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Abstract The paper proposes a novel physically inspired
population-based metaheuristic algorithm for continuous
structural optimization called as Water Evaporation
Optimization (WEO). WEO mimics the evaporation of a tiny
amount of water molecules adhered on a solid surface with
different wettability which can be studied by molecular dy-
namics simulations. A set of six truss design problems from
the small to normal scale are considered for evaluating the
WEO. The most effective available state-of-the-art
metaheuristic optimization methods are used as basis of com-
parison. The optimization results demonstrate the efficiency
and robustness of the WEO and its competitive performance
to other algorithms for continuous structural optimization
problems.

Keywords Water evaporation optimization .Molecular
dynamics simulations . Continuous structural optimization .

Global search . Local search

1 Introduction

The aim of structural optimization is to generate automated
procedures for finding the best possible design with respect to
at least one criterion (the objective), satisfying a set of con-
straints (Davarynejad et al. 2012). Structural optimization is
an important area related to both optimization and structural

engineering. From the optimization point of view, efficient
and fast stochastic optimization algorithms (metaheuristic al-
gorithms) are developed to overcome the difficulties of tradi-
tional optimization solvers (Gradient-based optimization
algorithms) and gained increasing popularity because of their
ability to deliver satisfactory solutions in a reasonable time.
Performance assessment of a metaheuristic algorithm may be
used by solution quality, computational effort, and robustness
(Talbi 2009), directly affected by its two contradictory criteria:
exploration of the search space (diversification) and exploita-
tion of the best solutions found (intensification). To alleviate
these two features over the last three decades various kinds of
population based metaheuristic algorithms have been devel-
oped and modified, and applied successfully to structural op-
timization. From these approaches for example one can refer
to Genetic Algorithms (GA) (Rajeev and Krishnamoorthy
1992), Simulated Annealing (SA) (Lamberti 2008), Ant
Colony Optimization (ACO) (Camp and Bichon 2004),
Particle Swarm Optimization (PSO) (Kaveh and Talatahari
2009a), Harmony Search (HS) (Degertekin 2012; Lee and
Geem 2004), Big Bang-Big Crunch (BB-BC) (Camp 2007),
Charged System Search (CSS) (Kaveh and Talatahari 2010b),
Imperialist Competitive Algorithm (ICA) (Kaveh and
Talatahari 2010c), Cuckoo Search algorithm (CS) (Yang and
Deb 2010), Teaching Learning Based Optimization algorithm
(TLBO) (Degertekin and Hayalioglu 2013), Mine Blast
Algorithm (MBA) (Sadollah et al. 2012), Dolphin echoloca-
tion optimization (DEO) (Kaveh and Farhoudi 2013), Ray
Optimization algorithm (RO) (Kaveh and Khayatazad 2012)
and Colliding Bodies Optimization (CBO) (Kaveh and
Mahdavi 2014).

Very recently the authors developed a novel and ef-
ficient physically inspired multiple population based
metaheuristic algorithm for real parameter optimization
called as Water Evaporation Optimization (WEO). WEO
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mimics the evaporation of a tiny amount of water mol-
ecules adhered on a solid surface with different wetta-
bility which can be studied by molecular dynamics
simulations.

Structural optimization problems can have discrete, contin-
uous and/or mixed continuous and discrete design variables.
Although it is often desirable to have discrete or mixed dis-
crete and continuous design variables for structural optimiza-
tion problems it is common to develop the optimization algo-
rithms for continuous engineering optimization in the aspect
of theory and practice. In this regard our aim is to assess the
efficiency of implementing WEO on continuous structural
optimization problems.

