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Abstract Metamodels are often used to replace expensive
simulations of engineering problems. When a training set
is given, a series of metamodels can be constructed, and
then there are two strategies to deal with these metamod-
els: (1) picking out the best one with the highest accuracy as
an approximation of the computationally intensive simula-
tion; and (2) combining all of them into an ensemble model.
However, since the choice of approximate model depends
on design of experiments (DOEs), employing of the first
strategy thus increases the risk of adopting an inappropriate
model. Nevertheless, the second strategy also seems not to
be a good choice, since adding redundant metamodels may
lead to loss of accuracy. Therefore, it is a necessary step to
eliminate the redundant metamodels from the set of the can-
didates before constructing the final ensemble. Illuminated
by the method of variable selection widely used in poly-
nomial regression, a metamodel selection method based on
stepwise regression is proposed. In our method, just a sub-
set of n ones (n ≤ p, where p is the number of all of the
candidate metamodels) is used. In addition, a new ensemble
technique is proposed from the view of polynomial regres-
sion in this work. This new ensemble technique, combined
with metamodel selection method, has been evaluated using
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six benchmark problems. The results show that eliminating
the redundant metamodels before constructing the ensem-
ble can provide more ideal prediction accuracy than directly
constructing the ensemble by utilizing all of the candidates.
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1 Introduction

With the continuing updating of CPU and escalation of
memory, the computer processing power has been dras-
tically increased, but the computational cost of complex
high-fidelity engineering simulations often makes it imprac-
tical to exclusively rely on simulation for design optimiza-
tion (Jin et al. 2001). In order to reduce the computational
cost, metamodels are used to replace the expensive sim-
ulation models (Queipo et al. 2005; Viana et al. 2010).
The most popular metamodels include polynomial model,
Kriging (Cressie 1988; Sacks et al. 1989), radial basis func-
tions (RBF) (Fang et al. 2006), support vector regression
(SVR), multivariate adaptive regression splines (MARS)
(Friedman 1991), least interpolating polynomials (De Boor
and Ron 1990), inductive learning (Langley and Simon
1995), and so on.

If only one single predictor is desired, there are two
strategies for us to obtain the final prediction metamodel.
One is the selection of the most accurate metamodel, which
can be done using cross validation (Picard and Cook 1984;
Kohavi et al. 1995); The other is the combination of all of
the candidate metamodels: Zerpa et al. (2005) proposed a
method to determine weight coefficients using prediction
variance; Goel et al. (2007) proposed a heuristic method
for calculating the weight coefficients, which is known as
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PRESS (predicted residual sum of squares) weighted aver-
age metamodel; Acar and Rais-Rohani (2009) proposed a
combining technique with optimized weight coefficients,
which were obtained by solving an optimization problem;
Viana et al. (2009) got the solution of the weight via
Lagrange multipliers, and replaced the real error covariance
matrix C with cross-validation error matrix.

Because the choice of metamodel depends on design of
experiments (DOEs), selection strategy thus increases the
risk of adopting an inappropriate model. Alternatively, since
adding inaccurate metamodels may lead to loss of accuracy,
combination of all the candidate metamodels also seems not
to be a good choice. Therefore, eliminating the redundant
metamodels from the set of the candidates before construct-
ing the ensemble is a necessary step. One of the objectives
in this paper is to insert a step, where the redundant meta-
models are removed, before constructing the final ensemble
of metamodels.

Illuminated by the method of variable selection widely
used in polynomial regression, a metamodel selection
method based on stepwise regression is proposed. In this
method, just a subset of n ones (n ≤ p, where p is the num-
ber of all of the candidate metamodels) is used. Although
a subset of metamodels is also DOE-sensitive (the choice
of a subset depends on DOE), using of a subset of meta-
models appears to be a more “insure strategy” than selecting
one of the “most accurate” metamodel, because there is not
less than one individual metamodel used in the construc-
tion of the ensemble. Nevertheless, selection of the most
accurate metamodel from the candidates only utilizes one
metamodel.

The remainder of this paper is organized as follows. In
the next section, we present the commonly-used ensem-
ble techniques based on cross validation. In Section 3,
the stepwise metamodel selection method is proposed. The
arrangement of the experiment is presented in Section 4.
The presentation and discussion of results for benchmark
functions are displayed in Section 5. And the test for
metamodel-based optimization is taken in Section 6. At last,
a summary of several important conclusions is discussed in
Section 7.

2 Ensemble of metamodels

2.1 BestPRESS

The traditional method of using an ensemble of metamodels
is to select the best metamodel among all of the considered
models. However, once the choice is made, the metamodel
is fixed even though the design of experiments is changed.
If the choice is refined for each new DOE, we can include it
in the strategies for multiple metamodels, where the model

with least error is assigned a weight of one and all others are
assigned zero weight. Just as many works do, we also call
this strategy BestPRESS, which corresponds to the selection
strategy, i.e. the first strategy, mentioned above.

2.2 Heuristic computation of the weight coefficient

Goel et al. (2007) proposed a heuristic method for calcu-
lating the weight coefficients, which is known as PRESS
weighted average metamodel, where the weight coefficients
are computed as:

wi = w∗
i

/
M∑
i=1

w∗
i , w

∗
i = (Ei + αEavg)

β,

Eavg = 1

n

n∑
i=1

Ei, β < 0, α < 1 (1)

where Ei is the PRESS error of the ith metamodel, α, β

are used to control the importance of averaging and indi-
vidual PRESS (predicted error sum of squares) respectively.
Goel et al. (2007) suggested α = 0.05, β = −1. PRESS
is actually the leave-one-out (LOO) cross validation error.
We firstly construct a metamodel by leaving the j th sample
out from training, and then predict the response y

′
j at the

j th sample. Finally, we can get the PRESS,
N∑

j=1
(yj − y

′
j )

2
,

where N is the number of samples and yj is the real
response.

2.3 Computation of the weights for minimum cross
validation (especially LOO cross validation)

The optimal weighted metamodel is obtained by minimizing
the MSE as:

min
w

MSE = wT Cw (2)

s.t. 1T w = 1

Using Lagrange multipliers, the solution is obtained as:

w = C−11

1T C−11
(3)

where C is approximated by the vectors of cross validation
errors, e, especially LOO, which are obtained by using n−1
samples to construct a metamodel and to predict the rest one
sample. The deviation between true value and the predicted
value is LOO cross validation error.

cij � 1

N
eT
i ej (4)

and N is the number of data points and the i and j indicate
different metamodels.
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Table 1 Parameters used in Hartman function with six variables

i aij ci pij

1 10.0 3.0 17.0 3.5 1.7 8.0 1.0 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886

2 0.05 10.0 17.0 0.1 8.0 14.0 1.2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991

3 3.0 3.5 1.7 10.0 17.0 8.0 3.0 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650

4 17.0 8.0 0.05 10.0 0.1 14.0 3.2 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

Furthermore, Viana et al. (2009) enforced the weight pos-
itive by solving (3) using only the diagonal elements of C.
The approach is named OWSdiag .

