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Abstract Although topology optimization is well estab-
lished in most engineering fields, it is still in its infancy
concerning highly non-linear structural applications like
vehicular crashworthiness. One of the approaches recently
proposed and based on Hybrid Cellular Automata is mod-
ified here such that it can be applied for the first time to
thin-walled structures. Classical methods based on voxel
techniques, i.e., on solid three-dimensional volume ele-
ments, cannot derive structures made from thin metal sheets
where the main energy absorption mode is related to plastic
buckling, folding and failure. Because the main components
of car structures are made from such thin-walled beams
and panels, a special approach using SFE CONCEPT was
developed, which is presented in this paper.

Keywords Crashworthiness - Topology optimization -
Thin-walled structures - Hybrid cellular automata

1 Introduction

Like for most of the areas in structural mechanics, optimiza-

tion for car body development and especially for crashwor-
thiness can be categorized into size, shape, and topology
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optimization, e.g., Bendsge and Sigmund (2003). In addi-
tion, material or concept optimization may be considered
(Volz 2011). Size optimization is often embedded into a
multi-disciplinary scheme (e.g., Duddeck 2008) and used
in the late design stages. Approaches for shape optimiza-
tion can be divided into morphing techniques, where the
finite element (FE) mesh is moved to realize changes in
shape, and approaches using re-meshing techniques and
explicit or implicit parameterizations, see Duddeck and
Zimmer (2013). This is discussed in detail in Rayamajhi
et al. (2014). Topology optimization for crashworthiness is
used mainly in the early design phases where the best struc-
tural concept has to be identified. It is either applied on
the complete vehicle level or on component level, see the
state-of-the-art overview in the next section. The optimiza-
tion objectives for these levels are either approximated or
ideally derived via system engineering (V-model approach)
as discussed in Fender et al. (2014) and Zimmermann et al.
(2012).

To illustrate the different tasks for topology optimiza-
tion, first a full vehicle case is regarded as shown in
Fig. 1 studied by Volz (2011). The relevant structural skele-
ton establishes the load paths for the different crash load
cases (here EuroNCAP, see www.euroncap.com). One way
to derive this principle structure, is to define the design
space according to the package definition respecting the vol-
umes of the non-structural components like engine, wheels,
etc. This can then be filled by so-called voxels, which
are regular three-dimensional finite elements as shown in
Fig. 2. Due to the optimization process based on succes-
sive deletion of voxels, a zigzag structure is obtained which
may inspire the principle location of structural beams to
obtain an optimal energy absorption. Beside the smoothen-
ing issue, one of the main questions is if an optimization
of a volume structure leads to optimal car body designs
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Fig. 1 Full vehicle simulation
model for the front end (Volz
2011)

made from thin-walled components. Figure 3 shows the
result for volume elements in comparison to a standard car
body design based on thin-walled structures. The mechan-
ics of energy absorption are totally different for volume
material. Hence, it is desirable to look for an alternative
approach.

In addition, it is important for this type of topology
optimization to distinguish between topology optimization
for

— Structural areas that should absorb energy by highly
non-linear deformations and

—  Structural areas that should not deform intensively to
assure survival space of the occupants.

As can be seen in the literature survey (Section 2), this is
often neglected in approaches published on topology opti-
mization for crashworthiness — the two areas should have
different objectives, either high energy absorption by large
deformations and failure or high resistance forces avoid-
ing intrusions for the safety cell. The latter, because of the
lack of large deformations, resembles roughly a standard
topology optimization based on linear elastic approaches. A
result obtained by equivalent static loads (ESL) is shown in
Fig. 4.

A slightly different task for topology optimization is
related to the identification of optimal cross-sectional lay-
outs, rib design, or in general optimal reinforcements. Here,
the main load path is defined but the structures, and com-

Design space

Fig. 2 Voxel-based topology optimization for crash (Volz 2011)
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EuroNCAP, 64 km/h

ponents along theses paths can be varied according to
their local topologies. An example is shown in Fig. 5
where the optimization should determine the best cross-
section for the extrusion beam (sill). Again, the optimization
approach for the requirement of integrity of the safety cell
should be different to cases where high energy absorption
is required.

