal solutions and its predicted values in the database “Potential Samples”;

end

“potential samples” is a matrix with ( 1)m n elements;

end

(The design space is selected among GS MS and LS, which will change with the iteration going on. The 

kriging predictor and its estimated MSE can be obtained by DACE toolbox (Lophaven et al. 2002). The 

“fmincon” function of MATLAB can be employed to realize the SQP algorithm (The Mathworks 2015).)
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Figure 4 shows the multi-start optimization process on the
kriging model. Thirty starting points and two local optima
were selected. The two selected solutions were in the valley
of the Banana function, in which the best solution is located as
shown in Fig. 1. Addition of these two sample points in this
local area will make the kriging model more accurate locally.

3.3 Space reduction approach

A sample set, acquired using the DOE method is used to
store the expensive data samples. According to the

magnitude of the function values of these expensive sam-
ple points, three spaces, GS, MS and LS are created for
the multi-start optimization. Global Space or GS is the
entire region of the original design space; Medium-sized
Space or MS is based on the portion of design space of
the current better samples; and Local Space or LS is the
neighborhood area of the best current sample point. In the
iterative search process, the sample set is supplemented
with new samples, and updated using better samples.
MS and LS will constantly change until the iteration
stops. The definitions of the two spaces are as follows:
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disi ¼ max S 1 : kð Þi
� �

−min S 1 : kð Þi
� ��� ��; i ¼ 1; 2;⋯⋯n

Lobi ¼ Sbesti −d isi; Sbesti −d isi≥min rangeið Þ
min rangeið Þ; Sbesti −disi≤min rangeið Þ

�

Ubi ¼ Sbesti þ disi; Sbesti þ disi≤max rangeið Þ
max rangeið Þ; Sbesti þ disi≥max rangeið Þ

�
range locali ¼ Lobi; Ubi½ �

ð3Þ

Lobi ¼ min S 1 : pð Þi
� �

Ubi ¼ max S 1 : pð Þi
� �

range mediumi ¼ Lobi; Ubi½ �; i ¼ 1; 2;⋯⋯n
ð4Þ

where, n is the dimension of a problem, S(1:k)i is the i-th
dimension of the first k best samples selected from the ranked
sample set, rangei is the i-th dimension of the original design
range, and Si

best is the i-th dimension of the current best sam-
ple. Formulas (3) and (4) define the Local and Medium-sized
space, respectively. If the distance of Lobi andUbi in Formulas
(3) or (4) is smaller than 1e-5, it is suggested that

Lobi = Lobi − 0.025 · (max(rangei) − min(rangei)) and
Ubi=Ubi+0.025 · (max(rangei)−min(rangei)). Meanwhile,
the new range should also be the subset of the original
design range. Both of the two spaces change their scopes
based on the better samples acquired from the design
space. Here, k and p are two user-defined parameters,

Fig. 2 Kriging prediction with 15 samples Fig. 4 Multi-start process on kriging

Fig. 3 Estimated MSE of kriging Fig. 5 Flowchart of the MSSR optimization process
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(a) Iterations 1 to 3 (b) Iterations 4 to 6

(c) Iterations 7 to 9 (d) Iterations 10 to 12

(e) Iterations 13 to 15    

Fig. 6 MSSR optimization process on Benchmark Banana function
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which represent the number of the better samples. We
define k and p as follows:

k ¼

3 ; n ≤ 2 and C S ≤ 150

round CS
.
30

� �
; n≤2 and CS > 150

5 ; n > 2 and C S ≤ 150

round CS
.
30

� �
; n > 2 and CS > 150

8>>><
>>>:

ð5Þ

p ¼
round CS

.
3

� �
; n ≤ 2

3 n ; n > 2 and C S ≤ 60

round CS
.
3

� �
; n > 2 and CS > 60

8>><
>>: ð6Þ

where,CS is the number of current sample points. k will be
smaller than p with continuous iterations. According to
(3) to (6), MS will lead to a reduced region that may
include several promising solutions and LS will make
the search focus on one of them quickly. In some cases,
when LS turns into a tiny space or the search in LS, MS
or GS repeats around a local optimum, there will be no
appropriate locations to be selected as new samples. As
discussed previously in Section 3.2, if new samples can-
not be found after the optimization and selection, the es-
timated MSE of kriging is used to explore the unknown
area. The ranges for getting the local maxima of MSE in
local, medium and global search are defined as follows:

disi ¼ max rangeið Þ−min rangeið Þj j; i ¼ 1; 2;⋯⋯n

Lobi ¼ Sbesti −0:5 � disi; Sbesti −0:5 � disi≥min rangeið Þ
min rangeið Þ; Sbesti −0:5 � disi≤min rangeið Þ

�

Ubi ¼ Sbesti þ 0:5 � disi; Sbesti þ 0:5 � disi≤max rangeið Þ
max rangeið Þ ; Sbesti þ 0:5 � d isi≥max rangeið Þ

�
range mse locali ¼ Lobi; Ubi½ �

range mse mediumi ¼ range mediumi

range mse globali ¼ rangei
ð7Þ

Intuitively, these defined ranges enclose the current
best solution and they may move with the continuous
iterative search. On the one hand, the algorithm com-
bines GS, MS and LS to sufficiently exploit the kriging
predictor and accelerate the convergence to the global
optimum. On the other hand, the algorithm explores the
unknown area to allow the current best solution to jump
out of the local area.

