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Abstract This paper presents two efficient and compact
Matlab codes of Subset Simulation for reliability analysis
and structural optimization. The codes for reliability analysis
and structural optimization comprise of the directMonte Carlo
and Markov Chain Monte Carlo. The theoretical and numer-
ical elements of Subset Simulation are briefly presented in this
paper, as well as the detailed instructions to implement the
standard codes for solving reliability analysis and structural
optimization problems. The paper also discusses simple ex-
tensions of argument check, post-processing, alternative stop
criterion and constraint-handling. Four examples are present-
ed to demonstrate these codes, two for reliability analysis and
two for structural optimization. This paper will be helpful for
the students and newcomers both in reliability analysis and
structural optimization to understand and use Subset
Simulat ion. The complete codes are included in
Appendixes 1 and 2, and they can be downloaded from
https://sites.google.com/site/rasosubsim/.

Keywords Subset Simulation .Matlab . Education .
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1 Introduction

Subset Simulation provides a powerful tool for the assessment
of small failure probability and optimization design in engi-
neering design field. It is originally developed from the con-
cept of conditional probability and Markov Chain Monte
Carlo (MCMC) technique by Au and Beck (2001), and well-
known as an efficient Monte Carlo technique for variance
reduction in reliability analyses. Many variants of standard
Subset Simulation have appeared in the literature due to its
elegant idea, robustness in high dimensions, high efficiency,
etc. Ching et al. introduced the splitting of a trajectory into
MCMC algorithm to increase the acceptance rate of a candi-
date sample when there is a causal relationship between inputs
and outputs (Ching et al. 2005a). They further developed a
hybrid Subset Simulation method to improve their version
(Ching et al. 2005b). By separating the calculation of linear
elastic and inelastic structural response, Katafygiotis and
Cheung presented a two-stage Subset Simulation for estimat-
ing the reliability of inelastic structural systems subjected to
Gaussian random excitations (Katafygiotis and Cheung
2005). Along the spirit of decomposing the failure region into
a series of sub-regions, Katafygiotis and Cheung also pro-
posed a spherical Subset Simulation for high dimensional
problems (Katafygiotis and Cheung 2007). Zuev et al. devel-
oped an optimal scaling strategy for the modified Metroplis-
Hasting algorithm (MMH), provided a theoretical basis for the
optimal value of the conditional failure probability, and pro-
posed a Bayesian Subset Simulation which can produce the
posterior probability density function (PDF) of the failure
probability instead of a constant value (Zuev et al. 2012).
Apart from abovementioned variants of Subset Simulation,
some researchers aimed at reducing the correlation in condi-
tional samples generated byMCMC techniques (Santoso et al.
2011; Zuev and Katafygiotis 2011), and other researchers
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concentrated on combining Subset Simulation with surrogate
models, e.g., artificial neural network (Papadopoulos et al.
2012), support vector machine (Bourinet et al. 2011), to fur-
ther improve its efficiency.

Subset Simulation was originally developed for solv-
ing reliability analysis and risk assessment of civil
structures subjected to uncertain earthquake ground mo-
tions (Au and Beck 2001; Ching et al. 2005a, b;
Katafygiotis and Cheung 2005, 2007; Au and Beck
2003; Au and Wang 2014; Tee et al. 2014). It has been
widely applied in many engineering fields, such as aero-
space engineering (Pellissetti et al. 2006; Song et al.
2009), geotechnical engineering (Santoso et al. 2011;
Wang et al. 2010, 2011; Li et al. 2015, 2016), nuclear
engineering (Zio and Pedroni 2012; Wang et al. 2015),
and also as simulation engine for improving efficiency
in different stochastic simulation algorithms, for exam-
ple (Chiachío et al. 2014a, b). Please refer to Au and
Wang (Au and Wang 2014) for a comprehensive sum-
mary of the applications of Subset Simulation.

Subsequent studies by Li and Au (2010); (Li 2011);
Li and Ma (2015), showed that Subset Simulation can
be efficiently used for structural optimization. Based on
the idea that an optimization problem can be formulated
as a reliability problem by augmenting the design vari-
ables as random variables, an artificial reliability prob-
lem can be constructed, which follows a similar idea for
solving reliability problem using Monte Carlo simula-
tion (Au 2005). As a result, Subset Simulation is ex-
tended to solve constrained optimization problems (Li
and Au 2010), unconstrained optimization problems (Li
2011) and discrete optimization problems (Li and Ma
2015) as a stochastic searching and optimization
algorithm.

In this paper, two efficient and compact Matlab codes
are presented to perform reliability analysis and struc-
tural optimization using Subset Simulation. The Matlab
codes presented here are intended to facilitate engineer-
ing education and applications of Subset Simulation,
which will provide instructions to students and new-
comers to Subset Simulation. Matlab is a high-level
computational language which has many outstanding
characteristics, e.g., accessible syntax, excellent debugging
tools and extensive graphics output. These allow users to
concentrate on the physical and mathematical modeling of
engineering problems without being distracted by how to im-
plement it. Therefore, Matlab is the ideal environment for
learning to program, solving computationally problems and
writing prototype programs. Both codes include three parts:
(1) algorithm parameter definition, (2) direct Monte Carlo
(DMC), and (3) MCMC. These two codes are organized and
written as a built-in function inMatlab so that no modification
is required for new applications except for input information.