For both types of topology problems, the full vehicle and
the local reinforcement case, it is essential to realize an
approach, which is respecting the special characteristics of
thin-walled structures. Most parts of current car body struc-
tures are made of these types taking advantage of the special
energy absorption behavior. A typical energy absorption of a
thin-walled beam structure is shown in Fig. 6. The cylindri-
cal aluminum tube in this study shows two alternative modes
both with good energy absorption characteristics. The pro-
gressive folding is characterized by the oscillating force-
displacement diagrams shown at the bottom of this figure.

This performance is normally desirable, i.e., the structure
performs optimally with respect to crashworthiness crite-
ria. It should be noted here, that the collapse due to plastic
deformations and eventually fracturing does not correspond
to a homogeneous distribution of the deformation energy.
Indeed, the main deformation energy is concentrated at local
plastic hinge lines while the material in between takes only a
minor part of the total deformation energy. Hence, the opti-
mization criterion for crash topology optimization has to be
defined carefully.

Voxel model at
the end of optimization

Voxel model at
the start of optimization



Crash topology optimization for thin-walled structures

417

Fig. 3 Voxel result and
standard thin-walled structure
(Volz 2011)

Voxel-based result from topology optimization

To summarize, topology optimization of thin-walled
structures with respect to crashworthiness requires a method
based on

— a modeling, which is truly based on shell elements
capturing the typical behavior of thin-walled structures,

— a definition of an objective allowing non-homogenous
energy densities,

— a distinction between optimization for high energy
absorption or for high resistance against intrusion, and

— an optimization using non-linear crash simulations for
the high energy absorption case taking into account that
structures support dynamic loads differently than static
loads.

The last point is necessary because first studies have shown
that the topological results depend on the load velocities of
the impact, see Patel (2007) and Patel et al. (2009).

2 State of the art in crash topology optimization

In the past few years, several studies have been published
on topology optimization for crash, e.g., Chuang and Yang
(2012), Forsberg and Nilsson (2007), Fredricson (2004),
Pedersen (2003), Torstenfelt and Klarbring (2007), and Volz
(2011). They can be roughly grouped into (i) methods

Fig. 4 Optimized topology (red) for the safety cell via ESL in
comparison to reference structure (blue) (Volz and Duddeck 2012)

Shell-based structure (thin-walled components)

using equivalent static loads, (ii) ground structure and per-
mutative approaches, (iii) bubble and graph/heuristic-based
techniques, and finally (iv) approaches based on hybrid cel-
lular automata. The main contributions are summarized and
discussed briefly in this section.

2.1 Equivalent static loads approaches (ESL)

Some of the earliest approaches for crash topology opti-
mization are based on the definition of static loads repre-
senting roughly the dynamic impact, e.g., Cavazzuti et al.
(2011) and Christensen et al. (2012). These loads do not
vary in time and are applied over a certain area of the vehicle
model where the design space is filled with voxels as shown
in Section 1. Because the load definition is coarse and cov-
ers a wider area of the car body, this approach is named
here global ESL. method. To identify the best concepts,
linear elastic simulations and corresponding standard topol-
ogy optimization methods for linear elastic problems are
used (see Bendsge and Sigmund 2003). Each crash case is
considered independently and the topology optimization is
based on a multi-load case approach (e.g., Fig. 7). Because
the dynamic effects cannot be captured here, this approach
is only appropriate for safety cell design and not for the
energy absorbing areas. A homogeneous energy density as
objective leads to strong structures protecting the occupants
but it does not lead to optimal structures for high energy
absorption.

Volz improved this approach by considering different
load sets for a single crash case, which vary in time and
location, Volz (2011) and Volz and Duddeck (2012). The
ESL are derived by general energy considerations, which
are based on free crush length and mean force estimates in
the energy absorbing areas. Hence, this approach captures
better the dynamic characteristic and the requirement for
energy absorption.