3.4 The entire optimization process

The complete multi-start space reduction (MSSR) global op-
timization process is summarized into the following steps, and
illustrated by the flowchart in Fig. 5.

The initial process

(1) Design of experiment: apply OLHS (Jin et al. 2005) to
generate DOE sample points over the entire design
space.

(2) Evaluate the expensive function using the DOE sample
points and store the results in the sample set. (For non-
linear constrained problems, expensive functions include
objective and constraint functions.)

(3) Rank all expensive samples based on their function
values. (Here, if a sample point does not satisfy the con-
straints, the sample values should add a large penalty
factor of 1E6.)

The search loop

(4) Construct the kriging-based SM. (For nonlinear
constrained problems, SMs of objective and constraint
functions are built, respectively. Here, sample values use
the true objective values without the additional
penalty factor.)

(5) Determine which space should be explored based on the
present number of iterations. The global search, medium-
sized search and local search will be implemented alter-
nately in the process.

(6) Define the size of the search space, according to the
expensive sample set.

(7) Use the chosen multi-start local optimization approach,
SQP, to optimize the kriging-based SM in the defined
space.

(8) Store the obtained local optimal solutions in the database
“potential sample points” and select better samples. If
there is no better samples, select two new samples from
the unknown area.

(9) Evaluate the expensive function at the selected sample
points and update the order of the expensive samples as
in step (3).

(10) If the current best sample value satisfies the stopping
criteria, terminate the loop. Otherwise, update the SM
and repeat the steps (4) to (9) until the global stopping
criteria are satisfied.

The commonly used global stopping criteria are:

ybest−yoptimal
�� ��
yoptimal
�� �� < 1% if yoptimal≠0

ybest < 0:001 if yoptimal ¼ 0

8><
>: ð8Þ

To better demonstrate the MSSR search process, gen-
erations and updates of sample points during global opti-
mization on the Banana function are illustrated in Figs. 6a
to e. The multi-start optimization process presented in
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Section 3.2 is used to explore the three defined spaces.
Each figure shows three iterations of the searches in GS,
MS and LS. At the start, the region of LS is larger than
that of MS. As the iteration goes on and the number of
expensive sample points increases, LS quickly shrinks to
the local region around the global optimum. MS always
provides a medium-sized region which includes the cur-
rent best solution. Both MS and LS become smaller and
smaller when more and more sample points are added.
Intuitively, shrinking LS makes the search concentrate
on more promising region and accelerate the convergence;

MS provides a promising region which may include sev-
eral local optima; and GS ensures that the multi-start op-
timization process explores the entire design space. As
shown in Figs. 6a and c, LS may not include the true
global optimum at some time, but it will follow the mov-
ing best sample point and eventually move close to the
global optimum. In this example, 15 iterations and 37
expensive sample points are needed to find the global
optimum. During the search process, the general shape
of the SM at different stages, as shown in Figs. 6a to e,
gradually approached the shape of the true objective

Table 1 Bound constrained benchmark problems for global optimization

Category Func. Number of dims. Design space Analytic global minimum

Low-dimensional problems (n= 2–6) Banana 2 [−2, 2]2 0.0000

Peaks 2 [−3 3] × [−4 4] −6.5511
GP 2 [−2, 2]2 3.0000

SC 2 [−2, 2]2 −1.0320
Shub 2 [−10, 10]2 −186.7309
GF 2 [−2, 2]2 0.5233

HM 2 [−6, 6]2 0.0000

Leon 2 [−10, 10]2 0.0000

Shekel 4 [0, 10]4 −10.1532
Levy 4 [−10, 10]4 0.0000

HN6 6 [0, 1]6 −3.3220
Trid6 6 [−36, 36]6 −50.0000

High-dimensional problems (n>=10) Sphere 10 [−5.12, 5.12]10 0.0000

Trid10 10 [−100, 100]10 −210.0000
F16 16 [−1, 1]16 25.8750

Table 2 Preliminary comparison results on seven representative benchmark functions

Algorithms Banana GP SC Shub Shekel HN6 F16

HS NFE 9122 512 310 450 10000 698 915

Min 8.84e-4 3.0164 −1.0276 −185.6736 −2.6829 −3.3033 26.1207

DE NFE 1390 830 450 3070 3730 3660 3690

Min 4.05e-4 3.0075 −1.0299 −185.3988 −10.0930 −3.3085 26.1022

DIRECT NFE 603 101 117 2883 103 213 6439

Min 3.01e-4 3.0073 −1.0248 −185.5823 −10.0934 −3.2975 26.0884

MPS NFE 145 134 35 545 680 783 3319

Min 0.0358 3.0014 −1.0311 −186.7119 −5.0473 −3.3205 29.7177

EGO NFE 216 167 35 227 250 54 200

Min 9.67e-4 3.0323 −1.0297 −181.0324 −7.5345 −3.3152 27.4815

MS NFE 61 124 25 117 289 121 161

Min 2.51e-4 3.0065 −1.0299 −186.4286 −10.0863 −3.2973 26.1116

MSSR NFE 41 82 22 115 197 83 138

Min 3.45e-4 3.0049 −1.0303 −186.4203 −10.0829 −3.2967 26.1257
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function as shown in Fig. 1, and the SM became suffi-
ciently precise to the objective function in the local region
around the global optimum.