This paper starts with a brief theoretical background
of Subset Simulation for reliability analysis and struc-
tural optimization. Section 3 shows the details and in-
structions of Matlab codes of Subset Simulation. The
usage of Matlab codes are explained using two numer-
ical examples. Section 4 discuses several extensions to
the developed codes. Section 5 presents the numerical
implementation procedures and results of two practical
problems, one for structural reliability analysis and the
other one for structural optimization design. Finally, ma-
jor conclusions drawn from this paper are summarized
in Section 5. The codes are provided in Appendix 1 and
2, and can also be downloaded from the website:
https://sites.google.com/site/rasosubsim/.

2 Theoretical background

Subset Simulation is a stochastic simulation procedure
for estimating small failure probabilities and solving op-
timization problems. Specifically, we consider some en-
gineering systems subject to random input parameters.
Let us define the failure region F as the subregion in
the x-space that exceeds a response function (or the
system performance function) g(x) below a specific
threshold value b, as follows:

F ¼ x : g xð Þ < bf g ð1Þ

where x is the input random vector which models all
uncertain parameters in the system. In fact, g(x) can be
a nonlinear and implicit function of x. The target failure
probability PF associated with the target failure event F
may be very small (PF<< 1). Under the setting where a
single system response analysis requires the solution of
a numerical model (e.g., finite element model), an ex-
cessive number of simulations may be required to esti-
mate the target failure probability with a desired accu-
racy. The basic idea of Subset Simulation is to convert
a small probability into a product of a sequence of large
conditional probabilities, each of which has a smaller
coefficient of variation (c.o.v.). This conversion is
achieved by dividing the input parameter space into
subset failure domains. Thus, a sequence of intermediate
events are required to be defined in the same way of
the target failure event

F j ¼ x : g xð Þ < bj

� �
; j ¼ 1;…;m ð2Þ

where bj is a series of threshold values of the system
response and m is the total number of intermediate
events. Importantly, it is assumed that F1,F2,⋯,Fm are
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a sequence of nested events, i.e., F1 ⊃F2⊃⋯⊃Fm=F.
Note that the values of bj cannot be determined in ad-
vance. However, the determination of bj and further the
intermediate events can be achieved in an adaptive man-
ner, i.e., setting the conditional probabilities P(Fi|Fi−1)
equal to a specified value (Au and Beck 2001). To
ensure the nestedness of Fj, j= 1,…,m, the threshold
values are arranged such as b1 > b2 >… > bm = 0.
Because of the nested nature of all intermediate events,
the target failure probability can be rewritten as

PF ¼ P Fð Þ ¼ P F1ð Þ∏
m−1

j¼1
P F j F j−1

��� � ð3Þ

By (3), the simulation of a rare event F is subdivided
to the simulations of a series of frequently conditional
events Fj|Fj−1. Therefore, generating conditional samples
in Fj|Fj−1 is the pivotal of successful implementation of
Subset Simulation. This can be achieved using MCMC
techniques. In the following subsections, we briefly re-
view Subset Simulation for reliability analysis and struc-
tural optimization, and also give an overview of MCMC
methods.

2.1 Subset simulation for reliability analysis

For reliability analysis, Subset Simulation starts with
DMC in the first step. The probability P1 associated
with the first intermediate event F1 is estimated as

P1 ¼ P F1ð Þ ≈ 1

N

XN
i¼1

I F1 g xið Þð Þ ð4Þ

where N is the number of samples in the first simula-
tion level, {xi} are independent and identically distrib-
uted (i.i.d.) samples generated according to the proba-
bility density function (PDF) f(x) and I F1 ⋅ð Þ is the in-
dictor function

I F1 ⋅ð Þ ¼ 0 if g xið Þ≥b1
1 if g xið Þ < b1

�
ð5Þ

In (5), however, b1 is unknown, and so is the first interme-
diate event F1. If a fixed value p0 is set to P1, one can employ
(4) to determine the value of b1 and the first intermediate event
F1. After generating {xi}, calculate the system response func-
tion {g(xi)} for all i, and sort them in an ascending order such
that g(x1) ≤ g(x2) ≤⋯≤ g(xN). Let b1 be the sample P1-
quantile of the system response, i.e., b1 ¼ g x P1N½ �

� �
. Herein,

the symbol [ ⋅ ] in the subscript denotes to round the argument.
In this way, samples x1; x2;…; x P1N½ � belong to the first inter-
mediate event F1, and they automatically satisfy (4).