An alternative way to use ESL is based on an initial non-
linear crash simulation where the non-linear displacement
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Fig. 5 Top: Example for a local topology optimization task; botfom: example of derived topology for the cross-section of a sill in a pole side

impact (Walser 2013)

is multiplied with the linear stiffness matrix for a certain
set of times to create the nodal ESL (or local ESL), for
more details see Park (2011). The optimization is then real-
ized by a double loop approach where the inner loop uses
the ESL to optimize the linear and static FEM problem
and the ESL are updated after the inner optimization is fin-
ished by a new non-linear computation based on the optimal
design variables obtained in the inner loop. Crash simula-
tion is normally based on the deforming geometry, i.e., it
is questionable if the undeformed stiffness matrix used in
this approach is the appropriate choice. Furthermore, it is
assumed here that the linear optimizations (inner loop) point
in the direction of the non-linear optimum. This might be

Fig. 6 Force-displacement
curves for aluminum tubes
(Marsolek 2002) F
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max Interior fold : max

| Exterior fold

only justifiable for problems with small non-linearities. Due
to the nodal character of the ESL, topology optimization
approaches with element deletion need special attention.
Nevertheless, first applications were promising, e.g., Erhart
et al. (2012) and Walser (2013) using an implementation
in GENESIS and LS-DYNA (Vanderplaats Research and
Development, Inc. 2012; Livermore Software Technology
Corporation 2006).

2.2 Ground structure approach (GSA)

In the Ground Structure Approach (GSA), the design space
is filled with elementary macro-elements (often beams) with

x|

B Fold level 1

Fold level 2
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Deformation

A Undeformed
thin-walled shell
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Fig. 7 Global ESL approach for
several crash load cases
(Christensen et al. 2012)

a simplified crash behavior. Different methods to remove
and/or modify these macro-elements to reach an optimum
design are used, e.g., Fredricson (2004), Pedersen (2003),
and Torstenfelt and Klarbring (2007). The latter proposed a
property-based model (PBM) where the crash model con-
sists of beams and joints, which can then be optimized
(Fig. 8).

The advantage is that non-linear crash simulations can
be used without high numerical effort. Because the ground
structures are limited in their variability, the quality of the
results depends on the initial choice of ground structures.

2.3 Bubble and graph/heuristic-based approach

Earlier work by the research group of Schumacher investi-
gated an approach where holes are introduced successively
into a structure and optimized with respect to location and
shape, Schumacher (2005). These ideas were then trans-
ferred to a graph-based method where heuristic rules are
taken to decide on topological changes, Ortmann and Schu-
macher (2013). This method was also partially integrated
into the German research project summarized in Walser
(2013). Applications published here focus on the second

I Communal structure
== Partly comm. structure
—1 Topology variation
== Specific structure

Fig. 8 PBM model as ground structure (Torstenfelt and Klarbring
2007)

topology optimization category mentioned above, optimiza-
tion of reinforcement layouts as shown in Fig. 9.

2.4 Hybrid cellular automata approach (HCA)

The last category of crash topology optimization methods
is using cellular automata where the domain is represented
by a grid of cells, each characterized by a finite number
of possible states and evolving depending on the state of
their neighbors. Hybrid Cellular Automata (HCA) consider
additional global information of the design space within the
update rules, e.g., Penninger et al. (2010). Adaptations to
crashworthiness design are presented in Mozumder (2010)
and Patel (2007). Like the ESL method, the HCA uses a
space filling with 3D voxels, which cannot represent well
the energy absorption modes of thin-walled structures. In
contrast to ESL, non-linear FE methods (explicit) can be
used. Problematic is the optimality criterion. The original
papers proposed to homogenize the internal energy, which
is not appropriate for thin-walled structures manufactured in
metal in cases where energy absorption is the objective. The

<& O
BEAM1-| @ ® A | COORD-
Vertex |BEAMG- BE LINK- | Vertex
Vertex AM2- Vertex
Vertex

Fig.9 Graph and heuristic based approach (Ortmann and Schumacher
2013)
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Fig. 10 Scheme for the HCA
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approach might work well for the other case where intrusion
should be avoided and integrity of the safety cell assured.
Results were also published in Walser (2013) based on an
implementation in the framework of LS-DYNA (LS-TaSC),
see Livermore Software Technology Corporation (2011).

