
Struct Multidisc Optim (2016) 54:843–855
DOI 10.1007/s00158-016-1440-3

RESEARCH PAPER

Adaptive infill sampling criterion for multi-fidelity
optimization based on Gappy-POD
Application to the flight domain study of a transonic airfoil

Tariq Benamara1,2,3 · Piotr Breitkopf1 · Ingrid Lepot2 ·Caroline Sainvitu2

Received: 1 September 2015 / Revised: 5 February 2016 / Accepted: 18 March 2016 / Published online: 20 May 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract This paper presents a reformulation of the
“Gappy Proper Orthogonal Decomposition” (Gappy-POD)
multi-fidelity modeling approach and proposes an enrich-
ment criterion associated with an adaptive infill algorithm.
The latter is here applied to the study of the flight domain
of the RAE-2822 transonic airfoil at two different levels of
accuracy to demonstrate its ability to detect areas in a two-
dimensional design space where the surrogate model needs
improvement to better drive the optimization process.

Keywords Multi-fidelity modeling · Surrogate models ·
Proper Orthogonal Decomposition · Infill criterion

1 Introduction

Multiple levels of simulation are usually available to
describe the behaviour of industrial systems. These lev-
els are associated with models ranging from an immediate
analytical solution to full-field finite element computations
requiring high performance computing ressources. Gener-
ally, the more computationally expensive the more accurate
is the solution. The aim of multi-fidelity modeling is to
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leverage a low-fidelity information to predict a high-fidelity
representation of the physical phenomena under study.

The design process being intrinsically multi-scale, multi-
fidelity, multi-disciplinary (Tromme et al. 2013); the earlier
the scales, fidelities and disciplines are all integrated in the
process, the better the technical solution can be (March
and Willcox 2012a; Keane 2003). The “data-fusion” is a
practical way to take advantage of multi-fidelity computa-
tions to build better surrogates (Forrester et al. 2008) and is
often referred to as corrective approach as in scaling meth-
ods (Keane and Prasanth 2005, Section 6.1). The so-called
“co-Kriging” multi-fidelity surrogates are widely applied
to Multidisciplinary Design Optimization (MDO) (Kennedy
and O’Hagan 2000; Forrester et al. 2008; Forrester and
Keane 2009; Kuya et al. 2011; Toal and Keane 2011; Huang
et al. 2013; March and Willcox 2012a; Han et al. 2010).
They allow the enhancement of sparse high-fidelity infor-
mation with cheaper low-fidelity data or the gradient of the
modeled function (Han et al. 2010, 2013). The coupling of
local scaling models with trust-region methods (Conn et al.
2000, Chapter 6-7) insures the local convergence of both
unconstrained (March and Willcox 2012b) and constrained
(March and Willcox 2012a) optimizations.

The main drawback of scalar multi-fidelity surrogates
is the possible loss of correlation between high- and low-
fidelity models through the integration of scalar objectives
and/or constraints of the optimization problem. To circum-
vent this problem, the Shape-Preserving Response Pre-
diction (SPRP) Koziel and Leifsson (2012); Leifsson and
Koziel (2015) applies the vectorial modifications observed
on a low-fidelity response to an equivalent high-fidelity ref-
erence over a reference neighbourhood. Another solution
proposed in Toal (2014) introduces the “Proper Orthogo-
nal Decomposition” (POD) of the entire aerodynamic field
modeled at two different levels of fidelity. The “Gappy
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-POD” technique (Everson and Sirovich 1995) is then used
to predict the missing high-fidelity from the low-fidelity
field. The predictive ability and the insight available in POD
based models are stressed in (Coelho et al. 2008) where a
comparison with scalar models is provided.

This paper further investigates the use of Gappy-POD
for multi-fidelity modeling. In order to integrate this type
of models in an online optimization scheme, an enrichment
criterion, based on the error of the available low-fidelity
Gappy-POD projection on the POD space, is proposed. Its
efficiency to highlight poorly predicted areas in the design
space is compared to another criterion from the literature
(Guénot et al. 2013).

The paper is organized as follows. Section 2 introduces
the POD and Gappy-POD methods with a short review
of previous applications. In Section 3, our infill criterion
is presented in details and is associated to an enrichment
algorithm. Section 4 presents the 2D airfoil application to
illustrate the Gappy-POD multi-fidelity approach and the
associated results. Finally, conclusions and perspectives are
drawn in Section 5.