Many structural test functions exist in the literature, but
there is no standard list one has to follow. In this regard
Gandomi and Yang (2011) have categorized structural optimi-
zation problems into two groups, truss and non-truss design
problems. Truss design problems are highly non-linear, in-
volving many different design variables under complex and
nonlinear constraints which can be classified as small scale,
normal scale, large scale and very large scale problems. Truss
optimization is a challenging area of structural optimization,
and many researchers have tried to minimize the weight (or
volume) of truss structures using different algorithms as it is
reviewed in the first paragraph of this section. In this regard
six truss design problems (planar 10-bar truss, spatial 22-bar
truss, spatial 25-bar truss, spatial 72-bar truss, 120-bar truss
dome, and planar 200-bar truss) are used here as small and
normal scale benchmarks for evaluating the search behavior of
WEO utilizing three metrics: solution quality, computational
effort and robustness. The most effective available state-of-
the-art metaheuristic optimization methods based on our
knowledge are used here as the basis of comparison. The
optimization results demonstrate the efficiency and competi-
tive performance of the WEO algorithm in terms of the solu-
tion quality and robustness.

The structure of the paper is as follows. Section 2 develops
the novel proposed WEO algorithm in detail. Section 3 pre-
sents mathematical model of structural optimization with con-
tinuous design variables, and investigates parameter setting and
the search behavior of WEO in depth, and experimentally val-
idates the WEO and compares it with most efficient
metaheuristics. At the end conclusions are derived in Section 4.

2 Water evaporation optimization (WEO)

The evaporation of water is very important in biological and
environmental science. The water evaporation from bulk sur-
face such as a lake or a river is different from evaporation of
water restricted to the surface of solid materials. The second
type of evaporation is the inspiration basis of WEO. This type
of water evaporation is essential in the macroscopic world

such as the water loss through the surface of soil (Zarei et al.
2010). Wang et al. (Wang et al. 2012) presented Molecular
Dynamics (MD) simulations on the evaporation of water from
a solid substrate with different surface wettability. In the fol-
lowing, first their simulation result is outlined which is con-
sidered as an effective essence to develop the present WEO
algorithm. Then the analogy between this type of evaporation
and a population-based metaheuristic algorithm is established.
This analogy leads us to the mechanisms of the WEO. At the
end, the proposed WEO is presented.

2.1 MD simulations for water evaporation from a solid
surface

MD simulations were carried out in a neutral substrate which
is chargeable between q=0e to q=0.7e, where e stands for an
elementary charge with a measured value of approximately
1.6×10−19 coulombs. By changing the value of charge (q), a
substrate with tunable surface wettability can be obtained.

Initially, the fixed number of water molecules was piled
upon the substrate in a water cube form as shown in Fig. 1a.
In the simulation, q is sampled from 0-0.7e with an increment
of 0.1e. The simulations show that the water spreads smoothly
on the substrate when q≥0.4e (Fig. 1c). When q <0.4e, the
water shrinks gradually into a sessile droplet like a spherical
cap with the contact angle (θ) to the substrate as q decreased
(Fig. 1b). In this phase, the contact angle between droplet and
substrate can be affected by the amount of aqueous
(Gelderblom et al. 2011), nearby liquid molecules (Hong-
Kai and Hai-Ping 2005), and the surface wettability.
However the contact angle (θ) can be used only as a phenom-
enology criterion of surface wettability and it can be consistent
to the experimental results of relatively small amount of water.

The evaporation speed of the water layer can be described
by the evaporation flux which is defined as the average num-
ber of the water molecules entering the accelerating region
(the upward arrow denoted in Fig. 1a) from the substrate per
nanosecond. Counter to intuition, the evaporation flux does
not decrease monotonically as q increases. Actually the evap-
oration flux first increases as q increases when q<0.4e; then
the evaporation flux reaches its maximum around q=0.4e;
when q≥0.4e, the evaporation flux decreases as q increases.