To summarize, all these approaches have their advan-
tages and drawbacks. To overcome the difficulties related to
the HCA, a new approach is presented here, which changes
(i) the space filling and (ii) the optimality criterion. As
space filling, a ground structure approach is chosen where
larger walls consisting of several shell elements are used,
i.e., thin-walled macro-structures are used and not vox-
els. This enables to modify also the optimality criterion;
because homogeneity of energy density is only required for
the larger macro-structures, local buckling, folding etc. are
now achievable. Hence we believe that this method offers
improved capabilities for topology optimization of crash
problems. The work presented here is based on the PhD
thesis of the second author at Queen Mary University of
London, (Hunkeler 2013).

3 HCA for thin-walled structures (HCATWS)
3.1 Main algorithm
As discussed in Section 2, the existing methods for crash

topology optimization are not sufficient for cases where
thin-walled structures have to be derived in high energy

@ Springer

absorption zones. An approach without using 3D voxels
and with an ability to allow for localized plastic zones
(plastic hinge lines) is required. Hence, we propose here a
new method (see Fig. 10) combining the ground structure
approach using thin walls with the HCA method and a modi-
fied objective (i.e., a non-homogeneous deformation energy
for each wall).

The algorithm is inspired by the work of Patel and
Mozumder on HCA based on 3D voxels (Mozumder 2010;
Patel 2007). It consists of an outer loop where non-linear
crash simulations are performed to evaluate the crash con-
straints and the deformation energy of the components (here
thin walls). The latter is then used in the inner loop together
with the mass fraction objective for this optimization step.
In this inner loop, the elements (i.e., the walls taken as
cells) are adapted to reach the mass fraction objective using
cellular automata rules. It should be noted here that in con-
trast to Mozumder (2010) and Patel (2007), the cells for the
HCA approach are not small 3D voxel elements but walls,
i.e., larger components of the ground structure consisting
of a high number of shell elements. This has two advan-
tages: Firstly, local plastic hinge lines can occur leading
to optimal folding patterns allowing inhomogeneous energy
distribution inside of a single wall. Secondly, the walls con-
sist of thin walls defined with standard shell elements. No
smoothening of a voxel outcome is necessary. In this inner
loop, the thickness of each wall is modified until the mass
fraction objective of optimization step k is reached. Back
in the outer loop, the optimization is continued as long as
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Fig. 11 Space filling for 2D and
3D problems (Hunkeler 2013)

Orthogonal wall grid for 2D
space filling for ribs /
reinforcements

global convergence is not achieved. Before the next crash
simulation is performed, the geometry is updated consider-
ing the changed wall thicknesses from the inner loop. In case
that the wall thickness lies below a threshold, the wall is
deleted; if previously deleted walls are above the threshold
they are re-introduced. To realize this geometrical han-
dling, the software SFE CONCEPT is used, which allows
parametric modeling based on a unique implicit parameter-
ization, e.g., Duddeck and Zimmer (2013) and SFE GmbH
(2009). The connectivity between the walls is assured by
this approach. The changes are performed in the SFE CON-
CEPT model and a FE model is generated (here without
re-meshing of the walls).

The approach outlined here is discussed more in detail
in the following sections; especially, the chosen ground
structure (i.e., the space filling and the neighborhood def-
inition) is discussed considering applications for 2D and
3D optimization problems. In addition, the chosen routine
for setpoint update within the inner loop to achieve the
mass fraction objective is presented, which allows a more
detailed understanding of the procedure. For further algo-
rithmic details, the PhD thesis of the second author should
be consulted (Hunkeler 2013).