2 Multi-fidelity and gappy proper orthogonal
decomposition

POD, also referred to as “Karhunen-Loève expansion”, was
introduced in the context of turbulence by Lumley (1967)
and is widely used to predict information extracted from
numerical models within a lower dimensional space (Gogu
et al. 2009). In opposition to “Intrusive POD” (which aims
at projecting a system of “Partial Differential Equations”
or PDE onto a reduced space), the “Non-Intrusive POD”
(Coelho et al. 2008, 2009; Raghavan and Breitkopf 2013;
Guénot et al. 2013), associated with the “snapshots” method
(Sirovich 1987), is based on a Singular Value Decomposi-
tion (SVD) of a set of M snapshots of the physical field
computed for a set of configurations � in the design space
D ⊂ Kp, a p-dimensional metric space. The coefficients of
the POD decomposition (Eq. 5) are approximated or inter-
polated by surrogate models over the whole design space D
and no intervention on the PDE solver is then necessary. The
prediction for a new point θ ∈ D is obtained as linear com-
bination of the POD basis previously computed. The infill
sampling criterion issue has been addressed for this kind of
surrogate models by Guénot et al. (2011) and Braconnier
et al. (2011). In an optimization context, both the coeffi-
cients and the POD basis vectors may be further enhanced
to take into account the conservancy of the objectives and
constraints (Xiao et al. 2010, 2013, 2014). Multi-fidelity
surrogate modeling using Gappy-POD was introduced by
Toal (2014) and is here presented in Section 2.3.

2.1 Multi-fidelity modeling

We consider a multi-fidelity snapshot s obtained for any
experiment θ in the design space D,

s(θ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sL
1
...

sL
nL

—
sH

1
...

sH
nH

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
⎛
⎝

sL

—
sH

⎞
⎠ , (1)

where nL and nH are the sizes of the discretized physi-
cal low (L)- and high (H)-fidelity solutions obtained from
a Design of Experiments (DoE) � of M points θ (i) in the
design space D, ∀i ∈ [[1, M]]. Without any loss of general-

ity, we consider centered data satisfying
M∑
i=1

s(i) = 0, where

the set of snapshots is denoted S = [
s(1), · · · , s(M)

]
and

s(i) = s(θ (i)),∀i ∈ [[1, M]].

2.2 POD with multi-fidelity data

Following the formulation introduced in (Raghavan and
Breitkopf 2013), the POD procedure is presented as the
best orthogonal projector of vectors contained in the set of
snapshots S.

Each snapshot s =
(
sL

sH

)
is considered as a point in

an Euclidean affine space E on the vector space E ∈ Rn

(where n = nL + nH ) associated with:

1. the coordinate system (O,B) where B is the canonical
basis of E and O is a point chosen as origin (usually the
mean snapshot s̄);

2. the usual inner product 〈u, v〉;
3. the usual norm ‖u‖2 = 〈u, u〉.

We consider a projector P(s) of a snapshot s on a basis �

P(s) = ���s. (2)

The Reduced-Order Model (ROM) lies in the m-
dimensional Euclidean affine subspace F which is at most
M-dimensional, and far smaller than the output vector space
dimension n (0 < m ≤ M 
 n). Let � = [

φ1, ..., φm

]
be an orthonormal basis generating F . We characterize the
POD orthogonal projector P : E → F with the optimality
and orthogonality conditions

min
�

(
‖S − P(S)‖2

F

)
, with��� = I, (3)
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where ‖A‖2
F = tr(A�A) is the Frobenius norm, yielding �

the eigenmodes of the covariance matrix SS�.
The ROM is usually obtained by limiting the basis to the

m most “energetic” modes and is associated with the error

ε(m) = 1 −
∑m

i=1 λi∑M
j=1 λj

, (4)

where λ is the vector of monotonically decreasing eigenval-
ues associated with the basis modes �.