To analyze this unusual variation of the evaporation flux,
Wang et al. (Wang et al. 2012) assumed that the evaporation
flux J(q) can be considered as a product of the aggregation
probability of a water molecule in the interfacial liquid–gas
surface and the escape probability of such surficial water mol-
ecule:

J qð Þ∝Pgeo θ qð Þð ÞPener Eð Þ ð1Þ

where Pgeo(θ) is the probability for a water molecule on the
liquid–gas surface, which is a geometry related factor. With
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respect to molecular dynamics simulation, Pgeo(θ) is defined
as the ratio of the number of surficial water molecules to the
total number of all condensed water molecules, and it is cal-
culated as:

Pgeo θð Þ ¼ Po
2

3
þ cos3θ

3
−cosθ

� �−2=3

1−cosθð Þ ð2Þ

where P0 is a constant function of water molecule diameter
and total volume of molecules. It should be noted that this
probability is obtained for q<0.4e in which the water mole-
cules shrink gradually into a sessile droplet like a spherical cap
with contact angle θ to the substrate. For more detail, the
reader can refer to MD simulations conducted by Wang
et al. (Wang et al. 2012). Pener(E) is the escape probability of
a surficial water molecule. E=EWW+Esub(q) is the average
interaction energy exerted on the surficial water molecules,
Eww is the energy provided by the neighboring water mole-
cules; Esub(q) represents the interaction energy from the sub-
strate, mainly provided by the electrical charge q assigned on
the substrate.

The relationship between the assigned charge q and the
contact angle of the water droplet is shown in Fig. 2a. The
contact angle of the water droplet θ decreases as q in-
creases and reaches 0° when q= 0.4 e. When q< 0.4 e, most
of the surficial water molecules are relatively far from the
substrate. According to Fig. 2b, the energy Esub provided
by the substrate does not change much, and its variation is
negligible if compared to the Esub of q≥ 0.4e. At the same
time, the Eww provided by the neighboring water molecules
almost keeps constant in simulation. Hence, for q< 0.4e,
the escape probability of a surficial water molecule
(Pener(E)) is nearly a constant. Therefore the evaporation
flux (1) will be updated as follows in which J0 is constant
equal to 1.24 ns−1.

J θð Þ ¼ JoPgeo θð Þ; q < 0:4 ð3Þ

For q≥ 0.4e, the adhered water forms a flat single-layer
molecule sheet with only a few water molecules

overlapping upon it, and the shape of the tiny water aggre-
gation does not change much with different q. According
to the definition of Pgeo(θ), all the water molecules are on
the surface layer now, therefore Pgeo(θ) = 1. According to
the thermal dynamics, for the system under the NVT en-
semble (NVT ensemble indicates a canonical ensemble
representing possible states of a mechanical system in ther-
mal equilibrium), the probability for a free molecule to

gain kinetic energy more than E0 is proportional to exp

− Eo
KBT

� �
(Bond and Struchtrup 2004). Based on the MD

simulations the evaporation flux decreases almost expo-
nentially with respect to Esub. Therefore the evaporation
flux (1) will be updated as follows in which T is the room
temperature and KB is the Boltzman constant (Bond and
Struchtrup 2004).

J qð Þ ¼ exp −
Esub

KBT

� �
; q≥0:4e ð4Þ

2.2 Inspiration of the WEO algorithm

Based on the previous subsection one can see a fine anal-
ogy between this type of water evaporation phenomena
and a population based metaheuristic algorithm, if he/she
notes their MD simulations results from end to the begin-
ning. It should be noted that this analogy is stated for a
minimization problem. Water molecules can be considered
as algorithm individuals. Solid surface or substrate with
variable wettability is reflected as the search space.
Decreasing the surface wettability (substrate changed from
hydrophility to hydrophobicity) reforms the water aggre-
gation from a monolayer to a sessile droplet. Such a be-
havior is in coincidence with how the layout of the algo-
rithm individuals changes to each other as the algorithm
progresses. Furthermore, decreasing wettability of the sur-
face (decreasing q from 0.7 e to 0.0e) can represent the
reduction of the objective function for a minimization

Fig. 1 (a) Side view of the initial
system; (b) Snapshot of water on
the substrate with low wettability
(q = 0 e); (c) Snapshot of water on
the substrate with high wettability
(q = 0.7 e) (Wang et al. 2012)
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optimization problem as the algorithm progresses.
Evaporation flux variation of the water molecules can be
considered as the most appropriate measure for updating
the individuals which is in a good agreement with the local
and global search ability of the algorithm, and can help us
to develop the WEO with significantly good convergence
behavior and simple algorithmic structure.