The subsequent conditional probabilities Pj=P(Fj|Fj−1) re-
quire the samples conditioning on Fj−1 with implicit condi-
tional PDF

f x F j−1
��� � ¼ f xð ÞI F j−1 ⋅ð Þ=P F j−1

� � ð6Þ

One may generate conditional samples based on (6).
However, this method is in general inefficient because the
acceptance probability of sample is proportional to the inverse
of P(Fj−1). This means that it would reject about 1/P(Fj−1)
samples before obtaining one proper conditional samples on
average. It is still a DMC estimator for P(Fj|Fj−1), being con-
sistent with the estimator in (4). Given that one already have
[NPj−1] samples belonging to Fj−1, a simulation procedure
based on MCMC can be employed to obtain the required
conditional samples {xi} and then the estimator for P(Fj|Fj−1)

Pj ¼ P F j F j−1
��� �

≈
1

N

XN
i¼1

I F j g xið Þð Þ ð7Þ

where xi~ f (x|Fj − 1), i=1,…,N are generated by a modified
Metropolis-Hasting type MCMC (Au and Beck 2001), which
has been proved that its stationary distribution is equal to the
desired conditional distribution. We will discuss this MCMC
approach in detail in subsection 2.3. After generating new
N− [NPj−1] conditional samples in Fj−1 and combining the
previously selected [NPj−1] samples, we can compute the sys-
tem response function {g (xi)} for all i, and sort them in an
ascending order. Let bj be the sample Pj-quantile of N system

responses in Fj−1, i.e., bj ¼ g x P jN½ �
� 	

. In this way

x1; x2;…; x P jN½ �
n o

belong to the next intermediate event Fj,

and are guaranteed to satisfy (7) for some fixed Pj.
Repeat the above procedure until the sample Pj-quantile of

N system responses in Fj−1 is less than b, i.e.,

bj ¼ g x P jN½ �
� 	

< b. Then, by this point, the target failure

domain Fm is already arrived by the algorithm, i.e., j=m and
bm = b . The e s t ima to r f o r t he l a s t cond i t i ona l
probabilityP(Fm|Fm−1) is obtained as

P Fm Fm−1jð Þ ≈ Pm ¼ 1

N

XN
i¼1

I Fm g xið Þð Þ ð8Þ

Combining (4), (7) and (8), the failure probability of the
target event is expressed as

PF ¼ ∏
m

j¼1
Pj ð9Þ

In practical engineering applications of Subset Simulation,
a typical value of Pj, j = 1,… , m − 1 is some fixed
p0∈0.1~0.3 (Zuev et al. 2012).
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2.2 Subset simulation for structural optimization

Consider solving the following unconstrained optimization
problem

min W dð Þ
dL≤d≤dU ð10Þ

where W(d) is the objective function, d is the design vector
that contains design variables, dL and dU are the lower bound
and upper bound for the design vector. The analogy between
an optimization problem and a reliability problem is presented
firstly, which allows us to solve an optimization problem po-
tentially using reliability analysis methods (Li and Au 2010;
Li 2011). The aim of reliability analyses is to evaluate the
probability of a target failure event F, while the aim of an
optimization problem is to search a point or region where
the objective function is minimized under the problem setting
in (10), i.e., taking extreme values. We employ a one-
dimensional example, as shown in Fig. 1, to explain this anal-
ogy. In this illustrative example, only one variable d is in-
volved, and h is a function of d. The optimization problem is
defined as finding the minimal value of h in Fig. 1a, i.e.,
minh(d). By augmenting the design variable d to be a random

variable, a reliability problem can also be defined to estimate
the probability of h less than a given threshold h0, as shown
in Fig. 1b. This means that the target event is F= {h< h0}
and the corresponding probability is PF=P(h < h0). It is
well-known that engineering reliability problems are often
rare event simulation problems since very small failure
probabi l i t ies are general ly involved in pract ice.
Geometrically, the region of F = {h < h0} of a reliability
problem absolutely covers the minimum points of an opti-
mization problem. In other words, the minimum points to
be found of an optimization problem is a reduced region of
a reliability problem. Therefore, we can deal with optimi-
zation problems under the framework of the reliability anal-
ysis because an extreme event is viewed as a special case of
a rare event concerned in reliability analyses.

Based on the analogy between an optimization problem
and a reliability problem, we can construct an artificial reli-
ability problem by randomizing the design variables, i.e.,

PF ¼ P Fð Þ ¼ P W dð Þ≤Wopt

� � ð11Þ

where Wopt is the minimum value of the objective func-
tion, F= {W(x)≤Wopt} is the artificial target event, and
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PF is the corresponding failure probability of F. It is
clear that PF has a zero value becauseWopt is the minimum value
of the objective function. However, in an optimization problem,
we are interested in the point dopt, where the zero failure proba-
bility can be attained, rather than the zero failure probability itself.
Since the design vector d is augmented to be random, the type of
probability distribution of design vector may have influences on
the performance of the transformation in (11). Experiences shows
that the truncated normal distributions is sufficient and conve-
nient to characterize design variables themselves and their re-
spective bounds, as suggested by Li and Au (2010); Li (2011).