3.2 Space filling with thin walls and neighborhoods

To adapt to the traditional HCA where the update rule
requires equally sized cells, a regular grid is chosen for
space filling. For the 2D case, e.g., for topology optimiza-
tion of ribs and reinforcements or for cross-sections of
extrusion beams, the design space is filled by an orthog-
onal wall grid while for 3D cases, a cubic honeycomb is
defined, see Fig. 11. The number of cells must be chosen
carefully; the size of the cells must be big enough to allow
folding deformation and to account for eventual manufac-
turing aspects. The last image on the right of Fig. 11 shows
the FE mesh to illustrate that one cell consists of a high

p=

‘ L]

4 )y

Cubic honeycomb for 3D
space filling with hollow
cells and thin walls

3D space filling showing the FE
mesh; each color represents
one cell for the HCA

number of shell elements such that inside of the cell plastic
folding is possible with inhomogeneous energy density.
HCA are based on an evaluation of the cells (here
walls) with respect to their neighbors. Hence a topological
neighborhood also needs to be defined as shown in Fig. 12.

3.3 Mass fraction objectives and IED setpoint

The update rules for the cells use the output values of a given
cell and its nei%hboring cells. Here, the internal energy den-
sity (IED), Ul.( ), of each cell or wall is used. In the outer
loop (see Fig. 10), the mass fraction objective (i.e., mass
objective divided by reference mass) for the inner loop has
to be defined. It is derived by taking the maximum of a
pre-defined minimal value M f i, and the mass fraction of
the prior iteration (k — 1) plus the mass increment for this

iteration step AM ](Ck) .

MY = max (Mf,min, M 4 AM(fk)> ;

f f
((SR— k) k) (ORI}
AMf = min (AMﬁmax,max(—AMﬁmax, }LAMfed )) (1)

Here )LX?W denotes the current mass fraction change mod-

ulation factor, which is defined in Hunkeler (2013). It
balances the speed of correction between the mass fraction
and the design constraint error 80(1k). The latter is related
to the maximum permissible displacement, dpnax, and the
displacement output in iteration k, d(()ﬁz, via (2). Here, this
displacement is taken as the movement of the rigid impactor
in axial direction. Alternative global design constraints can
be implemented in a similar manner.

k
k) _ déu% — dmax
g = —.

@

dmax

The permissible change of mass fraction, AM}kr)nax,
decreases with the iteration number. The mass fraction

objective, M }k), is then realized iteratively in the inner loop.
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Fig. 12 Neighborhood
definitions for the 3D case
(Hunkeler 2013)

(a) Empty

L

(d) Von Neumann

For this, an IED setpoint, $*(U-5) | has to be initialized and
further updated using (3).

| o MU-D
o ~Lk
§*UR) = min <SI>;1ax’ max (S:;lil‘l’ §H=0 m® ®)

f
. . . '_1 .
% Skax are the IED setpoint limits, and MV~ is the
mass fraction derived from the thickness updates of step

(j — 1) in the inner loop.

3.4 Cell update rule

Inspired by Bochenek and Tajs-Zielinska (2010) and Patel
(2007), the update rule of the cells (i.e., of the wall thick-
nesses) uses separate contributions from each neighbor cell
and accounts for the discrepancies between the setpoint

Fig. 13 Rectangular beam under axial impact — load case I and initial
space filling (Hunkeler 2013)

@ Springer

(b) Plane

Neumann

von (c) Plane Moore

(e) Moore

and the IED levels of each neighbor. The thickness change,
8 ti(J ’k), for cell i is defined by the following equations.

ni
Sti(]’k) = min | 8tmax, Max | —8%max, Z a,(/’k) :
q=0
% Cq
i,k
af™ =" xp, UF) =3¢y, UP). @)
u=1 u=1
a;j ) is the contribution of neighboring cell ¢; here a hybrid

approach is introduced, which does not only consider the
contributions of the neighboring cells, but also accounts for
the discrepancy between the setpoint and the cells’ IED
levels. ¢ is an increment parameter which modulates the
thickness changes depending on the mass fraction change of
the current iteration. x( is the indicator function filtering
the contributions of the neighboring cells. P, represents the
discrepancies above the setpoint $*-K) and M, those below.