According to the classification in Zhou et al. (2011), the
ensemble of metamodels can be classified into two groups:
some are based on cross-validation; and the others are based
on prediction mean square error. All of the above-mentioned
ensemble techniques belong to the first group. The second
group is not considered in this paper, because the second
group of ensemble techniques requires additional test sam-
ples. When the number of samples is not large enough,
extracting a part of samples for test from the sample set
means that the number of samples used to construct the
ensemble of metamodels decrease, and thereby the second
group of methods greatly impair the prediction capabilities
of ensemble of metamodels.

3 Stepwise metamodel selection

Just as polynominal regression model, we can propose an
ensemble of model like this:

y = β0 + β1f1(x) + · · · + βpfp(x) + ε (5)

Furthermore, if we replace f1(x) with M1(x), ..., fp(x)
with Mp(x) respectively, then (5) becomes

y = β0 + β1M1(x) + · · · + βpMp(x) + ε (6)

where M1(x), ..., Mp(x) denote individual metamodels.
Therefore, (6) can be regarded as a kind of ensemble of
metamodels.

Table 2 Summary of training and test data used in each benchmark
problem

Benchmark Design Training Design Test

problem variables sets point point

Camelback 2 500 25 441

Hartman 6 500 50 441

ER-9 9 500 55 441

ER-12 12 500 60 441

ER-15 15 500 70 441

DP-15 15 500 70 441

Given a dataset, S{X, Y }, consisting of N input-output
data pairs {(x(1), y(1)), · · · (x(N), y(N))}, where y is the
metamodel response at the design sample point, x, and N

is the total number of metamodel runs, the linear regression
model becomes a N × (p + 1) system of equations:

⎛
⎜⎝

y(1)

...

y(N)

⎞
⎟⎠ =

⎛
⎜⎝
1 M1(x(1)) · · · Mp(x(1))
...

...
. . .

...

1 M1(x(N)) · · · Mp(x(N))

⎞
⎟⎠
⎛
⎜⎜⎜⎝

β0

β1
...

βp

⎞
⎟⎟⎟⎠

+
⎛
⎜⎝

ε(1)

...

ε(N)

⎞
⎟⎠ (7)

where Mi(x(j))(i = 1, ..., p; j = 1, ..., N) is the prediction
value of the ith metamodel at the j th design sample point.
In the process of construction of the ith metamodel, the j th
design sample point is left out from training, and the estab-
lished metamodel is used to predict the value at the omitted
j th design sample point. That is, the samples

{(x(1), y(1)), . . . , (x(j−1), y(j−1)), (x(j+1), y(j+1)), . . . ,

(x(N), y(N))}
can be used to construct the metamodels M1(·), · · · , Mp(·),
and then these metamodels are used respectively
to predict the values at x(j), finally the predictions
M1(x(j)), · · · , Mp(x(j)) are obtained. We do this process
on all of the samples, then we get the whole matrix of
(7). This process is something like LOO cross valida-
tion. Finally, the parameter β = (β0, β1 · · · βp)T can be
calculated using least squares method.

There are two purposes for using (6) in this paper: (1)
We use it to eliminate the redundant metamodels; and (2)
We use it as an ensemble. Nevertheless, if we directly use
the ensemble (6) to predict the unknown design point, the
redundant metamodels would impair the performance of the
ensemble.

Stepwise regression is a systematic method for adding
and removing terms from a multilinear model based on their
statistical significance in a regression. In this paper, we
treat metamodels as terms (or variables) and use the step-
wise regression method to reject the redundant individual
metamodels.
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Before presenting how stepwise regression works to
eliminate the redundant metamodels, we detail the process
of how to treat these individual metamodels as factors:

Firstly, we use the candidate metamodels (Kriging
(denoted by KRG), SVR, RBF and polynomial model
(denoted by PRS (polynomial regression surrogate))) to cal-
culate the LOO cross validation predictions, that is, N − 1
samples are employed to predict the omitted one. Then the
LOO predictions⎧⎪⎨
⎪⎩

y
(1)
RBF
...

y
(N)
RBF

⎫⎪⎬
⎪⎭ ,

⎧⎪⎨
⎪⎩

y
(1)
SV R
...

y
(N)
SV R

⎫⎪⎬
⎪⎭ ,

⎧⎪⎨
⎪⎩

y
(1)
KRG
...

y
(N)
KRG

⎫⎪⎬
⎪⎭ ,

⎧⎪⎨
⎪⎩

y
(1)
PRS
...

y
(N)
PRS

⎫⎪⎬
⎪⎭

for each of the single metamodels at all of the samples are
obtained. Combing with the real responses, we can obtain
the following new samples

(y
(1)
KRG, y

(1)
SV R, y

(1)
RBF , y

(1)
PRS; y(1)) · · · (y

(N)
KRG, y

(N)
SV R, y

(N)
RBF ,

y
(N)
PRS; y(N)),

where (y
(i)
KRG, y

(i)
SV R, y

(i)
RBF , y

(i)
PRS) for i = 1, · · · , N are

regarded as new factors, and y(i) for i = 1, · · · , N are still
regarded as responses.

Furthermore, according to these new samples, we use
Stepwise regression method to eliminate the redundant can-
didate metamodels.

Finally, the remaining metamodels can be used to con-
struct the ensembles according to the techniques such as BP,
EG, OWS, and the regression method proposed in formula
(6).

In this process, we use cross validation RMSE (especially
LOO) to construct ensembles. The LOO cross validation
plays a very important role in eliminating of redundant
metamodels. And we use prediction RMSE to test the per-
formances of these ensembles, which means that we need
extra samples obtained by LHS to test their performances.

Now, let’s go back to how to use Stepwise regression
to eliminate the redundant metamodels. The method begins
with an initial ensemble and then compares the explana-
tory power of incrementally larger and smaller ensembles.
At each step, the p-value of an F-statistic is computed to

test ensembles with and without a potential metamodel. If a
metamodel is not currently in the ensemble, the null hypoth-
esis is that the metamodel would have a zero coefficient
if added to the ensemble. If there is sufficient evidence to
reject the null hypothesis, the metamodel is added to the
ensemble. Conversely, if a metamodel is currently in the
ensemble, the null hypothesis is that the metamodel has a
zero coefficient. If there is insufficient evidence to reject
the null hypothesis, the metamodel is removed from the
ensemble. The method proceeds as follows:

Algorithm 1 Metamodel selection

Step 1. Fit the initial ensemble. The individual metamodel,
which has the smallest LOO cross validation (CV) error, is
adopted as the initial ensemble. Notice that the initial meta-
model may not be included in the final ensemble, because it
could be rejected in the following steps.
Step 2. If any metamodels not in the ensemble have p-values
less than an entrance tolerance (that is, if it is unlikely that
they would have zero coefficients if added to the ensemble),
add the one with the smallest p-value and repeat this step;
otherwise, go to step 3.
Step 3. If any metamodels in the model have p-values
greater than an exit tolerance (that is, if it is unlikely that the
hypothesis of a zero coefficient can be rejected), remove the
one with the largest p-value and go to step 2; otherwise, end.