Let α = ��s be the projection of s onto the POD space.
α can be seen as the vector of coefficients minimizing the
distance between s and P(s)

α = argmin
α′

(
‖s − �α′‖2

)
. (5)

2.3 Gappy-POD as a predictor of high-fidelity data

Initially introduced by Everson and Sirovich (1995) in
the context of image processing, the so-called “Gappy-
POD” has been used in aerodynamics by Bui-Thanh et al.
(2004) especially for inverse design problems. The “gappy”
denomination of this method comes from its ability to
reconstruct missing information of a given vector or to ful-
fill the “gaps” in the corrupted data. In image processing
domain, missing pixels is a problem engineers are con-
fronted frequently with. In this frame, the Gappy-POD
procedure allows to build a matrix basis from complete
images and to reconstruct the missing pixels of corrupted
material. The Gappy-POD can be seen as the filtered pro-
jection of a vector onto the subspace spanned by the POD
basis �.

Once the � basis built with a set of snapshots

(
sL

sH

)
,

we use the Gappy-POD to predict high- from low-fidelity
data (Toal 2014). Following (Bui-Thanh et al. 2004), a mask
vector is built associating 1 with low-fidelity and 0 with

high-fidelity data. We start revisiting this formulation by
introducing a projector G(s) : E → E allowing the same
association

G(s) = �s,

where � =
⎛
⎝ InL

0

0 0

⎞
⎠ }nL

}nH

︸︷︷︸
nL

︸︷︷︸
nH

. (6)

We now seek to find the best projection Pg = �β of a

filtered snapshot �s =
(
sL

0

)
by minimizing the functional

J (β)

J (β) = 1

2
‖�s − ��β‖2, β ∈ Rm. (7)

Using the idempotence property of G ⇔ �� = �, the
diagonal property of � and the orthonormality of �, the
minimization of J (β) yields

β =
(
����

)−1
���s. (8)

Let H be the projector associated with the diago-
nal matrix , extracting the high-fidelity part

. The Gappy-POD operator (Toal 2014) is referred
to as Pt hereafter and is obtained by replacing ��β with �s
in the reconstructed snapshot. The notations in Table 1 are
used in the following sections.

Note that and �Pt (s) = �s by
construction.

3 Gappy-POD enrichment criterion

As long as the low- and high-fidelity models are well corre-
lated and the amount of available data is sufficient, it seems

Table 1 Multi-fidelity / POD notations

Vector Notation Expression

multi-fidelity snapshot s =
(

sL

sH

)

low-fidelity data �s =
(
sL

0

)

high-fidelity data =
(

0

sH

)

POD projection P(s) = ���s
Gappy-POD projection Pg(s) = �(����)−1���s

Gappy-POD prediction (Toal 2014) Pt (s)
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natural that Gappy-POD and POD projections should be
well correlated too. On the other hand, a large Gappy-POD
projection error foretells a lack of precision of the POD
approximation in the considered area. The proposed error
estimator δ (Eq. 9) is then based on the following hypoth-
esis: if ρ(sL,sH ) high ∀θ ∈ D, then ρ(δ,‖P(s)−s‖2) high too,
where ρ(a,b) stands for the correlation between two gen-
eral variables so that ρ(sL,sH ) pertains the low- and
high-fidelity solutions correlation. Setting an arbitrary
case dependent threshold εapp on δ allows for detect-
ing areas of potential enrichment and results in an adap-
tive infill criterion associated with Algorithm 1, and used
in Section 4.4.

It is important to keep in mind that the high-fidelity
computations and so the POD projection P(s) are usu-
ally available on limited locations of the design space D.
On the contrary, the low-fidelity model has a computa-
tional cost enabling a more exhaustive simulation cam-
paign over the design space. Therefore, we consider here
a current snapshot s(θ) only simulated with the low-
fidelity model, and propose as criterion the maximization
of the error estimator δ hereafter for the DoE enrichment
procedure dedicated to multi-fidelity Gappy-POD based
surrogates

δ = ‖�Pg(s) − �s‖2

‖�s‖2
. (9)

The numerator ‖�Pg(s) − �s‖2 can be seen as the norm
of the low-fidelity difference between the Gappy-POD pro-
jection Pg(s) and the Gappy-POD prediction Pt (s) given
the equality �Pt (s) = �s.