Equation (11) maps a multidimensional objective function
W(d) into a random variable W. According to the definition of
cumulative distribution function (CDF) for a random variable, it
is a monotonic, non-decreasing, and right-continuous function,
such that it displays values lying in the interval of [0, 1].
Therefore, the CDF value atWopt is zero. This is consistent with
the zero failure probability discussed above. It is worthwhile to
point out that, based on the transformation in (11), local opti-
mums can be avoided, at least, from a theoretical perspective
view. The objective function may be a many-to-one relationship
between multiple design variables and itself, while the CDF
function of W is a one-to-one relationship after mapping
manipulation.

In Subset Simulation for structural optimization, the
governing equation is still given by (3). Its implementation
starts with the initialization of distributional parameters for
the design vector d in the first step. The following steps for
structural optimization are similar to these for reliability anal-
yses described in subsection 2.1. The optimization iterations
are not terminated until a stopping criterion is reached. Two
groups of stopping criterion have been developed in the liter-
ature. The idea of first group stems from other stochastic op-
timization method, employing a maximum iteration number
or the difference of objective function values between two
consecutive iterations smaller than a specified tolerance to
enhance for convergence. While the idea of the other group
is based on sample statistics, the stopping criterion is defined
as (Li and Au 2010; Li 2011)

max σ̂k

� 	
or max σ̂k−σ̂k−1

��� ���� 	
≤ε ð12Þ

where σ̂k is the estimator of standard deviation of the samples
in the k− th simulation level and ɛ is the specified tolerance.

2.3 Markov Chain Monte Carlo

The main challenge for implementing Subset Simulation is to
generate conditional samples in (7) for the estimation of con-
ditional probability. Difficulties arise because the conditional
PDF f( ⋅ |Fj) for an intermediate event has an implicit expres-
sion. Markov Chain Monte Carlo (MCMC) is a stochastic
simulation technique for generating samples from an arbitrary
PDF, and it provides a powerful tool to generate conditional
samples in the implementation of Subset Simulation.

The working principle of MCMC is that starting with an
arbitrary sample x0, a Markov Chain is generated using a
transition kernel whose stationary distribution is equal to the
desired distribution. Therefore, the most important component
of MCMC is the transition from current state sample xi to the
next state xi+1 of the chain. MCMC method was originated
from (Metropolis et al. 1953), and was further modified by
Hastings to allow nonsymmetrical proposal PDF (Hastings
1970). Today, the Metropolis-Hastings (M-H) algorithm is
still the standard implementation of MCMC because it im-
poses minimal requirements on the desired distribution. The
transition xi→xi+1 in an M-H algorithm is achieved by two
steps. First, a candidate state x′ is generated from a proposal
PDF q (·|xi) which describes how to go from xi to xi+1 and is
easier to simulate. Here, it is clear that the proposal PDF is a
conditional PDF, however, some variants of the standard ver-
sion may not require this constraint. Second, the candidate
state x′ is either accepted or rejected with a certain acceptance
probability ρ(x,x′). These two steps can be viewed as a local
random walk in the neighborhood of the current state xi. For
the use in Subset Simulation, there is another step to make
sure that the accepted candidate x′ also lies in the current
intermediate failure domain Fl−1. If x

′∊Fl−1, x
′ is accepted as

the next state; otherwise, x′ is rejected and xi is repeated in the
Markov Chain. This step ensures the correct conditioning in
the samples. The final acceptance probability is the product of
accep tance probabi l i t i e s in the las t s teps , i . e . ,

ρ x; x
0� �
⋅I Fl−1 x

0� �
.

(a)Extreme event (b) Rare event 

Fig. 1 The analogy between an
optimization problem and a
reliability problem
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From above three steps, it can be seen that the MCMC
samples are not statistical independent because repeated states
occur in a Markov Chain. However, the ergodic theorem can
guarantee that statistical inference based on the MCMC sam-
ples with stationary distribution f ( ⋅ |Fl−1) converges to the one
based on i.i.d. samples from f ( ⋅ |Fl−1).

Typically, a Markov Chain starting with an arbitrary sample
x0 may has the burn-in issue for assessing the convergence of a
Markov Chain, i.e., the first few samples generated by the M-H
algorithm cannot be used for statistical inference. However, the
nested setting of Subset Simulation perfectly avoids this issue.
Since the seed samples for all Markov Chains follow the de-
sired distribution f ( ⋅ |Fl−1), all the subsequent samples on the
same Markov Chains naturally follow the same desired distri-
bution. This technique is termed perfect simulation in the liter-
ature (Robert and Casella 2004).