Depending on the metamodels included in the initial
ensemble and the order in which metamodels are moved in
and out, the method may build different ensembles from the
same set of potential metamodels. The method terminates
when no single step improves the ensemble. There is no
guarantee, however, that a different initial ensemble or a dif-
ferent sequence of steps will not lead to a better fit. In this
sense, stepwise ensembles are locally optimal, but may not
be globally optimal.

Here, there are two comments about the entrance/exit
tolerance and the ordering:

(1) The entrance/exit tolerance is important to deter-
mine which metamodels should be included in the resulting

Table 3 Summary of LOO cross-validation results for the parameters in all of the metamodels, e = 11×n, where n is the number of the dimension
of x

Benchmark problem d in PRS (θ0, lob, upb, regression model) in KRG (C, ε, σ ) in SVR c in RBF

Camelback 3 θ0 = 5e, lob = 0.1e, upb = 1e, regpoly0 C = 1e8, ε = 1e − 5, σ = 3 3

Hartman 4 θ0 = 12e, lob = 0.1e, upb = 10e, regpoly0 C = 10, ε = 0.015, σ = 0.8 1

ER-9 1 θ0 = 12e, lob = 0.1e, upb = 10e, regpoly1 C = 1e8, ε = 0.01, σ = 4 1

ER-12 1 θ0 = 15e, lob = 0.1e, upb = 10e, regpoly1 C = 1e8, ε = 0.01, σ = 4 1

ER-15 1 θ0 = 4e, lob = 0.1e, upb = 10e, regpoly1 C = 1e8, ε = 0.01, σ = 4 1

DP-15 1 θ0 = 4e, lob = 0.1e, upb = 10e, regpoly1 C = 1e8, ε = 0.01, σ = 4 2
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ensemble. The entrance/exit tolerance can be determined by
two ways: one is according to the engineer’s experience,
and the other is using cross validation. The second way is
employed in this paper. Actually, the entrance/exit toler-
ance is affected by both candidate metamodels and data set.
Therefore, the choice of entrance/exit tolerance depends on
the case we confront.

(2) Although the ordering effects which metamodels
should be chosen, the ordering strategy adopted in this paper
is reasonable. Just as done in step 1 of Algorithm 1, the
metamodel with the lowest CV error is chosen as the first
metamodel of the ensemble, and the following ordering
of adding or removing of metamodels is affected by the
first metamodel. This first-metamodel-choosing strategy is
advisable, because the lowest-CV metamodel may be more
suitable than the others.

At last, we generalize the selection strategy to all of
the ensemble techniques, and summarize the procedure of
constructing of ensemble as follows:

Algorithm 2 Construction of ensemble

Step 1. The above-mentioned metamodel selection algo-
rithm (i.e., Algorithm 1), can be used to reject the redundant
individual metamodels, then a subset of metamodels

is obtained.
Step 2. The subset of metamodels can be used to construct
an ensemble. We can employ regression method presented
in (6) or other methodologies, such as presented in (1) or
(3), to construct ensembles. End.

Two contributions in this paper are:

(1) Adopting the stepwise regression as a metamodel
selection method before constructing the final ensem-
ble; and

(2) Proposing (6) as a new method of construction of
ensemble.

4 Experiments

4.1 Benchmark problems

In order to test the proposed techniques in this paper, we
choose the following analytic functions that are commonly
used as benchmark problems in literature (Goel et al. 2007;
Acar and Rais-Rohani 2009; Viana et al. 2009).

1. CamelBack:

y(x1, x2) = (4− 2.1x2
1 + x4

1

3
)x2

1 + x1x2 + (−4+ 4x2
2)x

2
2

(8)

where x1 ∈ [−3, 3], x2 ∈ [−2, 2].
2. Hartman:

y(x) = −
m∑

i=1

ci exp[−
n∑

j=1

aij (xj − pij )
2] (9)

where xi ∈ [0, 1].
The six-variables (m = 6) model of this func-

tion is considered. The values of function parameters
ci, pij , aij for Hartman model are given in Table 1.

3. Extended Rosenbrock(denoted by “ER”):

y(x) =
m−1∑
i=1

[(1 − xi)
2 + 100(xi+1 − x2

i )
2] (10)

where −5 ≤ xi ≤ 10.
The nine-variables (m = 9), twelve-variables (m =

12) and fifteen-variables (m = 15) models of this
function are considered.

4. Dixon-Price(denoted by “DP” ):

y(x) = (x1 − 1)2 +
m∑

i=2

i(2x2
i − xi−1)

2
(11)

where −10 ≤ xi ≤ 10.

Fifteen-variables (m = 15) models of this function is
considered in this paper.

4.2 Design and analysis of computer experiments

As stated before, the quality of fit depends on the train-
ing data (DOE). The performance measures may vary from
DOE to DOE. Thus, for all test problems, a set of 500
different DOEs was used as a way of averaging out the
DOE dependence of the results. They were created by the
MATLAB Latin hypercube function lhsdesign, set with the
maxmin option with 5 iterations. Table 2 shows details about
the data set generated for each test function. Naturally, the
number of points used to fit metamodels increases with
dimensionality.

The accuracies of each individual and ensemble model
for the benchmark problems are measured using root mean
square error (RMSE), average absolute error (AAE), max
absolute error (MAE) and correlation coefficient (denoted
by R). Their definitions are expressed as:

Root mean square error:

RMSE =
√∑nerror

i=1
(yi − ŷ)2

/
nerror

Average absolute error:

AAE =
∑nerror

i=1
|yi − ŷ|

/
nerror

Max absolute error:

MAE = max |yi − ŷ| , i = 1, ......, nerror
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Table 4 Setting of the parameters penter and premove used in func-
tion stepwisefit for benchmark problems

Benchmark problem penter premove

Camelback penter = 0.0001 premove = 0.0002

Hartman penter = 0.01 premove = 0.02

ER-9 penter = 0.01 premove = 0.02

ER-12 penter = 0.01 premove = 0.02

ER-15 penter = 0.01 premove = 0.02

DP-15 penter = 0.05 premove = 0.1

Correlation coefficient:

R(y, ŷ) =
1
V

∫
V

(y − y)(ŷ − ŷ)dv

δ(y)δ(ŷ)

1

V

∫
V

yŷdv =
∑nerror

i=1
yi ŷi

/
nerror ,

y =
∑nerror

i=1
yi

/
nerror ,

δ(y) =
√∑nerror

i=1
(yi − y)2

/
nerror

In these four definitions above, nerror is the number of
samples in the test set, yi is the actual response, y is average
value of actual response, ŷ is the metamodel response, ŷ is
the average value of metamodel response.

Because the experiments are repeated 500 times, the
mean and the coefficient of variation (CV) of R, RMAE,
AAE, and MAE are used to evaluate the prediction accu-
racies of each individual metamodel and ensemble model.

The definition of CV is expressed as:

CV = δ
/

μ

where δ is the standard variance of samples, and μ is the
mean of samples.

4.3 Individual/ensemble techniques

Four individual metamodels (PRS, KRG, SVR, and RBF),
described in “Appendix”, are considered in this paper. These
metamodels are used as candidate metamodels.