4 Test cases and results

To verify the capability and to demonstrate the advantage
of the new MSSR algorithm, a number of commonly-
used, constrained global optimization benchmark

problems with 2 to 16 design variables were used as test
examples. These included eight two-dimensional prob-
lems (Banana, Peaks, GP, SC, Shub, GF, HM, Leon),
two four-dimensional problems (Shekel and Levy), two
six-dimensional problems (HN6 and Trid6), two ten-
dimensional problems (Sphere and Trid10), and one
sixteen-dimensional problem F16 (Wang et al. 2004;
Younis and Dong 2010; Gu et al. 2012) with variable
bound constraints. These test problems have their own
unique characteristics, and in combination they can better

Table 3 Mean values of NFE and ranges of optimal values obtained by the three algorithms

Func. MSSR SEUMRE HAM

NFE Obtained value NFE Obtained value NFE Obtained value

Banana 42.8 [1.91e-5, 7.32e-4] 90.9 [4.75e-5, 6.37e-4] 68.3 [1.27e-5, 6.34e-4]

Peaks 28.1 [−6.5477, −6.5007] 42.7 [−6.5509, −6.4868] >228.5 [−6.5510, −3.0498]
GP 87.1 [3.0001, 3.0273] 133.6 [3.0002, 3.0191] 122 [3.0001, 3.0227]

SC 22.5 [−1.0316, −1.0274] 48.8 [−1.0307, −1.0241] 33.9 [−1.0316, −1.0259]
Shub 122.9 [−186.7259,-184.9656] >329.5 [−186.4404, −117.0721] 168.4 [−186.7209, −185.9839]
GF 34.2 [0.5233, 0.5277] >208.4 [0.5259, 0.5350] 94.1 [0.5238, 0.5283]

HM 40.3 [7.79e-5, 7.56e-4] >266.8 [1.04e-5, 0.0028] 120 [1.01e-4, 9.08e-4]

Leon 181.7 [8.88e-5, 9.68e-4] >253.9 [1.12e-4, 0.3207] 239.4 [1.21e-4, 9.58e-4]

Shekel 207.1 [−10.1486, −10.0716] >471.7 [−10.0546, −2.6303] >458.1 [−10.1472, −2.6166]
Levy 218.5 [3.96e-4, 8.04e-4] >358.1 [6.63e-4, 0.1103] >341.7 [2.96e-5, 2.26e-2]

HN6 84.8 [−3.3119, −3.2890] >282.5 [−3.3009, −3.1046] 93.5 [−3.3194, −3.2967]
Trid6 92.1 [−49.9021, −49.5544] >500 [−47.5255, −7.9626] 127.5 [−49.9614, −49.6379]
Sphere 115.4 [4.57e-4, 9.98e-4] >500 [1.8147, 17.2568] >288.3 [4.20e-4, 0.1847]

Trid10 142.4 [−208.9614, −208.0416] >500 [−83.0087, 990.0295] >500 [−166.6914, −48.9592]
F16 137.7 [26.1053, 26.1307] >500 [27.5243, 29.5178] >249.8 [26.0410, 26.6333]

Table 4 Specific statistical
results of NFE obtained by
MSSR, SEUMRE and HAM

Func. MSSR SEUMRE HAM

Min Max Median Min Max Median Min Max Median

Banana 24 66 41 72 114 86 45 104 62

Peaks 18 50 24 37 44 44 34 >500(4) 73

GP 51 141 82 79 359 93 82 195 117

SC 18 27 22 44 58 49 26 52 29

Shub 24 215 115 68 >500(3) 377 86 315 160

GF 15 64 29 65 >500(2) 100 46 281 76

HM 22 95 32 65 >500(4) 157 46 288 66

Leon 67 408 146 142 >500(2) 194 102 433 233

Shekel 68 415 197 217 >500(9) >500 269 >500(8) >500

Levy 89 376 181 119 >500(6) >500 104 >500(5) >370

HN6 52 117 83 125 >500(4) 149 87 108 91

Trid6 63 146 85 >500 >500(10) >500 106 144 130

Sphere 94 145 117 >500 >500(10) >500 180 >500(3) 198

Trid10 125 162 139 >500 >500(10) >500 >500 >500(10) >500

F16 103 168 138 >500 >500(10) >500 136 >500(2) 201
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represent many different situations in design optimization.
The detailed forms of these functions are given in Table 1.
For optimization problems with nonlinear constraints, two
mathematical functions and four benchmark design opti-
mization cases were used in the testing. All of these test
cases are given in Appendix. Ten runs on each of these

benchmark problems have been made using the new
MSSR search program. The obtained statistical results
were compared with the results from the other recently
introduced space reduction search methods for global op-
timization to compare their search efficiency and
robustness.