3.1 Algorithm

Maximizing the error estimator δ (Eq. 9) indicates the areas
where the low-fidelity part of the Gappy-POD projection
reveals high relative error with respect to the computed
low-fidelity data itself. Algorithm 1 is proposed as a sim-
ple implementation of this error estimate associated with
a stopping criterion within an adaptive sampling strat-
egy involving multi-fidelity surrogate models and poten-
tially improving the exploitation/exploration balance of an
online Surrogate-Based Optimization (SBO). In the com-
ing sections, the error estimator δ (Eq. 9) is referred to
as enrichment criterion and linked to the stopping con-
dition εapp. In the context of multi-fidelity optimization,
the low-fidelity solution is usually considered far cheaper
than the high-fidelity simulation affording the designer to
compute sL on a large number of points in the design
space D.

4 RAE2822 Application case

A usual application illustrating multi-fidelity approches
deals with 2D airfoil optimization (Peña Lopez et al. 2012;
Leifsson and Koziel 2010; Luliano and Quagliarella 2013;
Coelho et al. 2008). We propose to use the panel theory
as the low-fidelity model and a more expensive “Reynolds
Averaged Navier-Stokes” computation as the high-fidelity
model. The addressed application is the air flow around
the RAE-2822 airfoil (Cook et al. 1979) illustrated on
Fig. 1 under free stream conditions given in Table 2. The
low-fidelity simulations are performed under potential flow
hypothesis using the well documented panel code Xfoil
(Drela 1989) enabling viscous and compressibility correc-
tions. The high-fidelity computations are performed using
the 2D RANS solver elsA (Cambier et al. 2013).

The variations in M∞ are expected to induce appearance
of shock waves for some points in the design space. These
changes in the flow regime constitute the major difficulty to
create a global surrogate model on the entire design space.

The low-fidelity experiments are performed on a mesh of
352 panels along the airfoil. Each simulation takes approx-
imately one second to run on a workstation Intel Xeon
4x1.6GHz with 48 Go of memory and gives access to the
pressure distribution along the shape and the lift and drag
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Fig. 1 Mach number distribution around the airfoil RAE-2822, study
case 9 (Cook et al. 1979) : α∞ = 2.79◦ and M∞ = 0.73

coefficients (respectively CL and CD). The high-fidelity
computation is run on a 40 chord length scaled C-H types
structured mesh containing 47104 cells over 10000 itera-
tions with a Spalart-Allmaras turbulence model (Spalart and
Allmaras 1992) and a 3-level multigrid acceleration. We
extract the static pressure distribution and the friction vec-
tor on the shape, the lift and drag coefficients as well as
the temperature, pressure and velocity over the all domain.
Each simulation takes approximately 15 minutes on 8 cores
of Ivy Bridge Intel Xeon E5-2697(v2) processors with 1.8
Go of memory allocated.

We can expect the low-fidelity to fit the high-fidelity
data concerning the pressure distribution but also to reveal a
reduced precision of the drag coefficient for increased M∞
and α∞ because of missing friction information. This is due
to the enlarged part of pressure and friction induced drag in
the area where the low-fidelity model lacks precision (shock
waves development).

Table 2 Aerodynamic and free stream conditions

variable value unit

heat capacity ratio γ 1.4 −
gas constant r 287.053 Jkg−1K−1

temperature T∞ 303.15 K

chord length c 1.0 m

Reynolds number Re 6.5 · 106 −
Mach number M∞ 0.55 < M∞ < 0.75 −
angle of attack α∞ −1. < α∞ < 3.5 ◦

4.1 Multi-fidelity snapshots

To ensure a good agreement between low- and high-fidelity
extractions, the low-fidelity mesh χL generated by Xfoil
v6.1 is projected on the high-fidelity mesh χH generated
by Autogrid v8r10.3. The multi-fidelity snapshots are then
built by concatenating the linear interpolation of the low-
fidelity pressure P̃ L

s ∈ R352 on χH , the skin distribution
of high-fidelity pressure P H

s ∈ R352 and the wall friction
components τpx ∈ R352 and τpy ∈ R352,

s =

⎛
⎜⎜⎝
sL = (

P̃ L
s

)

sH =
(

P H
s

τpx
τpy

)
⎞
⎟⎟⎠ . (10)

In our case, each design point is taken in the (M∞ −
α∞)-space D ⊂ R2 (p = 2). Therefore, the low- and high-
fidelity meshes remain unchanged for all experiments. An
intermediate mapping of each solution on a fixed reference
grid should be operated to perform the “snapshot”-POD
in the case of shape optimization (Quarteroni and Rozza
2014, Chapter 4). In complex industrial cases involving
moving meshes, a specific attention has to be payed to the
interpolation scheme (Fang et al. 2009).