All the values of the parameters are set using cross
validation (LOO is adopted in this paper) such that they min-
imize the MSE. There are several parameters whose values
should be determined in the metamodels mentioned above:
the highest order (denoted by d) in PRS, the parameter (c)
in multiquadrics of RBF, (C, ε, σ ) in SVR, and (θ , lob, upb

and regression model) in Kriging, where Gauss function is
adopted as correlation model.

As to the implementation of Kriging, we use the toolbox
proposed by Lophaven et al. (2002), where lob and upb are
defined respectively as lower and upper bounds on θ , which
are clearly described in Lophaven et al. (2002).

Just as said in Lophaven et al. (2002), θ0 is just an initial
guess on underlying θ , and it doesn’t necessarily be required
between lob and upb. If it is larger than upb or smaller than
lob, there is a function to reset it into [lob upb]. And in the
train function dacefit of Lophaven et al. (2002), the optimal
θ -value can be gotten by subfunction boxmin.

The LOO cross-validation results are presented in
Table 3.

In this paper, we focus on the ensemble techniques based
on cross validation: BestPRESS (described in Section 2.1,

Table 5 Mean and CV (in parenthesis) of RMSE (based on 500 DOEs) for different metamodels, the least value in each category is shown in
bold for ease of comparison

Camelback Hartman ER-9 ER-12 ER-15 DP-15

RBF 8.976 (0.378) 0.295 (0.108) 8.06E+03 (1.556) 1.26E+04 (1.209) 1.60E+04 (1.025) 5.71E+04 (0.231)
SVR 8.140 (0.599) 0.365 (0.364) 5.87E+03 (4.214) 8.73E+03 (3.615) 1.20E+04 (2.843) 3.38E+04 (0.718)
KRG 15.805 (0.314) 0.388 (0.268) 7.08E+03 (2.863) 1.15E+04 (2.583) 1.43E+04 (1.476) 2.86E+04 (0.758)
PRS 15.032 (0.306) 0.219 (0.224) 1.03E+04 (1.965) 1.40E+04 (2.119) 1.73E+04 (1.602) 3.25E+04 (0.679)
– – – – – – –
BP 8.971 (0.506) 0.235 (0.238) 5.24E+03 (2.441) 8.01E+03 (1.956) 1.09E+04 (1.555) 2.83E+04 (0.580)
EG 9.704 (0.355) 0.246 (0.129) 5.16E+03 (3.267) 7.84E+03 (2.823) 1.02E+04 (2.036) 2.21E+04 (0.811)
EG* 8.915 (0.499) 0.214 (0.174) 5.02E+03 (3.166) 7.42E+03 (2.761) 9.46E+03 (2.252) 2.06E+04 (0.900)
OWS 10.151 (0.549) 0.214 (0.179) 2.42E+09 (22.192) 2.05E+12 (16.947) 1.04E+05 (11.847) 2.64E+05 (9.092)
OWS* 9.036 (0.517) 0.213 (0.182) 4.75E+03 (2.537) 7.07E+03 (2.083) 8.82E+03 (1.825) 1.91E+04 (0.937)
Od 9.345 (0.387) 0.230 (0.145) 4.97E+03 (3.183) 7.77E+03 (2.736) 1.02E+04 (1.907) 2.35E+04 (0.721)
Od* 8.872 (0.500) 0.212 (0.178) 4.91E+03 (2.942) 7.38E+03 (2.627) 9.46E+03 (2.060) 2.15E+04 (0.846)
Reg 10.572 (0.463) 0.298 (0.114) 2.83E+16 (22.290) 1.00E+15 (11.166) 2.48E+15 (12.364) 3.84E+15 (20.826)
Reg* 10.080 (0.482) 0.213 (0.179) 4.60e+03 (3.031) 6.82e+03 (4.126) 8.04e+03 (4.202) 1.79e+04 (0.987)

The least values in ensemble models are shown in bold
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heuristic method (described in Section 2.2), optimal
weighted metamodel (OWS) (described in Section 2.3),
and diagonal optimal weighted metamodel (OWSdiag)
(described in Section 2.3). Just as the denotation in Zhou
et al. (2011): BestPRESS is denoted by BP; The heuristic
method of Goel et al. (2007) is labeled as EG; OWSdiag

in Viana et al. (2009) is denoted by Od; OWS remains
unchanged.

Although BestPRESS is classified into ensemble tech-
nique, it also can be regarded as a kind of stand-alone
metamodel, because the best metamodel varies with DOE,
and actually there is only one metamodel used in the con-
struction of ensemble. Except for BestPRESS, the other
ensemble techniques, such as heuristic method (Goel et al.
2007), OWS and OWSdiag (Viana et al. 2009), can be con-
structed after eliminating the redundant metamodels using
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Fig. 1 RMSE for different metamodels. (a: Camelback, b: Hartman, c: ER-9, d: ER-12, e: ER-15, f: DP-15)
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the method proposed in this paper. The eliminated ensem-
bles of EG, Od and OWS are denoted by EG*, Od* and
OWS* respectively.

In the process of rejecting of the redundant individual
metamodels, the function stepwisefit in MATLAB is used.
The parameters penter and premove, which are employed
in the step 2 and step 3 of Algorithm 1 in Section 3, are
presented in Table 4. They are used to determine which
metamodels should be added and which ones should be
removed.

5 Results and analysis of experiments

In this paper, we focus on the comparison among the ensem-
bles (including BestPRESS), without comparing these
ensembles with the individual metamodels (PRS, KRG,
SVR, and RBF). Actually, we don’t know which individual
metamodel can accurately approximate the underlying rela-
tionship in practice, it is thus inappropriate to use a same
individual metamodel in all of the DOEs, unless we know
the underlying relationship. If we have to use an individ-
ual metamodel to approximate the underlying relationship,
we often adopt BestPRESS to get the best individual meta-
model according to a specific DOE, and BestPRESS varies
from DOE to DOE. Therefore, we only need to compare
ensembles with BestPRESS rather than with the individual
metamodels. Although we don’t think that it is necessary to
compare the ensembles with the individual metamodels, we
still want to present the fact that some of the ensembles even
outperform the individual metamodels, which compose the
ensembles, in many cases. Therefore, we still present the
prediction errors of ensembles and individual metamodels

in a same table/figure, but we only compare the prediction
errors among ensembles. In order to distinguish ensem-
bles from individual metamodels, we separate ensembles
from individual metamodels with the symbol “–” in these
tables.

The results of different benchmark problems are shown
with the help of boxplots (the description of boxplot is pro-
vided in the “Appendix”), and the means and CVs of the
error metrics are presented with several tables.