(a) Iterative results on F16 (b) Clearer iterative results on F16

(c) Iterative results on Sphere (d) Clearer iterative results on Sphere

(e) Iterative results on Trid10 (f) Clearer iterative results on Trid10

Fig. 7 Iterative results on high-dimensional problems
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4.1 Bound constrained optimization problems

Firstly Harmony Search (HS, Yang 2010) and Differential
Evolution (DE, Storn and Price 1997) algorithms, as examples
of nature-inspired global optimization methods, were selected
as references of high computation cost for the solution of
optimization problem with expensive black-box functions.
Secondly an effective space reduction algorithm DIRECT
(Björkman and Holmström 1999) and a widely cited
surrogate-based space exploration method MPS (Wang et al.
2004) were used as comparison. In addition, the EGO algo-
rithm that uses the kriging model for expensive functions was
compared to show the advantage of the algorithm, and the
Mueller’s surrogate model toolbox (Mueller 2012) was used
to carry out the “expected improvement” strategy in the EGO
algorithm. Furthermore, the presented Multi-start (MS) opti-
mization algorithm without using the “space reduction” strat-
egy was also tested as another comparison. At last, the MSSR
algorithm has been tested using the same benchmark problems
and 3n+2 DOE sample points have been generated to con-
struct the initial SM during the tests.

Seven representative functions from Table 1 were used as
test cases, and the seven different algorithms for comparison
have run these tests for 10 times to get the statistical results.
The collected median values of the number of function eval-
uations (NFE) and the obtained minimum values from the
optimization are given in Table 2. The seven algorithms tried
to get the values that satisfy the condition of Formula (8).

Since the EGO method requires much higher CPU time than
the other algorithms when the dimension of the problem in-
creases, a maximum allowable NFE (250 for low-dimensional
problem and 200 for high-dimensional problem) was used
during its tests. The test results in Table 2 have indicated:

& HS and DE consistently required higher NFE than the
other algorithms;

& DIRECT performed well on most cases except the
Banana, Shub and F16 functions;

& EGO andMPS could easily approach the global optimum for
simpler cases like GP and SC, but they generally needed
higherNFE for complex cases like Shub, Shekel and F16; and

& The proposed MS and MSSR algorithms showed better
performance on all test cases, and MSSR used fewer NFE
than the MS. This showed that the “space reduction” strat-
egy did improve the multi-start optimization algorithm.

In summary, non-surrogate based search methods generally
require considerably more NFE since these algorithms directly
call the original objective function during the search, and the
surrogate-based search methods use predictive models to
guide the exploration of the design space, effectively decreas-
ing the NFE. These preliminary comparisons with the nature-
inspired global optimization methods and existing SBO
methods showed the advantages of the new MSSR method
on optimization problems with intensive computation due to
the lower NFE required.
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Fig. 8 Execution time of MSSR,
SEUMRE and HAM on
benchmark functions

Table 5 Global optimal results obtained by MSSR on nonlinear constrained problems

Problems Design variables f(x)

x1 x2 x3 x4 x5 x6 x7

G6 14.097149 0.847352 −6956.8719
TSD 0.0516827 0.3565636 11.2980133 0.0126652

WBD 0.2056902 3.4683028 9.0445203 0.2056904 1.7256

PVD 0.778187 0.384658 40.320586 199.986548 5885.3653

Him 78.000000 33.000000 27.072136 45.000000 44.967954 −31025.3139
SRD 3.500177 0.700000 17.000000 7.332558 7.715387 3.350284 5.286657 2994.8487
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To further compare the search efficiency and robustness of
the algorithms, MSSR and other two recently introduced
surrogate-based global optimization algorithms (HAM and
SEUMRE) were tested using the 15 functions listed in
Table 1. SEUMRE utilizes grid sampling to divide the design
space into several unimodal regions. Once the key unimodal
region is obtained, a kriging model is built using sampled data.
The optimization and reconstruction of the kriging model are
mainly carried out in this key region. However, the initial

interpretation of the experiment data may miss the location of
the true global optimum. The SEUMRE algorithmmay thus be
trapped around a local optimum for multimodal functions and/
or high-dimensional problems. Although SEUMRE is highly
efficient in search convergence, it is not stable for complex
global optimization problems. HAMdivides the original design
space into several sub-spaces, applies three types of SMs,
Kriging, RBF and PRS, to start the search, and acquires sup-
plementary sample points using the better performing SM to

(a) Iterative results on G6 (b) Iterative results on TSD

(c) Iterative results on PVD (d) Iterative results on WBD

(e) Iterative results on Him (f) Iterative results on SRD

Fig. 9 Iterative results obtained by MSSR on constrained optimization problems
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adapt to the objective function on hand. The unique strat-
egy effectively combines the predictive capacities of mul-
tiple SMs. However, once these SMs focus on the same
region, the algorithm will likely converge to the local
optimum and can hardly explore other promising areas.
In this comparing test, the same termination criteria of
Formula (8) and user-defined parameters in (Gu et al.
2012; Younis and Dong 2010) were used.