Another issue associated with the standard M-H type
MCMC is ‘the curse of dimension’. As the dimension of
problem increases, the acceptance probability ρ(x,x′) in the
second step exponentially decreases to zero. For a high dimen-
sion n, the candidate x′ may be always rejected, leading to a
large number of repeated samples. Au and Beck (Li and Au
2010); Au andWang (2014) have examined the issue in detail.
They also proposed a component-wise scheme to overcome
the high dimension issue and the degeneration of ρ(x, x′),
which is attributed to the fact that ρ(x, x′) is a product of
PDF ratios and tends to a small number as n increasing. In
the modified Metropolis-Hastings (MMH) algorithm, one-
dimensional proposal PDF replaces the n-dimensional propos-
al PDF so that the acceptance probability of a component in
the random vector is only a ratio of one-dimension PDFs. This
scheme dramatically decreases the probability of having re-
peated values simultaneously for all the components during
the simulation, making it feasible in high dimension problems.

After solving the high-dimensional issue, the next implemen-
tation issue may be the choice of the type of one-dimensional
proposal PDF and the spread around the current sample since they
seem to control the simulation efficiency of MCMC. Simulation
experiences show that the efficiency of theMMHalgorithm is not
sensitive to the type of proposal PDF, while the spread of the one-
dimensional proposal PDF is important for the balance of
efficiency and robustness. Using large spreads lead to the
reduction of the acceptance probability, repeated component
samples and slow convergence. In contrast, using small spreads
introduces large dependence among component samples due to
their proximity and also slows down convergence. Au and Beck
(2001) suggested an adaptivemanner which uses some fraction of
sample standard deviation calculated from all samples or only the
[p0N] seed samples generated in the previous simulation level.
Chiachio et al. (2014a) also provided a sensitivity analysis and
proposed to adaptively choose the variance of the jth intermediate
level so that the monitored acceptance rate belong to the interval
[0.2, 0.4].

3 Matlab implementation

The Matlab codes given in Appendixes 1 and 2 can be used to
solve reliability analysis problems and structural optimization
problems, respectively. BothMatlab implementations for reliabil-
ity analysis and structural optimization are written as Matlab
build-in functions so that they are considered as standard codes
and can be easily used without the need to be a Matlab expert.

3.1 Subset simulation for reliability analysis

In this section, we explain the usage and important details of the
78-line Matlab code in Appendix 1 for reliability analysis. The
code is divided into three parts: (1) input parameter definition,
(2) DMC, and (3) MCMC, and can be used as a standard code
ofMatlab. Modification is not needed for different applications.
In the following subsections, detailed explanations are given
through a high-dimensional example with analytical solution.

3.1.1 Function arguments and outputs

For simplification, the function name is shorten as SS, and the
SS function is called from theMatlab command prompt by the
line

where is a Matlab function handle which is used to calcu-
late limit state values of interest, is the dimension of the prob-
lem, paras is the collection of all algorithm parameters, is
the estimator of failure probability, is a record of limit state
values that have been used in Subset Simulation, is the
corresponding CDF values to limit state values stored in ,
and is the record of samples corresponding to limit state
values stored in .

The data type of SS function arguments have been speci-
fied and cannot be overridden. Argument is a Matlab
function handle which is bound to the Matlab function for
limit state functions and argument is a specified value.
Argument is a structure data type with three fields:

and . Field is the
number of samples in each simulation level. Field is
the conditional probability and Field is the maxi-
mum number of simulation levels which is used to terminate
the simulation procedure so as to avoid infinite loop when the
target domain cannot be reached. It should be pointed out that
Subset Simulation for reliability analysis has only two algo-
rithm parameters, i.e., and , while

is added just for avoiding infinite loop.
To illustrate the use of SS function, consider estimating the

failure probability of the following limit state function
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h xð Þ ¼ b −
1ffiffiffi
n

p
Xn

i¼1

xi ð13Þ

where {x1,…,xn} are i.i.d. standard normal variables, and b is a
constant value. It can be easily reasoned that the target failure
region is a linear half-space, i.e., F={h(x)<0}, and h is a normal
variable so that the failure probability is analytically given by

PF ¼ P h xð Þ < 0ð Þ ¼ Φ −bð Þ ð14Þ
where Φ(⋅) is the CDF of standard normal distribution.
It is obvious that (14) is independent of the problem

dimension n. In the case of b = 3 and n = 1000, the
exact failure probability is Φ(−3) = 1.35 × 10− 3. The
following lines represent the evaluation of (13) in
Matlab.

For this problem, the arguments for SS function are initial-
ized as follows:

This line means that the number of samples in each
simulation level is 300, the conditional probability is taken as
0.1 and themaximum number of simulation level is equal to 10.
Then, this problem is solved by calling with the input line

F ina l ly, t he ca l cu la t ed resu l t s a re s to red in
.

3.1.2 Algorithm parameter definition (lines 3–6)

Symbol is used to represent the number of samples in
each simulation level and it receives the passing value
from Symbol denotes the condi-
tional probability and it receives the passing value from

Symbols and are used for the
sample quantile of system responses and the length of
Markov Chain, respectively. Note that the product of
and an integer. A built-in function in
Matlab, i.e., , is employed to round it to the
nearest integer (line 5). The similar operation is carried
on the length of a Markov Chain (line 6).