5.1 RMSE

The RMSEs for all of the benchmark functions using indi-
vidual metamodels and ensembles are presented in Table 5,
where we just compare the performance among the ensem-
bles, and the same is done in the following tables in this
paper. From this table we can see: 1) the means of RMSEs
for EG*, OWS*, Od* and Reg* are smaller than those for
EG, OWS, Od and Reg respectively in all of the benchmark
problems (Camelback, Hartman, ER-9, ER-12, ER-15 and
DP-15), which indicates that it is necessary to get rid of the
redundant individual metamodels from the set of candidate
ones before constructing the ensemble of metamodels. 2)
Od* has better performance in low dimension benchmark
problems: Camelback, Hartman; nevertheless, Reg* has the
best performance among all of the metamodels (including
ensembles and even individual metamodels) in high dimen-
sion benchmark problems: ER-9, ER-12, ER-15 and DP-15.
3) In high dimension benchmark problems ( ER-9, ER-12,
ER-15 and DP-15), OWS and Reg have apparently larger
RMSEs than the other ensembles and individual metamod-
els; OWS* and Reg*, however, sharply reduce the errors
after rejecting the redundant individual metamodels.

Table 6 Mean and CV of AAE for different metamodels

Camelback Hartman ER-9 ER-12 ER-15 DP-15

RBF 4.979 (0.362) 0.228 (0.105) 5.98E+03 (1.606) 9.61E+03 (1.256) 1.24E+04 (1.056) 4.41E+04 (0.242)

SVR 3.929 (0.590) 0.283 (0.386) 4.51E+03 (4.359) 6.64E+03 (3.808) 9.08E+03 (3.022) 2.53E+04 (0.731)

KRG 9.535 (0.316) 0.297 (0.311) 5.53E+03 (2.906) 9.15E+03 (2.626) 1.14E+04 (1.453) 2.28E+04 (0.757)

PRS 11.127 (0.306) 0.169 (0.218) 8.25E+03 (1.945) 1.12E+04 (2.134) 1.39E+04 (1.587) 2.60E+04 (0.676)

– – – – – – –

BP 4.695 (0.508) 0.182 (0.234) 3.99E+03 (2.450) 6.08E+03 (2.032) 8.31E+03 (1.620) 2.23E+04 (0.595)

EG 5.619 (0.346) 0.189 (0.130) 3.97E+03 (3.345) 6.07E+03 (2.948) 7.90E+03 (2.073) 1.73E+04 (0.824)

EG* 4.643 (0.492) 0.164 (0.175) 3.83E+03 (3.228) 5.72E+03 (2.890) 7.34E+03 (2.294) 1.62E+04 (0.900)

OWS 5.645 (0.507) 0.164 (0.180) 1.29E+08 (22.142) 2.03E+12 (16.948) 2.29E+04 (4.664) 2.19E+05 (10.406)

OWS* 4.674 (0.501) 0.164 (0.181) 3.61E+03 (2.553) 5.44E+03 (2.154) 6.91E+03 (1.887) 1.52E+04 (0.932)

Od 5.252 (0.376) 0.176 (0.144) 3.80E+03 (3.258) 5.99E+03 (2.860) 7.88E+03 (1.948) 1.85E+04 (0.735)

Od* 4.611 (0.491) 0.163 (0.178) 3.74E+03 (2.987) 5.69E+03 (2.732) 7.34E+03 (2.097) 1.70E+04 (0.843)

Reg 6.560 (0.410) 0.230 (0.111) 2.79E+16 (22.291) 9.85E+14 (11.145) 2.45E+15 (12.374) 3.82E+15 (20.823)

Reg* 5.931 (0.440) 0.165 (0.179) 3.60e+03 (2.969) 5.15e+03 (3.301) 6.35e+03 (4.086) 1.43e+04 (0.979)

The least values in ensemble models are shown in bold
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The intuitional comparison results are presented in Fig. 1.
As there are very large outliers in the boxplots of OWS and
Reg within subfigures of C, D, E and F (C: ER-9, D: ER-
12, E: ER-15, F: DP-15), we constrain these subfigures into
[0 5 × 105] (such treatment is also adopted in AAE and
MAE) for the sake of ease of observing, so we can’t observe
the outliers larger than 5× 105. From Fig. 1 we can observe
that OWS and Reg have two very long tails in C, D, E and

F, which indicates that OWS and Reg have large variations
in high dimension problems. Nevertheless, OWS* and Reg*
greatly shorten their tails.

5.2 AAE

Table 6 shows the AAEs using ensembles and individual
metamodels on all of the benchmark problems. From this
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Fig. 2 AAE for different metamodels. (a: Camelback, b: Hartman, c: ER-9, d: ER-12, e: ER-15, f: DP-15)
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table we find that EG*, OWS*, Od* and Reg* have better
performance than EG, OWS, Od and Reg respectively in all
of the benchmark problems. And we also can observe that
Reg* has the best performance among all of the ensembles,
especially in high dimension problems (refer to ER-9, ER-
12, ER-15 and DP-15 in this paper), while Od* is the best
ensemble in low dimension problems (refer to Camelback
and Hartman in this paper). The corresponding comparison
results are shown in Fig. 2. These results are similar to those
presented in RMSE.

5.3 MAE

Table 7 and Fig. 3 show the MAEs of different meta-
models for different test functions. From this table and
figure we find that except for Camelback, EG*, OWS*,
Od* and Reg* still have better performance than EG,
OWS, Od and Reg respectively. And Reg* is still the best
ensemble in high dimension problems. Furthermore, this
table and figure illustrate that rejecting the redundant indi-
vidual metamodels is still necessary for getting smaller
MAEs.

5.4 Correlation coefficient

The correlation coefficients for different benchmark func-
tions are shown in Table 8 and Fig. 4, from which we can
see: 1) Although OWS* has similar correlation coefficient
to Reg* in ER-9, it has the best performance in high dimen-
sion problems. 2)Except for Camelback, Od* still has better
performance than the other ensembles in low dimension

problems. These results demonstrate that we should reject
the redundant individual metamodels before constructing
the final ensemble.

5.5 Discussions

As for RMSE, AAE, MAE and correlation coefficient, we
find that ensemble Reg and OWS have unsatisfying results
in ER-9, ER-12, ER-15 and DP-15. Why those happen?

On the one hand, in high dimension benchmark prob-
lems, some of individual metamodels may not be suitable
for these problems. Therefore, these unsuitable individual
metamodels may impair the performances of the ensem-
bles, which can explain to a certain extend why Reg and
OWS perform badly in these problems. After eliminating
those improper metamodels, Reg* and OWS* enhance their
performances.