Since the grid sampling method may find the global opti-
mum of the GP and Banana functions by chance before the
iteration process of SEUMRE begins, the DOE range of the
algorithm was changed to 95 % of the original range on the
two problems. To deal with the randomness of these methods,
ten experiment tests were made for each case. The mean num-
ber of NFEs and the range of the obtained best values from the
searches are shown in Table 3. The statistical results of NFE
withminimumNFE,maximumNFE and the median value are
given in Table 4. The NFE values with the > sign indicate that
at least one of the tests could not satisfy the stopping criteria
within 500 function evaluations, and the numbers in the
brackets represent how many failed searches it had. These
results showed that the new MSSR method has successfully
identified the global optimum in all test cases within 500
function evaluations and required the least number of NFE.
The SEUMRE algorithm performed well on the Banana,
Peaks, GP and SC functions, but it had difficulties in solving
the multimodal and high-dimensional problems. Specifically,
SEUMRE succeeded one time on Shekel, four times on Levy
and six times on HN6 functions, but it failed all the ten runs on
the Trid6, Sphere, Trid10 and F16 functions. The best value
that the SEUMRE has obtained on F16 function is 27.524,
which is much larger than the results from the MSSR and
HAM methods.

HAM is an effective search method that performed well on
Banana, GP, SC, Shub, GF, HM, Leon, HN6 and Trid6 func-
tions, but it showed poor performance on Shekel and Trid10.
For high-dimensional problems Sphere and F16, HAM could
get satisfactory solutions most of time.

A comparison on calculated objective function values and
required NFEs of the three methods for high-dimensional
problems is shown in Figs. 7a–f. In order to improve the
readability, two adjacent dots keep a small interval that is
roughly greater than 2 units of NFE. Results from the entire
search process within 200 function evaluations are shown in
Figs. 7a, c and e, while closer views on the results of HAM
andMSSR from 100 to 200 NFE are given in Figs. 7b, d and f.
The new MSSR algorithm has been found to be able to con-
verge to the optimum much quicker than HAM and
SEUMRE, and meet the given stopping criteria within 200
objective function evaluations. The computation time needed
for the three methods to find the optimum using a PC with
Core i7-4720HQ CPU (2.60 GHZ) and 16GB memory is giv-
en in Fig. 8. TheMSSR and HAMmethods usedmore time on

two-dimensional problems since MSSR needed to call the
SQP solver many times and HAM needed to construct three
SMs in each iteration. All three methods require more com-
putation time for higher-dimensional and multimodal
problems.

As the most important indicator for an algorithm’s search
efficiency and computation time need for computationally ex-
pensive black-box problems, the results of required NFEs for
different test problems put the computation performance of
the three methods into perspective. The HAMmethod showed
good performance most of the time, but it may sometimes be
trapped into local optima. The SEUMRE method performed
better on low-dimensional problems, but it could not function
well on multimodal and high-dimensional optimization prob-
lems. The new MSSR method needed the least number of
function evaluations and appeared to be most robust, present-
ing to be the most promising black-box global optimization
technique.

4.2 Nonlinear constrained engineering applications

The new MSSR search methods have also been tested using
six other nonlinear constrained optimization benchmark prob-
lems. These comprised the G6 function that came from the
constrained optimization problems used by Hedar (2004),
Egea (2008), Younis and Dong (2010); the widely used
Himmelblau’s nonlinear problems (Him, Himmelblau 1972)
(Gen and Cheng 1997); and four other structural design appli-
cations, including the Tension/Compression Spring Design
(TSD), Welded Beam Design (WBD), Pressure Vessel
Design (PVD), and Speed Reducer Design (SRD) (Coello
2002; Ao and Chi 2010; Garg 2014). All of these six test
problems have their objectives and constraints in computation
expensive black-box form. These test cases (G6, TSD, WBD,
PVD, Him, SRD) have dimensions range from 2 to 7 with 2,
4, 7, 4, 6 and 11 constraints, respectively. The test results are