Table 1 Piecewise linear isotropic hardening of the extrusion beam
(aluminum) defined by effective plastic strain efff [-] and correspond-
ing stress o [MPa] (Hunkeler 2013)

ehe 000 001 002 005 010 0I5 020

180 190 197 212 226 234 239
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Fig. 14 Topology evolution for case I (HCATWS)
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Fig. 15 Optimization results for case I: force-displacement curves
for the initial design and the two optima (HCATWS and LS-OPT) and
evolution of the mass objective and displacement constraint for the
HCATWS

155 T

Fig. 16 Best cross-section obtained by standard size optimization for
case I (LS-OPT) and the folding pattern at the end of the simulation
(Hunkeler 2013)

8tmax 1S the maximum thickness variation allowed per iter-
ation. For further details, see Hunkeler (2013). It should
be noted here, that oscillations of the algorithm need to be
avoided; hence a regularization is employed here by replac-
ing the IED of cell i at iteration k, Ui(k), by a weighted sum
of the three previous iterations:

- 1 oo 1 e
g® = Lyw  Lyen  Tye

2 3 6 ®)

4 Topology optimization of thin-walled beams
under axial impact via the HCATWS

4.1 Load case I — axial impact, dpax = 75 mm

The response of simple metallic tubes to axial impacts is
widely studied in literature, e.g., Abramowicz (2003), and
hence this case is well suited for validation. Interior rein-
forcements can improve the energy absorption, e.g., Alavi
Nia and Parsapour (2013); therefore, a multi-cell rectangu-
lar tube (Ilength L = 400 mm) is regarded here where the
outer frame (cross-section A = 80 x 100 mmz, thickness
¢t = 1.5 mm) is not changed and only the interior topology is
optimized. A regular grid of reinforcement walls is chosen
as initial geometry, see Fig. 13. Due to the manufacturing
by extrusion, this is a 2D topology case. The walls have a
width of 20 mm and a length of 400 mm which generates a
total of 31 walls (10 independent design parameters due to
symmetry conditions). The initial interior wall thickness is
tinit = 0.5 mm. The beam is impacted on one end by a rigid

Table 2 Optimal thicknesses for case I (dmax = 75 mm)

Best HCATWS t4 = 1.61 mm tg = 1.65 mm

Best LS-OPT t4 = 1.66 mm tp = 1.58 mm

@ Springer
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Fig. 17 Best cross-sections for load case II
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wall perpendicular to its longitudinal direction, and fixed on
the other end. The rigid wall has a mass of m = 500kg
and an initial speed of v = 5m/s. The impact is simulated
for a duration of 25 ms. The displacement of the impactor
over this duration is taken as constraint. The beam is made
of an aluminum extrusion (Young’s modulus £ = 70 GPa,
mass density p = 2.7 t/m3, Poisson ratio v = 0.33 and
yield strength o, = 180 MPa). Hardening is represented by
a piecewise linear stress-strain curve as defined in Table 1.

For optimization, the displacement constraint is chosen
as dmax = 75 mm, which is 32% less than the value obtained
for the empty cross-section (mass 583 g). The von Neu-
mann neighborhood (Fig. 12) and the hybrid update rule
(Section 3.4) are chosen for the HCATWS. The best design
is found after 34 iterations (i.e., after only 34 non-linear
crash simulations) with a mass of 865 g and maximal dis-
placement of 74.24 mm. Fig. 14 gives the evolution from
the initial to the optimal geometry showing that mainly the
corners are reinforced. This was expected as prior studies
without optimization have indicated the superior behavior of
comparable structures (Alavi Nia and Parsapour 2013; Kim
2002). The corresponding graphs for force-displacement
and for the evolution of the displacement constraint and the
objective are given in Fig. 15.