3.1.3 Direct Mont Carlo simulation (lines 7–20)

DMC simulation starts with generating samples from
standard normal distribution (line 8). Then, the system
responses for these samples are evaluated using the
evaluation function in Matlab (line 11).
Lines 14–15 are the Matlab implementation of sorting
and determining the sample quantile of the system re-
sponse. Lines 16–20 represent the record of SS function
outputs.

3.1.4 Markov Chain Monte Carlo (lines 21–78)

Lines 23–25 are some basic preparation for the following

MCMC simulation procedure. As mentioned before, the

spread of proposal distribution is estimated from the seed

samples (line 23).
The Matlab code for MCMC is divided into four parts: (1)

selecting seed samples (lines 27–28), (2) generating condi-
tional samples by the MMH (lines 31–62), (3) storing and
recording the calculated results (lines 64–69), and (4) termi-
nating the simulation procedure (lines 71–77).

Variables and denote the seed samples and
their corresponding system responses, and are used
to generate the conditional samples. Line 31 is a
counting command beginning with 1 since the first
nt samples are selected from the previously simulation
level. Additional N − nt conditional samples are sup-
plied to keep the number of samples in a simulation
level constant. Lines 34–47 represent the implementa-
tion of the first two steps in the MMH algorithm with
component-wise strategy. A loop over all components
is performed here (lines 34–47). The system response
at a candidate sample is calculated in line 48. Then,
comparing it with the threshold value
(line 50), the corresponding candidate is accepted if it
is less than the threshold value (line 51). Otherwise, a
repeated sample appears in the current Markov Chain
(lines 53–54). The sampling center is updated to the
current state in line 56. It should be noted that there
is an inner loop over samples in a Markov Chain
starting in line 33 and an outer loop over Markov
Chains starting in line 31. The same sorting and re-
cording operations as in DMC stage are carried out in
lines 64–69. Lines 71–77 are used to terminate the
main loop if the threshold value is less than zero, or
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the number of iteration is larger than the maximum
permissible number stored in

For completeness, the estimator of failure probability of
(13) is 2.6×10−3, which is stored in the variable , using
the following prompt lines:

The purpose of lines 2–4 is to set a fixed starting point for
the random number generator in Matlab so that one can repro-
duce the calculated results reported here. The other results,
such as the CDF values stored in variable and the corre-
sponding values of LSF stored in variable , can be con-
verted into a CDF plot of h(x), which shows the probability of
h(x) smaller than a threshold value h0, i.e., p(h<h0). Figure 2
shows such a CDF plot for this problem by using the follow-
ing prompt lines:

3.2 Subset simulation for structural optimization

In this section, we explain the usage and important details of
the 98-line Matlab code in Appendix 2 for structural optimi-
zation. Similar to the code for reliability analysis shown in
Appendix 1, the code also has three parts. We concentrate
on the differences between them.

3.2.1 Function arguments and outputs

For simplification, the name of Matlab function for structural
optimization is shorten as SSO. The SSO function can be
simply called by the line.

Compared with SS function, one argument, i.e.,
, is added to SSO function to pass the boundaries

of design variables to the main program. In the structure
, a new field is added to define a specified toler-

ance for the termination of simulation procedure. For the func-
tion outputs, and are used for storing the
optimal value of objective function and the corresponding solu-
tion vector, respectively. The total number of the objective func-
tion evaluation is denoted by . Function outputs
and are employed to store the history of the optimal value
of objective function and its corresponding solution vector.

To illustrate the usage of SSO function, consider the prob-
lem of minimizing the six-hump camel-back function

minh xð Þ ¼ 4x21−2:1x
4
1 þ x61=3þ x1x2−4x22 þ 4x42

s:t:x∈ −3; 3½ �
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Fig. 2 CDF plot for high dimensional problem
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In the bounded region, this function has six minima, while
four of six minima are local ones (Fig. 3). The global mini-
mum is − 1.0316, and the corresponding solutions are
x* = (−0.0898, 0.7126) and x*= (0.0898,−0.7126).

3.2.2 Algorithm parameter definition

The distributional parameters for design variables are written
in lines 8–9 after they are augmented to be truncated normal
variables.

3.2.3 Direct Monte Carlo simulation

Lines 13–19 represent the sampling method for truncated nor-
mal variables.

3.2.4 Markov Chain Monte Carlo

Compared with its counterpart in Appendix 1 (line23), a slight
modification is made in line 33, calculating the standard de-
viation using all samples in a simulation level instead of the
first Np0 samples. This leads to a larger spread of the proposal
distribution in Subset Simulation for structural optimization.

Since the design variables have boundaries in the parame-
ter space, lines 47–53 are added to ensure that the generated
candidate satisfies those constraints. In the MMH code, two
PDF calculators are revised according to the definition of
truncated distribution (lines 56–57). For structural optimiza-
tion, the simulation procedure stops when the maximum sam-
ple standard deviation (line 83 and line 89) is less than the
specified tolerance stored in or the number of
simulation levels is greater than the specified maximum num-
ber stored in . At the end of the Matlab
code, lines 97–98 determine the minimum of the objective
function and the corresponding solution.