Table 6 Summary of results obtained by MSSR on G6, TSD and Him

Exp. G6 TSD Him

NFE Opt. value NFE Opt. value NFE Opt. value

No.1 62 −6957.3896 81 0.0126664 60 −31025.5575
No.2 79 −6958.4628 213 0.0126817 61 −31025.2482
No.3 19 −6955.8152 139 0.0126817 48 −31025.5270
No.4 44 −6958.2769 97 0.0126654 93 −31025.0141
No.5 20 −6958.2769 97 0.0126653 100 −31021.3633
No.6 53 −6957.8394 140 0.0126655 69 −31023.6350
No.7 39 −6958.0899 114 0.0126670 57 −31023.9933
No.8 40 −6961.2597 66 0.0126698 63 −31025.5595
No.9 29 −6955.2008 109 0.0126654 51 −31025.5557
No.10 63 −6955.2106 108 0.0126652 51 −31023.2053
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given in Table 5 and the iterative processes are illustrated in
Fig. 9. The newMSSRmethod could find the global optimum
within 200 evaluations of the original objective and constraint
functions on all the six cases. According to the results from
previously published performance tests, the obtained optima
are sufficiently accurate and the recorded NFEs are much lower
(Coello 2002; Mezura-Montes et al. 2007; Mezura-Montes and
Coello 2008; Ao and Chi 2010; Regis 2011, Akay and
Karaboga 2012; Garg 2014). Furthermore, the MSSR program
has been repeatedly applied on these cases ten times to assess
its robustness with the results shown in Tables 6 and 7. In most
cases, theMSSRmethod could obtain an accurate solution with
a small number of function evaluations, showing good compu-
tation efficiency as well as robustness on nonlinear constrained
optimization problems.

5 Conclusions

A newmulti-start space reduction (MSSR) algorithm for solv-
ing computationally expensive black-box global optimization
problems has been introduced. In this new search method,
sampling spaces at three different levels have been introduced.
The entire design space is regarded as the Global Space (GS)
and remains unchanged during the search. The other two vary-
ing spaces are Medium Space (MS) and Local Space (LS). As
two reduced regions which contain the promising solutions,
the locations and boundaries of MS and LS change automat-
ically during the search due to the SM update mechanism of
the algorithm. Each of the three spaces has its own role in the
search for global optimum. The GS supports consideration of
the entire design space and ensures that the true global opti-
mum will not be easily missed; the MS directs the search to a
promising region that contains several possible best solutions

at the specific stage of the search; and the LS accelerates the
search around a local optimum. A multi-start optimization
strategy is introduced to carry out search in these three intro-
duced spaces, using LHS to provide multiple starting points
and SQP solver on the SM with starting points in the defined
space. The new MSSR method utilizes the kriging model in
the search of the global optimal solution to increase
search efficiency and reduce the number of expensive
function evaluation. In each of the iterative search
loops, a new selection scheme is used to obtain several
promising sample points. This selection scheme ensures
that the kriging-based SM is sufficiently exploited, and
the unknown area of the SM can be gradually explored.
The estimated MSE of the kriging-based SM is used as
an important tool to explore the unknown area of the
design space. The new algorithm has been tested using
a large number of optimization benchmark problems,
including 15 bound constrained problems, 2 nonlinear
constrained problems, and 4 structural engineering ap-
plications. All benchmark tests and comparisons with
results from other optimization methods have showed
superior performance and robustness of the new MSSR
method in dealing with computationally expensive
black-box optimization problems.

In our continuous research, the new MSSR method will be
applied to large structural optimization and complex multidis-
ciplinary optimization problems for further testing and im-
provements. Its applications to higher-dimensional black-
box global optimization problems in various engineering
fields will also be studied.
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Appendix. List of benchmark test problems

(1) Banana function, n=2:

f xð Þ ¼ 100 x2−x21
� �2 þ 1−x1ð Þ2 −2≤xi≤2; i ¼ 1; 2

(2) Peaks function, n=2:

f xð Þ ¼ 3 1− x1ð Þ2e−x21− x2þ1ð Þ2−10
x1
5
− x31 − x

5
2

� �
e−x

2
1−x

2
2−

1

3
e− x1þ1ð Þ2−x22 −3≤x1≤3; −4≤x2≤4

Table 7 Summary of results obtained by MSSR on WBD, PVD and
SRD

Exp. WBD PVD SRD

NFE Opt. value NFE Opt. value NFE Opt. value

No.1 110 1.7253 88 5885.4051 131 2994.8493

No.2 133 1.7253 87 5885.3782 164 2996.4051

No.3 99 1.7249 75 5885.3427 189 2995.5840

No.4 162 1.7253 125 5885.3979 134 2994.4745

No.5 167 1.7560 107 5885.3576 102 2997.4988

No.6 201 1.7535 97 5885.3658 102 2997.4988

No.7 113 1.7256 91 5885.3778 111 2994.6535

No.8 100 1.7256 112 5885.4247 96 2997.0597

No.9 153 1.7256 98 5885.3408 69 2995.4729

No.10 105 1.7254 73 5885.3993 71 2997.3088
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(3) Goldstein and Price function (GP), n=2:

f xð Þ ¼ 1þ x1 þ x2 þ 1ð Þ2 19−14x1 þ 3x21−14x2 þ 6x1x2 þ 3x22
� �h i

� 30þ 2x1−3x2ð Þ2 18−32x1 þ 12x21 þ 48x2−36x1x2 þ 27x22
� �h i

− 2 ≤ xi≤ 2 ; i ¼ 1 ; 2

(4) Six-hump Camel-back function (SC), n=2:

f xð Þ ¼ 4x21−2:1x
4
1 þ

1

3
x61 þ x1x2−4x22 þ 4x42 −2≤xi≤2; i ¼ 1; 2

(5) Shubert function (Shub), n=2:

f xð Þ ¼
X5
i¼1

icos iþ 1ð Þx1 þ ið Þ
 ! X5

i¼1

icos iþ 1ð Þx2 þ ið Þ
 !