4.2 Design of Experiments and POD initialization

The design space D being 2D, we choose to compute an ini-
tial DoE composed of 10 snapshots. The a priori sampling
method is a “Latinized Centroidal Voronoı̈ Tesselation”
(LCVT) (Saka et al. 2007; Romero et al. 2006).

As shown on Fig. 2, only two points are populating the
transonic region confined between the red line and the top-
right corner of the figure. This leads to a poor definition
of the transonic behaviour in the snapshot matrix yielding
reduced prediction capabilities of the model. In addition, the
top-left corner corresponds to incidences bringing out brutal

Fig. 2 Initial samples repartition over D and delimitation between
shocked and shock-free configurations
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accelerations of the fluid in its path around the leading edge.
This phenomenon is partially captured by the low-fidelity
whereas real shocks appearing for M∞ > 0.63 are visible
only on the high-fidelity. Given the low density of samples
(Fig. 2), no reduction is made on the POD basis (m = M =
10), built from the snapshots matrix with substracted mean.

4.3 Enrichment criterion

Figure 3 shows the correlation between three relative char-
acteristic errors:

a. the high-fidelity relative error made by the POD projec-
tion of a complete snapshot

b. the high-fidelity relative error of the Gappy-POD pro-
jection of a low-fidelity snapshot

c. the low-fidelity relative error of the Gappy-POD projec-

tion of a low-fidelity snapshot

√
‖�Pg(s)−�s‖2

‖�s‖2 .

We propose to use this information to identify the areas
of poor representativeness of the POD basis. The results
illustrated on Fig. 3c represent the distribution of the δ cri-
terion proposed in Section 3 over the design space D. The
multi-fidelity training points are shown as white squares,
whereas the validation points supposed to be simulated only
at the low-fidelity level are represented by circles colored
according to the error value.

One can notice that the areas of high relative errors seem
correlated to each other regardless of the chosen criterion

(Fig. 3a), (Fig. 3b), or δ

(Fig. 3c). Our previous hypothesis seems thus confirmed on
this study case, even though the order of magnitude of the
criterion δ if far lower than the orders of the two other errors.

4.4 Adaptive DoE procedure

The results presented are obtained by implementing Algo-
rithm 1 except for its 4th step (metamodeling of δ̄). Indeed,
in our case, �v is rich enough (100 points over a 2-D design
space), to only use the additional DoE as potential enrich-
ment locations such that the criterion δ is directly computed
all over the sample set �v .

In order to assess the efficiency of the enrichment
criterion defined in Section 3, we propose to com-
pare our approach with a cross-validation based method
(Guénot et al. 2011, 2013; Braconnier et al. 2011). This
method is based on an adapted leave-one-out (LOO) algo-
rithm giving an estimation of the influence of a training
snapshot on the POD basis (see Fig. 4). On Fig. 4a,
one can see the evolution of the POD basis improvement
coefficient (Braconnier et al. 2011) over the design space
and notice the increase of its value for high M∞ and α∞

Fig. 3 Comparison of POD and Gappy-POD errors

conditions. In Guénot et al. (2013), this coefficient is scaled
by the distribution of distance to training points as shown on
Fig. 4b.

As explained previously, the enrichment criterion in
Guénot et al. (2013) considers a weighted distance between
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Fig. 4 Reference criteria

a new point θ ∈ D and the training database � ∈ DM . On
the other hand, our criterion δ is based on the scaled Gappy-
POD projection error over the low-fidelity data as defined
in Eq. 9.

The two enrichment strategies based on both criteria
(Guénot et al. 2013) and δ are illustrated on Fig. 5 where
the squares are used for training the initial POD basis and
15 points are added (one at a time) according to the consid-
ered criterion. The selected points are highlighted by a color
map associated with the current iteration number. One can
notice that the two criteria both lead to the infill of the tran-
sonic regime (M∞ > 0.7) first. After the first iterations (5
in this case), the PBI+ criterion (Guénot et al. 2013) leads to
the high α∞ and low M∞ area whereas the δ-criterion heads
to the low α∞ and high M∞ region. These two regimes
are supposed to reveal bad correlations between the low-
and high-fidelity pressure distributions because of shocks
appearance.