On the other hand, as for Reg, since it doesn’t have a
constrain,

p∑
i=1

βi = 1

if these coefficients are not proper, the prediction values
obtained with the regression model

y = β0 + β1M1(x) + · · · + βpMp(x)

maybe largely deviate from the true values, especially in
high-dimensional problems, which perhaps is a drawback
of the regression model. But after eliminating the redundant
metamodels with stepwise method, the regression model

Table 7 Mean and CV of MAE for different metamodels

Camelback Hartman ER-9 ER-12 ER-15 DP-15

RBF 51.708 (0.403) 1.030 (0.166) 3.57E+04 (1.435) 5.13E+04 (0.880) 6.48E+04 (1.040) 2.28E+05 (0.256)

SVR 56.552 (0.656) 1.304 (0.326) 2.44E+04 (3.599) 3.90E+04 (3.111) 5.29E+04 (2.113) 1.52E+05 (0.650)

KRG 83.466 (0.339) 1.417 (0.174) 2.61E+04 (2.473) 3.98E+04 (2.101) 5.07E+04 (1.829) 9.67E+04 (0.804)

PRS 65.176 (0.348) 0.829 (0.280) 3.41E+04 (1.896) 4.57E+04 (1.827) 5.78E+04 (1.849) 1.06E+05 (0.745)

– – – – – – –

BP 56.545 (0.574) 0.873 (0.272) 2.21E+04 (2.374) 3.47E+04 (1.375) 4.75E+04 (1.461) 1.03E+05 (0.545)

EG 56.162 (0.397) 0.895 (0.173) 2.19E+04 (2.555) 3.25E+04 (1.994) 4.27E+04 (2.041) 8.60E+04 (0.753)

EG* 56.724 (0.578) 0.786 (0.230) 2.16E+04 (2.967) 3.08E+04 (2.077) 3.90E+04 (2.226) 7.50E+04 (0.856)

OWS 63.244 (0.668) 0.794 (0.228) 5.04E+10 (22.206) 2.85E+12 (16.825) 1.84E+06 (14.035) 1.29E+06 (12.164)

OWS* 58.080 (0.614) 0.789 (0.242) 2.03E+04 (2.153) 2.98E+04 (1.579) 3.46E+04 (1.580) 6.45E+04 (0.902)

Od 55.609 (0.438) 0.838 (0.188) 2.14E+04 (2.544) 3.27E+04 (1.896) 4.34E+04 (1.911) 9.03E+04 (0.670)

Od* 56.520 (0.581) 0.780 (0.235) 2.13E+04 (2.789) 3.08E+04 (1.902) 3.91E+04 (2.042) 7.78E+04 (0.803)

Reg 60.389 (0.579) 1.046 (0.180) 3.89E+16 (22.277) 1.48E+15 (11.292) 3.38E+15 (12.067) 5.00E+15 (20.872)

Reg* 60.969 (0.597) 0.786 (0.239) 1.80e+04 (3.301) 2.91e+04 (6.585) 2.95e+04 (5.421) 5.83e+04 (0.969)

The least values in ensemble models are shown in bold
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Fig. 3 MAE for different metamodels. (a: Camelback, b: Hartman, c: ER-9, d: ER-12, e: ER-15, f: DP-15)

can significantly improve its performance. Therefore, using
stepwise method to get rid of the redundant metamodels
is a necessary and efficient step not only in construc-
tion of regression model but also in any other ensemble
construction techniques.

Next, let’s analyze the coefficients of variation for
these ensembles. After carefully examining the results in
Tables 5–8, we find that Reg* has larger coefficients of
variation than the other ensembles (it’s still better than
Reg), especially in high dimension problems, which means
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Table 8 Mean and CV of correlation coefficient between actual and predicted response for different metamodels

Camelback Hartman ER-9 ER-12 ER-15 DP-15

RBF 0.8618 (0.2895) 0.9669 (0.0077) 0.9926 (0.0052) 0.9880 (0.0066) 0.9864 (0.0065) 0.9806 (0.0141)
SVR 0.8650 (0.2981) 0.9482 (0.0555) 0.9955 (0.0231) 0.9937 (0.0292) 0.9914 (0.0322) 0.9927 (0.0434)
KRG 0.7160 (0.2974) 0.9335 (0.1146) 0.9925 (0.0178) 0.9881 (0.0197) 0.9856 (0.0136) 0.9931 (0.0469)
PRS 0.7372 (0.2916) 0.9820 (0.0087) 0.9853 (0.0186) 0.9828 (0.0199) 0.9796 (0.0200) 0.9918 (0.0470)
BP 0.8556 (0.2967) 0.9788 (0.0107) 0.9965 (0.0057) 0.9949 (0.0062) 0.9935 (0.0065) 0.9948 (0.0137)
– – – – – – –
EG 0.8512 (0.2901) 0.9776 (0.0063) 0.9967 (0.0096) 0.9952 (0.0126) 0.9940 (0.0092) 0.9963 (0.0293)
EG* 0.8568 (0.2965) 0.9828 (0.0066) 0.9971 (0.0058) 0.9962 (0.0103) 0.9957 (0.0085) 0.9961 (0.0431)
OWS 0.8484 (0.3015) 0.9828 (0.0066) 0.9873 (0.0988) 0.9731 (0.1858) 0.9889 (0.0801) 0.9875 (0.1099)
OWS* 0.8567 (0.2970) 0.9829 (0.0068) 0.9972 (0.0054) 0.9965 (0.0053) 0.9962 (0.0056) 0.9963 (0.0431)
Od 0.8554 (0.2910) 0.9802 (0.0061) 0.9970 (0.0082) 0.9953 (0.0114) 0.9941 (0.0080) 0.9960 (0.0243)
Od* 0.8574 (0.2964) 0.9830 (0.0067) 0.9971 (0.0056) 0.9961 (0.0092) 0.9955 (0.0072) 0.9957 (0.0431)
Reg 0.8599 (0.2919) 0.9666 (0.0081) 0.9931 (0.0885) 0.9748 (0.2029) 0.9669 (0.2435) 0.9830 (0.1647)
Reg* 0.8565 (0.2971) 0.9828 (0.0069) 0.9972 (0.0071) 0.9960 (0.0198) 0.9953 (0.0339) 0.9961 (0.0465)

The largest values in ensemble models are shown in bold

Fig. 4 Correlations between
actual and predicted response
for different metamodels. (a:
Camelback, b: Hartman, c:
ER-9, d: ER-12, e: ER-15, f:
DP-15)
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Table 9 The printing process data

i x1 x1 x1 yi1 yi2 yi3 ȳi si

1 −1 −1 −1 34 10 28 24.0 12.5

2 0 −1 −1 115 116 130 120.3 8.4

3 1 −1 −1 192 186 263 213.7 42.8

4 −1 0 −1 82 88 88 86.0 3.7

5 0 0 −1 44 178 188 136.7 80.4

6 1 0 −1 322 350 350 340.7 16.2

7 −1 1 −1 141 110 86 112.3 27.6

8 0 1 −1 259 251 259 256.3 4.6

9 1 1 −1 290 280 245 271.7 23.6

10 −1 −1 0 81 81 81 81.0 0.0

11 0 −1 0 90 122 93 101.7 17.7

12 1 −1 0 319 376 376 357.0 32.9

13 −1 0 0 180 180 154 171.3 15.0

14 0 0 0 372 372 372 372.0 0.0

15 1 0 0 541 568 396 501.7 95.5

16 −1 1 0 288 192 312 264.0 63.5

17 0 1 0 432 336 513 427.0 88.6

18 1 1 0 713 725 754 730.7 21.1

19 −1 −1 1 364 99 199 220.7 133.8

20 0 −1 1 232 221 266 239.7 23.5

21 1 −1 1 408 415 443 422.0 18.5

22 −1 0 1 182 233 182 199.0 29.4

23 0 0 1 507 515 434 485.3 44.6

24 1 0 1 846 535 640 673.7 158.2

25 −1 1 1 236 126 168 176.7 55.5

26 0 1 1 660 440 403 501.0 138.9

27 1 1 1 878 991 1161 1010.0 142.5

Reg* is not very “robust” in high dimension problems
compared with the other ensembles, but its average perfor-
mance is still good and its coefficients of variation are still
nice in low dimension problems. In addition, the coeffi-
cients of variation of EG*, OWS* and Od* are similar to
those of EG, OWS and Od respectively, and even smaller
in some cases. Therefore, the values of these coefficients
of variation for ensembles with stepwise, on the whole,
are acceptable.