−10≤xi≤10; i ¼ 1; 2

(6) Generalized Polynomial function (GF), n=2:

f xð Þ ¼ 1:5−x1 1−x2ð Þð Þ2 þ 2:25−x1 1−x22
� �� �2 þ 2:625−x1 1−x32

� �� �2
−2≤xi≤2; i ¼ 1; 2

(7) Himmelblau function (HM), n=2:

f xð Þ ¼ x21 þ x2−11
� �2 þ x1 þ x22−7

� �2 −6≤xi≤6; i ¼ 1; 2

(8) Leon function, n=2:

f xð Þ ¼ 100 x2−x31
� �2 þ x1−1ð Þ2 −10≤xi≤10; i ¼ 1; 2

(9) Shekel function, n=4:

f xð Þ ¼ −
X5
i¼1

ci þ
X4
j¼1

x j−aji
� �2 !−1

a ¼
4 1 8 6 3 2 5 8 6 7
4 1 8 6 7 9 5 1 2 3:6
4 1 8 6 3 2 3 8 6 7
4 1 8 6 7 9 3 1 2 3:6

2
664

3
775

c ¼ 0:1 0:2 0:2 0:4 0:4 0:6 0:3 0:7 0:5 0:5½ �
0 ≤ xi≤ 10 ; i ¼ 1 ; 2 ; 3 ; 4

(10) Levy function, n=4:

f xð Þ ¼ sin2 πy1ð Þ þ
Xn−1
i¼1

yi−1ð Þ2 1þ 10sin2 πyi þ 1ð Þ� �h i
þ yn−1ð Þ2 1þ 10sin2 2πynð Þ� �

yi ¼ 1 þ xi−1
4

; i ¼ 1 ; ⋯ ; n : − 10 ≤ xi≤ 10 ; i ¼ 1 ; ⋯ ; n :

(11) Hartman6 function (HN6), n=6:

f xð Þ ¼ −
X4
i¼1

αiexp −
X6
j¼1

Bi j x j−Qi j

� �2" #

α ¼ 1; 1:2; 3; 3:2½ �T ;

B ¼
10 3 17 3:5 1:7 8
0:05 10 17 0:1 8 14
3 3:5 1:7 10 17 8
17 8 0:05 10 0:1 14

2
664

3
775

Q ¼ 10−4

1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

2
664

3
775 0≤xi≤1; i ¼ 1; 2;⋯6

(12) Trid function, n=6, 10:

f xð Þ ¼
Xn
i¼1

xi−1ð Þ2−
Xn
i¼2

xixi−1 −n2≤xi≤n2; i ¼ 1;⋯; n:

(13) Sphere function, n=10:

f xð Þ ¼
X10
i¼1

x2i −5:12≤xi≤5:12; i ¼ 1; 2;⋯; 10:
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(14) 16 Variable function (F16), n=16:

f xð Þ ¼
X16
i¼1

X16
j¼1

ai j x2i þ xi þ 1
� �

x2j þ x j þ 1
� �

ai j row 1−8ð Þ ¼

1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1
0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0
0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1
0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0

2
66666666664

3
77777777775

ai j row 9−16ð Þ ¼

0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2
66666666664

3
77777777775
−1≤xi≤1; i ¼ 1; 2;⋯; 16:

(15) G6 function (G6), n=2:

min f xð Þ ¼ x1−10ð Þ3 þ x2−20ð Þ3
s:t : g1 xð Þ ¼ − x1−5ð Þ2− x2−5ð Þ2 þ 100≤ 0;

g2 xð Þ ¼ x1−6ð Þ2 þ x2−5ð Þ2−82:81≤0:
13 ≤ x1≤ 100 ; 0 ≤ x2≤ 100 :

(16) Tension/Compression Spring Design (TSD), n=3:

This problem minimizes the weight of a spring and mean-
while is subject to constraints on minimum deflection, shear
stress, surge frequency, limits on outside diameter and side
constraints.

min f xð Þ ¼ x21 x2 x3 þ 2ð Þ
s : t : g1 xð Þ ¼ 1 −

x32x3
71785x41

≤ 0 ;

g2 xð Þ ¼ 4x22−x1x2
12566x31 x2−x1ð Þ þ

1

5108x21
−1≤0;

g3 xð Þ ¼ 1 −
140:45x1
x3x22

≤ 0 ;

g4 xð Þ ¼ x1 þ x2
1:5

− 1 ≤ 0 :

0:05≤x1≤2; 0:25≤x2≤1:3; 2≤x3≤15

(17) Welded Beam Design (TSD), n=4:

This problem is designed for minimum cost andmeanwhile
is subject to constraints on shear stress, bending stress in the
beam, buckling load on the bar, end deflection of the beam
and side constraints.