For the completeness of the illustrated example, we per-
formed Subset Simulation to solve the problem shown in
Fig. 3, and the input lines are

The optimization history is given in Fig. 4. After
28 simulation levels, SSO function finds a minimum
of − 1 .0136 wi t h 2900 func t i on eva lua t i on s .
However, this minimum value is achieved at the

13th simulation level and after that this value does
not change. This is caused by the adoption of sample
s ta t i s t ics , i .e . , sample s tandard devia t ion , for
termination.
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Fig. 3 The six-hump camel-back function
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4 Extensions

A number of extensions in the algorithms and codes can be
thought of, a few of which are described in the following
subsections.

4.1 Argument check

In order to make the code in Appendix 1 operate like a ‘pro-
fessional’ function in Matlab, the following additional lines
may be added just after the definition of SS function (line
1). These lines provide default parameter setting and throw
errors and prompts for the user. For SSO function, it can be
done by making small changes to the above lines.

4.2 Post-processing

It is very simple to extend the code to provide some basic post-
processing operations, such as the CDF plot for reliability
analysis. In fact, this can be done by adding three additional
lines just after line 78.

For structural optimization, the following three lines draw a
history of optimization.

4.3 Alternative stop criteria for structural optimization

The stop criterion here is based on a combination of the sam-
ple standard deviation and the maximum number of simula-
tion levels. Two alternative stop criteria can be adopted. The
first one is based on the idea that when the CDF of the objec-
tive function approaches zero, the sequence of objective func-
tion also approaches its minimum point. Thus, the line 90 in
Appendix 2 is changed to

The second stop criterion is based on the difference be-
tween the minima of objective function in two consecutive
simulation levels.

4.4 Constraint-handling for structural optimization

Admittedly, constrained optimization algorithms are more
preferable to unconstrained ones because most of optimization
problems in engineering and science fields have a variety of
restriction. It is also quite convenient to extend the SSO algo-
rithm to account for multiple general constraints. Here, con-
sider the following constrained optimization problem

Min W dð Þ
s:t: gi dð Þ < 0 i ¼ 1;…; ne

ð15Þ

where ne is the number of constraints. In order to include
the effects of constraints, a constraint fitness function is
defined as

Fcon dð Þ ¼ −max
i

vi ð16Þ

where {vi} are the violations of constraints, which are
given by

vi ¼ 0 ; gi dð Þ < 0
gi dð Þ ; gi dð Þ > 0

�
ð17Þ

Four lines function, a sub-function of SSO
function, can be easily added to realize this definition.

0 5 10 15 20 25 30

-1.03

-1.025

-1.02

-1.015

-1.01

-1.005

-1

-0.995

-0.99

Number of simulation levels

O
bj

ec
tiv

e 
fu

nc
tio

n

Fig. 4 The optimization history of the six-hump camel-back function
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In the case of considering constraints, the sorting
sequence is not unique, which is very important to
provide seed samples for the next simulation level. Li
and Au proposed a double-criterion ranking method to

solve this issue successfully. Please refer to Ref. (Li and
Au 2010) for more details about this method. The cor-
responding code is written in lines 103–112, just
appended to SSO function as a subfunction.

Both the objective function and the constraint fitness
function now are calculated using Fitness subfunction so
that line 22 and line 65 are substituted by the following
lines.

To sort the samples considering the objective function
and the constraint fitness function, both line 25 and 81
become

To generate conditional samples, the constraint fitness
function must be induced in the MMH algorithm, which
means the lines 67–70 are changed to

5 Practical use

These two codes can be conveniently applied by users
in practice. In this section, two applications are consid-
ered, one for structural reliability analysis and one for
structural optimization design. Since the purpose of two

applications is to illustrate the applications of Subset
Simulation, we do not focus on comparing it with other
methods for accuracy or efficiency.

5.1 Structural reliability analysis

The one-bay one-s to rey f rame is t aken f rom
Ref.(Bucher 2009) and is concerned with its collapse
subjected to static loads, including a horizontal load P1 and
a vertical load P2, as shown in Fig. 5. Both P1 and P2 are
random and normally distributed. The failure of the frame is
defined by the first-order rigid-plastic hinge theory, and then
three dominant collapse mechanisms can be identified, as
shown in Fig. 5 as failure modes. The three failure modes
are given by the following relations

h1 Xð Þ ¼ 4
Mpl

L
−P1 ð18Þ

h2 Xð Þ ¼ 4
Mpl

L
−P2 ð19Þ

h3 Xð Þ ¼ 6
Mpl

L
−P1−P2 ð20Þ

where Mpl is the plastic moment, which is a determin-
istic quantity. The frame fails when any one of these
three collapse mechanisms occurs. This means that it
is a series system, i.e., the LSF of this frame h(x) = -
min (h1(x), h2(x), h3(x)). Assuming that the mean value of
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P1 and P2 is 1:7Mpl

L and their coefficient of variation is
0.5. The above LSF is transferred into standard normal
space, as shown in Fig. 6.