Table 10 Setting of the parameters penter and premove used in
function stepwisefit for Mean and Standard deviation data

Data penter premove

Mean data penter = 0.1 premove = 0.2

Std. Dev. data penter = 0.2 premove = 0.3

6 Metamodel-based optimization

After presenting the efficiency of these ensemble models
using several benchmark problems, we will take a real-
life example, printing ink, to furthermore illustrate their
performance in metamodel-based optimization problem.

6.1 The printing ink example

The print ink example is widely used in the works of Box
and Draper (1987), Vining and Myers (1990), Del Castillo
and Montgomery (1993), Lin and Tu (1995), Copeland and
Nelson (1996), Vining and Bohn (1998), Kksoy and Yalci-
noz (2005), Shaibu and Cho (2009), and Zhou et al. (2012).
The purpose of the experiment was to study the effect of
speed, x1, pressure, x2, and distance, x3, upon a print-
ing machine’s ability to apply coloring inks upon package
labels. The experiment is 33(n = 27) complete factorial
with three runs (m = 3) at each design point for a total
of 81 runs. These papers all have considered the situation
where we wish to minimize the process variance around a
target value of 500 for the response. Table 9 summarizes
the data. Following the traditional practice in literature, this
table reports the specific settings for the factors in terms of
the standard −1 to 1 metric.

In this problem, the optimization model is

min
x

MSE(y) = E[(y − ζ )2] = Dev2(y) + (E(y) − ζ )2.

s.t.1 ≤ x ≤ 1 (12)

where, E(y) denotes the mean response, and Dev(y)

denotes the standard deviation response, ζ represents a
target value for the response.

After approximating E(y) and Dev(y) using the ensem-
ble of metamodels, we can get the metamodel-based opti-
mization problem:

min
x

ˆMSE(y) = ˆDev
2
(y) + (Ê(y) − ζ )2.

s.t.1 ≤ x ≤ 1 (13)

In this experiment, the p-values in stepwise method are
set by cross validation and presented in Table 10.

6.2 Optimization results

In this part, the standard optimization function f mincon in
MATLAB is employed. Table 11 summarizes the estimated
MSEs and the recommended settings for all of the ensemble
models mentioned above. From this table, we can see that all
of the ensemble models with stepwise method have the bet-
ter performance than those without it in terms of MSE and
deviation. In this experiment, we hope the objective func-
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Table 11 Comparing solution
to the MSE optimization (19) Metamodels Optimal setting x∗ MSE Mean μ̂(x∗) Std. Dev. σ̂ (x∗)

EG (1.0000, 1.0000, −0.5018) 69.1690 500.3182 8.3107

EG∗ (1.0000, 1.0000, −0.4552) 66.2104 500.2104 8.1408

OWS (Zhou et al. 2012) (1.0000, 1.0000, −0.4793) 81.4121 500.3119 9.0175

OWS∗ (0.9393, 1.0000, −0.4975) 80.8226 500.2356 8.9870

Od (0.9959, 1.0000, −0.5075) 79.8354 500.3678 8.9275

Od∗ (0.9965, 1.0000, −0.4584) 67.1614 500.2144 8.1924

Reg (1.0000, 1.0000, −0.4455) 1.205e3 501.4542 34.6877

Reg∗ (0.9694, 1.0000, −0.4549) 1.036e3 500.3230 32.1883

tion (MSE) and the deviation are as small as possible. We
also can find that regression model is not very well, but Reg∗
is still better than Reg, which also indicates that using step-
wise to reduce the redundant metamodels is a reasonable
strategy.

7 Conclusion

Illuminated by variable selection method widely used in
polynomial regression, we treat metamodels as a variables
in polynomial regression, and then propose a methodology
of constructing of ensemble from the view of polynomial
regression. In addition, considering that including redundant
metamodels could impair the prediction accuracy of ensem-
ble, we adopt the stepwise regression method to reject the
redundant individual metamodels before constructing the
final ensemble of metamodels.

After examining the experiment results, we have the
following findings:

1. Stepwise regressionmethod is an useful automatic strat-
egy to reject the inappropriate individual metamodels.
This strategy can automatically identify howmany indi-
vidual metamodels should be used to construct the
final ensemble of metamodels according to a spec-
ify DOE. In the existing methods of constructing of
ensembles, the number of individual metamodels is
determined before-hand; Nevertheless, the method pro-
posed in this paper doesn’t need to do that. In fact, we
have no idea about how many metamodels are fit for
the design problems. In other words, it is unknown that
how many metamodels should be added to the ensem-
ble. The experiment results show that getting rid of the
redundant individual metamodels before constructing
the ensemble can greatly enhance the performance of
ensemble.

2. After rejecting the redundant metamodels, using the
construction method presented in formula (6) from the
view of polynomial regression is an optional strategy,
especially in high dimension problems, but it is still

necessary to be careful of the “robustness” (or stability)
in spite of its good average performance.
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Appendix A: Several metamodeling techniques

Here, there are four metamodeling techniques (PRS, RBF,
Kriging, SVR) are considered.

A.1 PRS

For PRS, the highest order is allowed to be 4 in this paper,
but the used order in a specific problem is determined by the
selected sample set. When the highest order of a polynomial
model is 4, it can be expressed as:

F̃ (x) = a0 +
N∑

i=1

bixi +
∑

i,j (i≤j)

cixixj +
N∑

i=1

dix
3
i +

N∑
i=1

eix
4
i

(14)

where F̃ is the response surface approximation of the actual
response function, N is the number of variables in the input
vector x, and a, b, c, d, e are the unknown coefficients to
be determined by the least squares technique.

Notice that 3rd and 4th order models in polynomial
model do not have any mixed polynomial terms (interac-
tions) of order 3 and 4. Only pure cubic and quadratic terms
are included to reduce the amount of data required for model
construction. A lower order model (Linear and Quadratic)
includes only lower order polynomial terms (only linear and
quadratic terms correspondingly).
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A.2 RBF

The general form of the RBF approximation can be
expressed as:

f (x) =
m∑

i=1

βiϕ(‖x − xi‖) (15)

Powell (1987) consider several forms for the basis func-
tion ϕ(·):
1. ϕ(r) = e

(−r2
/
c2
)
Gaussian

2. ϕ(r) = (r2 + c2)
1
2 Multiquadrics

3. ϕ(r) = (r2 + c2)− 1
2 Reciprocal Multi-quadrics

4. ϕ(r) = (
r
/
c2
)
log (r /c ) Thin-Plate Spline

5. ϕ(r) = 1
1+er/c Logistic

where c ≥ 0. Particularly, the multi-quadratic RBF form
has been applied by Meckesheimer et al. (2002, 2001) to
construct an approximation based on the Euclidean distance
of the form:

ϕ(x) = β0 +
n∑

i=1

β ‖x − xi‖ (16)

where ‖·‖ represents the Euclidean norm. Replacing ϕ(x)

with the vector of response observations, y yields a linear
system of n equations and n variables, which is used to
solve β. As described above, this technique can be viewed
as an interpolating process. RBFmetamodels have produced
good fits to arbitrary contours of both deterministic and
stochastic responses (Powell 1987). Different RBF forms
were compared by McDonald et al. (2000) on a hydro code
simulation, and the author found that the Gaussian and the
multi-quadratic RBF forms performed best generally.