Fig. 5 Comparison of enrichment strategies

Figure 6 shows the low- (left) and high-fidelity (right)
pressure distributions of the snapshots selected at iterations
1 to 3 for POD basis enrichment by the proposed δ-criterion.
The illustrated points are connected to the poor precision
area of the low-fidelity code. The computed pressure distri-
bution is depicted by the blue solid curve while the POD and
Gappy-POD projections are respectively in red and green
dotted curves. It is important to keep in mind the good
agreement of low- and high-fidelity simulations hypothesis.
In our case, the development of shocks tends to deteriorate
the low-fidelity pressure distribution as shown on Fig. 6a, b,
and c (left column).

Indeed, the shocks are not predicted by the low-fidelity
code, but a non-negligible noise appears in these regions
increasing the Gappy-POD projection error on the low-
fidelity data. This increases the error δ and leads the
proposed algorithm towards these areas.

At the same time, the PBI+ criterion (Fig. 7) leads the
algorithm towards the same region according to the space
filling and the influence of each training snapshot on the
POD basis (see Fig. 4).
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Fig. 6 Low-fidelity (left) and
high-fidelity (right) pressure
distributions of 3 enrichment
points according to the proposed
δ-criterion
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Fig. 7 Low-fidelity (left) and
high-fidelity (right) pressure
distributions of 3 enrichment
points according to the PBI+
criterion (Guénot et al. 2013)
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Once again, the emergence of new patterns associated
with shocked configurations incites the algorithm to add
new points in the high M∞ and α∞ area. The former cri-
terion (Guénot et al. 2013) is attracted to this region by
the lack of shocked configurations in the initial training set
while the proposed one δ is drawn because of the inaccuracy
of the low-fidelity code in unadapted regions.

The mean and maximum projection errors over the
design space can be analyzed along with the enrichment iter-
ations for both criteria on Fig. 8. The magenta and green
curves give the evolution of the error obtained with an
enrichment driven by the maximum uncertainty of a Krig-
ing metamodel built over the two aerodynamic scalars CD

and CL, usually interesting in the study of the flight domain.
The global projection errors ‖P(s) − s‖ present the same
trends (see Fig. 8b) regardless of the chosen criterion. On
the contrary, the high-fidelity Gappy-POD projection errors

(see Fig. 8a) reveal a real impact of the
criterion at hand.

Fig. 8 Comparison of the evolution of the mean (solid line) and max-
imal (dotted line) errors along iterations for the different enrichment
strategies

After the first iterations, the POD based strategies diverge
due to the lack of precision of the low-fidelity simulation. At
the same time, the maximum uncertainty strategy remains
stable but with a reduced efficiency compared to the pro-
posed criterion and, as major drawback, its dependence to
the variable the Kriging model is built on. After several
experiments in the high α∞ and low M∞ region are added
by the PBI+ strategy to the training set (iteration 13 on Fig.
8a), the high-fidelity error of the Gappy-POD projection
is widely increased (see Fig. 9). These experiments corre-
spond to high angle of attack and are typically associated
with a poor prediction of the low-fidelity model as shown on
Fig. 10.

Figure 10a illustrates the low- and high-fidelity pressure
distributions computed for a design point with high M∞ and
high α∞. One can see that the shock around 50 % of the
chord is observed only on the high-fidelity simulation while
the pressure is increased just after the leading edge on the
low-fidelity solution.

As shown on Fig. 10b, the low M∞ and high α∞ area also
presents an important lack of accuracy in the low-fidelity
solution. The high-fidelity static pressure (2nd row on Fig.
10b) suddenly increases around the leading edge of the air-
foil whereas the low-fidelity solution presents a smoother
evolution (1st row on Fig. 10b). One can notice the simi-
larity between the low-fidelity pressure distributions on Fig.
10a and b coming from different regions in the design space.
This confusion drives the Gappy-POD projection unable to
predict correctly the high-fidelity data from a low-fidelity
simulation.