min f xð Þ ¼ 1:10471x21x2 þ 0:04811x3x4 14þ x2ð Þ
s:t: g1 xð Þ ¼ τ xð Þ−τmax≤0;

g2 xð Þ ¼ σ xð Þ−σmax≤0;
g3 xð Þ ¼ x1−x4≤0;

g4 xð Þ ¼ 0:10471x21 þ 0:04811x3x4 14þ x2ð Þ−5≤0;
g5 xð Þ ¼ 0:125−x1≤0;
g6 xð Þ ¼ δ xð Þ−δmax≤0;
g7 xð Þ ¼ P−Pc xð Þ≤0;

where

τ xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ 0ð Þ2 þ 2τ 0τ 00 x2

2R
þ τ 00ð Þ2

r
; τ 0 ¼ Pffiffiffi

2
p

x1x2
; τ 00 ¼ MR

J
;

M ¼ P Lþ x2
2

� �
; R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22
4
þ x1 þ x3

2

� �2r
; σ xð Þ ¼ 6PL

x4x23
;

δ xð Þ ¼ 4PL3

Ex33x4
; J ¼ 2

ffiffiffi
2

p
x1x2

x22
12

þ x1 þ x3
2

� �2	 
� �
;

Pc xð Þ ¼ 4:013E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x23x

6
4=36

p
L2

1−
x3
2L

ffiffiffiffiffiffiffi
E
4G

r !
; G ¼ 12� 106 psi;

P ¼ 6000 lb; L ¼ 14 in; δmax ¼ 0:25 in; E ¼ 30� 106 psi;
τmax ¼ 13600psi; σmax ¼ 30000 psi:
0:1≤x1; x4≤2; 0:1≤x2; x3≤10
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(18) Pressure Vessel Design (PVD), n=4:

This problem is to minimize the total cost of a cylindrical
vessel, including the cost of material, forming and welding.
Four design variables are thickness of the pressure vessel,
thickness of the head, inner radius of the vessel and length
of the vessel, respectively.

min f xð Þ ¼ 0:6224x1x3x4 þ 1:7781x2x23 þ 3:1661x21x4 þ 19:84x21x3
s:t: g1 xð Þ ¼ −x1 þ 0:0193x3≤0;

g2 xð Þ ¼ −x2 þ 0:00954x3≤0;

g3 xð Þ ¼ −πx23x4−
4

3
πx33 þ 1296000≤0;

g4 xð Þ ¼ x4−240≤0:
1� 0:0625≤x1; x2≤99� 0:0625; 10≤x3; x4≤200

(19) Himmelblau’s nonlinear optimization problem (Him),
n=5:

This problem has five design variables, six nonlinear in-
equality constraints and ten boundary conditions.

min f xð Þ ¼ 5:3578547 x23 þ 0:8356891 x1x5 þ 37:293239 x1− 40792:141
s : t : g1 xð Þ ¼ 85:334407 þ 0:0056858x2x5 þ 0:00026x1x4−0:0022053x3x5;

g2 xð Þ ¼ 80:51249 þ 0:0071317x2x5 þ 0:0029955x1x2 þ 0:0021813x23 ;
g3 xð Þ ¼ 9:300961þ 0:0047026x3x5 þ 0:0012547x1x3 þ 0:0019085x3x4;
0 ≤ g1 xð Þ ≤ 92 ; 90 ≤ g2 xð Þ ≤ 110 ; 20 ≤ g3 xð Þ ≤ 25 ;
78 ≤ x1≤ 102 ; 33 ≤ x2≤ 45 ; 27 ≤ x3; x4; x5≤ 45 :

(20) Speed Reducer Design (SRD), n=7:

This problem is to minimize the total weight of the speed
reducer. It has eleven constraints which include the limits on
the bending stress of the gear teeth, surface stress and trans-
verse deflections of shafts.

min f xð Þ ¼ 0:7854x1x22 3:3333x23 þ 14:9334x3−43:0934
� �

−1:508x1 x26 þ x27
� �

þ7:4777 x36 þ x37
� �þ 0:7854 x4x26 þ x5x27

� �
s:t: g1 xð Þ ¼ 27

x1x22x3
−1≤0; g6 xð Þ ¼

745x5= x2x3ð Þð Þ2 þ 157:5� 106
h i1=2

85x37
−1≤0;

g2 xð Þ ¼ 397:5

x1x22x
2
3

−1≤0; g7 xð Þ ¼ x2x3
40

−1≤0; g8 xð Þ ¼ 5x2
x1

−1≤0;

g3 xð Þ ¼ 1:93x34
x2x3x46

−1≤0; g9 xð Þ ¼ x1
12x2

−1≤0; g10 xð Þ ¼ 1:5x6 þ 1:9

x4
−1≤0;

g4 xð Þ ¼ 1:93x35
x2x3x47

−1≤0; g11 xð Þ ¼ 1:1x7 þ 1:9

x5
−1≤0;

g5 xð Þ ¼
745x4= x2x3ð Þð Þ2 þ 16:9� 106

h i1=2
110x36

−1≤0;

2:6≤x1≤3:6; 0:7≤x2≤0:8; 17≤x3≤28; 7:3≤x4; x5≤8:3;
2:9≤x6≤3:9; 5:0≤x7≤5:5:
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