The force-displacement relation improved reducing the
difference between peak and average force (the peak force,
which is only monitored in this optimization, is related to
the deceleration, which should not be too high). The strong
increase in mass (the objective) at the beginning of the opti-
mization (iteration 5) is due to the initial violation of the
constraint.

To assess optimality of the results, an alternative
approach is regarded (only possible without extensive com-
putations due to the relatively low number of design param-
eters). A sizing optimization is solved with a commercial

Table 3 Thicknesses in [mm] for case II (dpax = 50 mm)

Method ta tp tc 1))
Best HCATWS 2.89 3.00 1.53 0
Best LS-OPT 2.78 2.24 0.86 0.51

Table 4 Results for case I (dmax = 75 mm)

Design Mass Displ. Peak force Non-lin.
[g] [mm] [kN] simul.

Initial (full) 918 84.3 154.2 1

Best HCATWS 865 74.2 145.7 34

Best LS-OPT 863 74.7 145.7 300

optimizer LS-OPT (Livermore Software Technology Cor-
poration 2012) and an iterative response surface method
(RSM) using radial basis functions. Starting from a com-
plete set of walls, the wall thicknesses are modified and
eventually deleted when they become smaller than 0.4 mm.
The maximum number of iterations is set to 15 to keep the
total number of crash simulations under 300 (17 simula-
tions per iteration). The best design was found at iteration
11 (i.e., 187 non-linear crash simulations) with a mass of
863 g and a final displacement of 74.7 mm, both very com-
parable to the results from the HCATWS. Note that the
number of non-linear crash simulations is much higher than
for the HCATWS. As the references mentioned above, this
validation confirms the principle topology identified by the
HCATWS: the corners are reinforced again, Fig. 16.

The results for the design variables, i.e., the wall thick-
nesses are given in Table 2. They differ slightly, which may
indicate that there exist several comparable nearly optimal
designs.

4.2 Load case II - axial impact, dyax = 50 mm

Considering a more demanding displacement constraint
(dmax = 50mm), we obtain a comparable cross-section
topology where mainly the wall thicknesses are increased
while the topology is nearly similar. Some additional walls
on the outer rectangular box are required. The HCATWS (61
iterations, i.e., 61 non-linear simulations) leads to a beam
with a mass of 1.107 kg and a maximum displacement of
50.0 mm. The same case optimized by LS-OPT finishes
with m = 1.098kg and dpax = 47 mm. Both have com-
parable cross-sectional topologies as shown in Fig. 17. The
thicknesses are given in Table 3. In contrast to case I, the
topology results do not match totally. This is due to the

Table 5 Results for case II (dpax = 50 mm)

Design Mass Displ. Peak force Non-lin.
(g] (mm] [kN] simul.

Initial (full) 918 84.3 154.2 1

Best HCATWS 1,107 50.0 186.0 61

Best LS-OPT 1,098 47.0 187.6 300
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Fig. 18 Optimization results for case II: force-displacement curves
for the initial design and the two optima (HCATWS and RSM) and
evolution of the mass objective and displacement constraint for the
HCATWS

fact, that the optimization problem regarded here is multi-
modal. Hence, the optima are local optima and it is possible
to find several different cross-sections with comparable per-
formance. This needs further investigations especially with
respect to additional constraints (e.g., a limitation of the
peak force). As already mentioned above, all results show
a reinforcement of the corners, which means that the cou-
pling of the different walls via the external rectangular box
is important.

Table 6 Results for case III (dnax = 80 mm)

Design Mass Displ. Peak force Non-lin.
[g] [mm)] [kN] simul.

Initial (full) 918 84.3 154.2 1

Best HCATWS 892 79.9 149.9 61

Best LS-OPT 893 79.9 89.5 1000

Fig. 19 Rectangular beam under oblique impact (Hunkeler 2013)

Iteration 01 Iteration 10

Iteration 20 Iteration 30

Iteration 40 Iteration 52
Best result

Fig. 20 Topology evolution for case III (HCATWS)

Fig. 21 Best design for case III (LS-OPT)
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Fig. 22 Optimization results for case III: force-displacement curves
for the initial design and the two optima (HCATWS and RSM) and
evolution of the mass objective and displacement constraint for the
HCATWS

The results for the axial impact (case I and II) are summa-
rized in Tables 4 and 5. The higher number of iterations in
case Il is due to the higher constraint. Again, it can be seen
that the HCATWS is much more efficient requiring much

less non-linear crash simulations. The force-displacement
graph and the evolution of the constraint and objective are
given in Fig. 18.