To assess the impact of randomness in DoE initialization,
we built 10 different DoE with the LCVT sampling method
and observed their impact on the enrichment locations cho-
sen by each strategy. The Fig. 11 shows that the previous
comments are verified for the 10 initial DoE available. The
shaded areas correspond to the gap between the lowest and

Fig. 9 Gappy-POD high-fidelity projection error
after 12 iterations of PBI+ enrichment
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Fig. 10 Pressure distribution of
low-fidelity poorly simulated
experiments

highest high-fidelity Gappy-POD prediction error observed
at each enrichment iteration. One can see that the shaded
area associated with the δ strategy is very small compared
to the blue shaded area presenting the PBI+ results. In
addition, the mean and maximum level of Gappy-POD pre-
diction errror along with the enrichment iterations is much

Fig. 11 Influence of the random initialization of 10 initial DoE on the
evolution of the Gappy-POD prediction error of the high-fidelity data

along with the enrichment strategy

higher for the PBI+ enrichment strategy. A converged statis-
tical study of the impact of the initial DoE on the enrichment
performances being unaffordable, we can argue from this
last comparison that the proposed enrichment method out-
performs the strategies from the literature and is robust with
respect to the stochastic initial sampling.

5 Conclusions and perspectives

In the context of surrogate-assisted design, non-intrusive
POD models could be considered as potentially better inte-
grators of physics, compared to classical regression sur-
rogates. Based on this assumption, the current paper has
presented a reformulation for the Gappy-POD method in
the framework of multi-fidelity modeling. The infill sam-
pling strategy constituting a key aspect in the domain
of surrogate-assisted optimization and more particularly
in multi-fidelity modeling, an enrichment criterion has
been introduced and integrated in an adaptive infill strat-
egy. This implementation has been tested on the flight
domain study of a transonic airfoil enlarging the exploita-
tion of the Gappy-POD technique with respect to Refs
(Bui-Thanh 2003; Bui-Thanh et al. 2004; Toal 2014).
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The efficiency of the proposed enrichment criterion has
been compared to a POD-based infill strategy from the
literature and to the maximum uncertainty of a Kriging
metamodel built on scalar variables of interest. The main
lesson gained from this experience is the ability of the
Gappy-POD to predict the projection coefficients on the
POD basis, thus removing the need for regression surrogate
models on the POD coefficients. The proposed infill strat-
egy showed a comparable potential for improving the POD
basis along the enrichment iterations with respect to the ref-
erence criterion (Guénot et al. 2013). On the other hand,
for an example in a two-dimensional design space, it has
been found that maximizing the defined error estimator δ

reduced the exploration rate of non-predictive low-fidelity
regions. This produces an important decrease in the mean
of relative high-fidelity error of the Gappy-POD projection
over the complete design space, which outperforms the ref-
erence criterion. The addition of new points in the regions
of non-predictive low-fidelity indeed shows to significantly
alter the Gappy-POD projection capabilities. The use of a
maximum uncertainty criterion showed on our example the
expected weaknesses related to the correlation between the
scalar variable the Kriging model is built on and the pre-
diction error of the whole high-fidelity data made by the
Gappy-POD.

Some issues remain to be addressed concerning the infill
methodology itself and from a more general point of view
for multi-fidelity modeling. The presented strategy strongly
relies on the hypothesis given in Section 3, so that further
investigation on the robustness of the proposed approach
with respect to the level of correlation between low- and
high-fidelity data needs to be performed. In the presented
test case, the non-predictive area is restrained to a very thin
region near the maximum boundary edges of the design
space hypercube, where POD models are known to be less
accurate. In addition, the a priori sampling algorithm used
in this study only produced one point in this area, also reduc-
ing the POD prediction capabilities. To tackle this problem,
another application test case revealing a distributed weak
low- to high-fidelity correlation could be targeted. Further-
more, the increase of the number of levels of fidelity is the-
oretically feasible with the Gappy-POD modeling method
and could be investigated. This would naturally introduce
the question of the level of fidelity selected for each iteration
of optimization or sampling enrichment.

In terms of general perspectives, the current paper
applied the proposed enrichment strategy on a 2D design
space whereas most of the recent optimization industrial
problems deal with several tens of parameters. The switch
to 3D cases would also be of first interest from an indus-
trial perspective and should be considered in future work.
The multi-fidelity POD basis construction method dedicated
to nested sampling strategies often used within the multi

-fidelity optimization framework is still to be investigated.
Last but not least, different parametrizations accross the lev-
els of fidelity would be of certain interest from an industrial
point of view.
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