A.3 Kriging

For computer experiments, Kriging is viewed from a
Bayesian perspective where the response is regarded as a
realization of a stationary random process. The general form
of this model is expressed as:

Y (x) =
k∑

i=1

βifi(x) + Z(x) (17)

which is comprised of the linear model component of k

specified function fi(x) (i.e., the expression of the function
is given, which is defined below) with unknown coefficients
βi(i = 1, ..., k), and Z(·) is a stochastic process, commonly
assumed to be Gaussian, with mean zero and covariance

Cov(Z(w), Z(u)) = σ 2R(w, u)

= σ 2 exp

{
−θ

d∑
i=1

(wi − ui)
2

}
, (18)

where σ 2 is the process variance; parameter θ , which is
somewhat like the parameter c in Gaussian basis function of
RBF, is estimated using maximum likelihood.

For the set S = {s1, · · · , sn}, we have the corresponding
outputs ys = {y(s1), · · · , y(sn)}T . Considering the linear
predictor

ŷ(x) = cT ys (19)

with c = c(x) ∈ Rn. Note that the members of the weight
vector c are not constants (whereas β in formula (17) are)
but decrease with the distance between the input x to be
predicted and the sampled points S = {s1, · · · , sn}; this
S = {s1, · · · , sn} determines the simulation output vector
ys = {y(s1), · · · , y(sn)}T . Here, we replace ys with the ran-
dom vector Ys = {Y (s1), · · · , Y (sn)}T . In order to keep the
predictor unbiased, we demand

E(cT Ys) = E(Y(x)), (20)

and under this condition minimize

MSE [̂y(x)] = E[(cT Ys − Y (x))2]. (21)

And then, we have

E[(cT Ys − Y (x))2] = (cT Fβ − fTx β)2

+[cT − 1]
[
V vx
vT
x σ 2

](
c

−1

)
, (22)

where

fx = (f1(x), · · · , fk(x))T , (23)

V = (Cov(Y (si ), Y (sj )))n×n, (24)

vx = (v(s1, x), · · · , v(sn, x))T , (25)

F = (fj (si ))n×k. (26)

Under the constraint (4), we get

c = A21fx + A22vx, (27)

where

A21 = V−1F(FT V−1F)−1

and

A22 = V−1 − V−1F(FT V−1F)−1FT V−1.

Then the MSE-optimal predictor (i.e., the best linear unbi-
ased predictor (BLUP)) is

ŷ(x) = fTx β̂ + vT
x γ̂ , (28)

where β̂ = (FT V−1F)−1FT V−1ys and γ̂ = vT
x V

−1(ys −
Fβ̂). Function fi(x) in (1) is usually defined with polyno-
mials of orders 0, 1, and 2. More specific, with xj denoting
the j th component of x,
Constant, p = 1:

f1(x) = 1 (29)
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Linear, p = n + 1:

f1(x) = 1, f2(x) = x1, ..., fn+1(x) = xn, (30)

Quadratic, p = 1
2 (n + 1)(n + 2):

f1(x) = 1

f2(x) = x1, · · · , fn+1(x) = xn

fn+2(x) = x2
1 , · · · , f2n+1(x) = x1xn

f2n+2(x) = x2
2 , · · · , f3n(x) = x2xn

· · · · · · fp(x) = x2
n (31)

The regpoly0 and regpoly1 corresponds to (29) and (30)
respectively in MATLAB toolbox developed by Lophaven
et al. (2002).

A.4 ε-SVR

Given the data set {(x1, y1), ......, (xl , yl)}(where l denotes
the number of samples) and the kernel matrix Kij =
K(xi,xj), and if the loss function in SVR is ε-insensitive loss
function

Lε (f (x) − y) =
{
0 , |f (x) − y| < ε

|f (x) − y| − ε , other
, (32)

then the ε-SVR is written as:

min 
(w, ξ) = 1

2
wT w + C

l∑
i=1

(
ξ−
i + ξ+

i

)
(33)

s.t.

⎧⎨
⎩

f (xi ) − yi ≤ ε + ξ+
i

yi − f (xi ) ≤ ε + ξ−
i

ξ−
i , ξ+

i ≥ 0,
, i = 1, · · · l.

The Lagrange dual model of the above model is expressed
as:

min
α(∗)

1

2

l∑
i,j=1

(
αi − α∗

i

) (
αj − α∗

j

)
K
(
xi , xj

)

−
l∑

i=1

(
αi − α∗

i

)
yi + ε

l∑
i=1

(
αi + α∗

i

)
(34)

s.t.

⎧⎨
⎩
0 ≤ αi, α

∗
i ≤ C , i = 1, · · · , l,

l∑
i=1

(
αi − α∗

i

) = 0.
,

where K (·, ·) is kernel function. After being worked out the
parameter α(∗), the regression function f (x) can be gotten.

The kernel function should be a Mercer kernel which has
to be continuous, symmetric, and positive definite. Com-
monly adopted choices for K (·, ·) (Smola and Schlkopf
2004) are

1. k(xi , xj ) = (xi · xj ) (linear)
2. k(xi , xj ) = (xi · xj )

m (m degree homogeneous polyno-
mial)

3. k(xi , xj ) = (xi · xj + c)m (m degree inhomogeneous
polynomial)

4. k(xi , xj ) = exp(−‖xi−xj‖2

2σ 2 ) (Gaussian)

5. k(xi , xj ) = exp(−
l∑

k=1
θ

∥∥∥xk
i
− xk

j

∥∥∥pk

)) (Kriging)

No matter which form of k(·, ·) is chosen, the technique of
finding the support vector remains the same. In all of the
kernel functions mentioned above, Gaussian kernel is the
most popular kernel function, which is used in this paper.

Appendix B: Box plots

In a box plot, the box is composed of lower quartile (25 %),
median (50 %), and upper quartile (75 %) values. Besides
the box, there are two lines extended from each end of
the box, whose upper limit and lower limit are defined as
follows:

low limit = max{Q1 − 1.5IQR,Xminimum} (35)

up limit = min{Q3 + 1.5IQR,Xmaximum} (36)

where Q1 is the value of the line at lower quartile, Q3 is
the value of the line at upper quartile, IQR = Q3 − Q1,
Xminimum and Xmaximum are the minimum and maximum
value of the data. Outliers are data with values beyond the
ends of the lines by placing a “+” sign for each point.
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