Based on the above given information, the following input
lines are used to perform structural reliability analysis of this
frame structure.

The CDF plot obtained from the code is shown in Fig. 7.
Furthermore, the failure probability given by Subset

Simulation is 5.660×10−5 with 2,300 samples, which can be
known by checking the size of in the command window.

Fig. 6 Limit state in the standard normal space
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Fig. 7 CDF plot for the one-bay one-storey frame problem

Fig. 5 One-bay one-storey frame
structure and failure modes
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The CDF plots for p0=0.15, 0.20, 0.25 and 0.30 are
also given in Fig. 7. The estimated failure probabili-
ties and the number of required samples are listed in
Table 1. The purpose of this comparison is to see how
Subset Simulation behaves differently by adopting dif-
ferent values of p0 for the example provided here. It
seems the CDF plot with p0 = 0.3 significantly deviates
from the rest. As reported in Ref.(Zuev et al. 2012),
the values of p0 selected from the interval [0.1, 0.3]
would produce similar efficiency with similar accura-
cy. It should be pointed out that this conclusion was
drawn based on the specified values of target failure
probability and the total number of samples. In fact,
the practical interval of p0 may be narrower or larger
than that reported by Zuev et al. (2012). In other
words, the optimal value of p0 is still problem-
dependent somewhat although they provided a theoret-
ical basis for the selection of p0. For the currently
investigated problem, p0 = 0.1, 0.15, 0.20 and 0.25
are suitable for reliability analysis, while p0 = 0.3 is
not proper.

5.2 Structural design optimization

Because constrained optimization problems are more
common than unconstrained ones in engineering prac-
tice, we provide an example with 4 constraints in this
section. It should be noted that, in order to solve this
problem, the code in Appendix 2 for structural optimi-
zation must include all the extension changes described
in the subsection 4.4 entitled “Extensions”.

Consider the tension-compression string design prob-
lem taken from Ref. (Coello Coello 2000), as shown in
Fig. 8. The objective is to minimize the string weight
under constraints on deflection, shear stress, surge fre-
quency, limits on outside diameter and on design vari-
ables. There are three design variables in this problem:
the wire diameter d, the mean coil diameter D, and the
number of active coils P, i.e., the design vector [x1, x2,
x3] = [d,D,P] (Fig. 8).

The problem can be formulated as

min f xð Þ ¼ x3 þ 2ð Þx2x21 ð21Þ

Subject to

g1 xð Þ ¼ 1−
x32x3

71785x41
≤0 ð22Þ

g1 xð Þ ¼ 4x22 − x1x2
12566 x2x31−x41

� � þ 1

5108x21
− ≤0 ð23Þ

g3 xð Þ ¼ 1−
140:45x1
x22x3

≤0 ð24Þ

g4 xð Þ ¼ x2 þ x1
1:5

−1≤0 ð25Þ

0:05≤x1≤2:0; 0:25≤x2≤1:3; 2:0≤x3≤15:0 ð26Þ

Table 1 Estimated failure probabilities and the number of samples with
different p0

p0 0.10 0.15 0.20 0.25 0.30

Failure probability (10−4) 0.5660 0.7563 0.9280 0.7861 4.3303

Number of samples 2300 2625 2500 2750 2600

D
PP

d

Fig. 8 The tension-compression string design problem
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Fig. 9 The optimization history of the tension-compression string design
problem
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The objective function and all constraints are calculated by
a Matlab function named .

Based the above information, the input lines for this opti-
mization problem are

Figure 9 shows the optimization history of this
problem. After 93 simulation levels, SSO finds a
m in imum o f 0 . 0127 a t d e s i gn ve c t o r [d , D ,
P] = [0.0528, 0.3849, 9.8076]. The total number of
function evaluation is 23,500. This optimization re-
sult is a feasible solution by re-examining all con-
straints’ values.

6 Summary and conclusions

This paper presents two very simple Matlab codes of
Subset Simulation for reliability analysis and struc-
tural optimization. The two codes for reliability anal-
ysis and structural optimization are comprised of 78
lines and 98 lines, respectively. The codes can be
easily extended to include more considerations. For
instance, constraint-handling method is included to
deal with constrained optimization problems. We
made attempts to organize the codes in the way of

Matlab standard functions so that users can conve-
niently use them without modifications for their spe-
cific applications. This will be very helpful for the
beginners in reliability engineering and structural op-
timization using Subset Simulation for their own ap-
plications. The usages of SS and SSO function are
demonstrated through four numerical examples, in-
cluding a high-dimensional LSF, structural reliability
analysis of the one-bay one-storey frame, minimizing
the six-hump, camel-back function, and structural op-
timization design of a tension-compression spring. To
facilitate future communication with the readers who
may be interested in this research, we have casted a
w e b s i t e . B o t h c o d e s a n d e x amp l e s c a n b e
downloaded from the webpage: https://sites.google.
com/site/rasosubsim/.
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Appendix 1: subset simulation for reliability analysis
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Appendix 2: subset simulation for structural optimization
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