4.3 Load case III — oblique impact, dpx = 80 mm

As third example, an oblique impact is regarded, i.e., the
rigid wall impacting the structure is slightly rotated around
x- and y-directions by 5.7° (see Fig. 19). This angle is
chosen empirically to avoid global buckling (regarded as
infeasible) of the empty cross-section; this means a higher
angle leads to a high number of infeasible designs. The sym-
metry condition is discarded; we have hence 31 independent
wall parameters (which makes a RSM approach more or
less unaffordable). The empty cross-section shows a maxi-
mum displacement of 113.2 mm. Hence dpyax = 80mm is
chosen as displacement constraint for the optimization. The
evolution of the HCATWS optimization is shown in Fig. 20.
The best design (iteration 52) has a mass of 892 g and a
maximum displacement of 79.9 mm.

The corresponding result with LS-OPT is shown in
Fig. 21, which was obtained via the same RSM method but
with a higher number of simulations (in total 1000 non-
linear crash simulations) due to the higher number of design
variables in this case (no symmetry conditions).

Note that only the corner impacted last by the wall is
not reinforced. At this corner a fold appears near the con-
strained end of the beam (see right part of Fig. 21). This
is a consequence of the other corners being stiffer. Here an
undesirable global buckling might be initiated. Robustness
should be included into the optimization, see for exam-
ple (Hunkeler et al. 2013). The results for HCATWS and
LS-OPT are given in Table 6. Note here that the peak
forces not considered in the optimizations differ strongly.
This means that there is a high potential to identify spe-
cial cross-sectional topologies which show advantageous
low peak forces. This is currently under investigation by
the authors and will be published in a separate paper. The
paper at-hand addresses the new HCA method and not so

Fig. 23 Results for case III: Q
thicknesses in [mm] S 1.38 0.71
a (199 Q :
§' 0.41
8 2.08 _1.05
a 1.01
8 2.39 0.46 0.60 2.99 0.80 1.77 2.11
=
|27 0.57  0.70 2.93 1.46
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much physical phenomena. Compare also the corresponding
force-displacement curves (Fig. 22, top).

The results for the design variables for both optimiza-
tions are finally given in Fig. 23. It can be seen that the
design variables differ. Nevertheless, the response parame-
ters regarded in the optimizations (mass and displacement
constraint) are very similar (Table 6).

5 Conclusions

As shown by the examples discussed in the previous section,
the proposed method is able to derive optimal topologies for
thin-walled structures for crashworthiness. The evaluations
are based on fully non-linear crash simulations (explicit
FEM). The geometries are realized with standard shell ele-
ments used for crash analysis; no 3D voxels are used, which
would first require smoothening in a post-processing and
second which cannot represent the typical behavior of thin-
walled structures in crash (folding mechanisms based on the
formation of plastic hinge lines). In addition, the problem of
the original HCA, see Mozumder (2010) and Patel (2007),
that the objective leads to homogeneous energy density in
all voxel elements does not occur here. Hence the authors
believe that this method has a high potential to overcome
some of the existing problems encountered in crash topol-
ogy optimization. Further applications were already studied
in the PhD thesis of the second author (Hunkeler 2013)
and will be extended and published in the near future, see
also Hunkeler et al. (2013). In addition, different space fill-
ing schemes have to be studied. First attempts on including
diagonal wall elements are encouraging. The obtained dif-
ferences in designs originating just from a small change
in impact angle also illustrate the necessity to include
robustness into the studies, e.g., Hunkeler et al. (2013) and
Rayamajhi (2014).
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