The evaporation flux is considered as a measure for
determining the probability of updating the individuals of
the algorithm that reaches its maximum around q= 0.4e.
This situation is considered until the algorithm reaches
the middle of the optimization process. In other words,
WEO updates the individuals with the probability based
on (4) (this probability is named Monolayer Evaporation
Probability or MEP) until it reaches to half of the number
of objective function evaluations. This first phase provides
the global search ability of the algorithm. After this phase,
individuals update with the probability based on (3), which
is named as Droplet Evaporation Probability or DEP. This
phase provides the local search ability of the algorithm.
These two phases are introduced extensively in the follow-
ing, and then the updating mechanism of individuals is
introduced.

2.2.1 Monolayer evaporation phase

In the monolayer evaporation phase we can estimate the (4)
with a simple exponential function of the substrate interaction
energy, i.e., exp(Esub). As mentioned before, in this phase
(q>0.4e), as q increases, the substrate will have more energy
and as a result less evaporation will occur. Let us consider the
maximum (Emax) and minimum (Emin) values of Esub, as -0.5
and -3.5, respectively, for the tth iteration of the algorithm
until half the number of algorithm iterations. These values
are based on Fig. 2b. The monolayer evaporation probability
for different values of substrate energy between -3.5 and -0.5
is shown in Fig. 3.

In each iteration, the objective function of individuals Fiti
t

is scaled to the interval [-3.5, -0.5] representing the

corresponding Esub(i)
t inserted to each individual (substrate

energy vector), via the following scaling function:

Esub ið Þt ¼ Emax−Eminð Þ � Fitti−Min Fitð Þ� �
Max Fitð Þ−Min Fitð Þð Þ þ Emin ð5Þ

where Min and Max are the minimum and maximum func-
tions, respectively. After generating the substrate energy vec-
tor, the Monolayer Evaporation Probability matrix (MEP) is
constructed by the following equation:

MEPt
i j ¼

1 if randi j < exp Esub ið Þt� �
0 if randi j ≥ exp Esub ið Þt� ��

ð6Þ

whereMEPij
t is the updating probability for the jth variable of

the ith individual or water molecule in the tth iteration of the
algorithm. In this way an individual with better objective func-
tion (considering the minimization problem) is more likely to
remain unchanged in the search space. In detail we can say
that in each iteration the best and worst candidate solutions
will be updated by the probability equal to exp(-3.5) =0.03
and exp(-0.5)=0.6, respectively. In other words we can con-
sider these values as minimum (MEPmin) and maximum
(MEPmax) values of monolayer evaporation probability. Our
simulation results show that considering MEPmin=0.03 and
MEPmax=0.6 based on the simulation results (Fig. 2b) is log-
ical. However, these values can be considered as the first two
parameters of the algorithm.
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Fig. 2 (a) The contact angle θ of
the water droplet with different
assigned charge q; (b) The
interaction energy exerted on the
outermost-layer water by the
substrate (Esub) with different
assigned charge q (Wang et al.
2012)
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Fig. 3 Monolayer evaporation flux with different substrate energy for the
WEO
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2.2.2 Droplet evaporation phase

In the droplet evaporation phase, using (2 and 3) the evapora-
tion flux is as:

J θð Þ ¼ JoPo
2

3
þ cos3θ

3
−cosθ

� �−2=3

1−cosθð Þ ð7Þ

where J0 and P0 are constant values. As it was mentioned
before, in this phase (q<0.4e), since q is smaller, the contact
angle is greater and as a result we will have less evaporation.
According to Fig. 2a the maximum and minimum values of
contact angle are 50° and 0°, respectively. Based on the MD
simulations results, the variation of the evaporation flux per-
fectly fitted to the experimental results in the range
20°< θ<50°. It can be interpreted that for θ<20° the water
droplet is no longer observed like a perfect sessile spherical
cap. Figures 4a and b illustrate this evaporation flux functions
neglecting the constant values J0 and P0 for various contact
angles between 0°<θ<50° and 20°< θ<50°, respectively.

Our simulation results show that considering contact angle
between 20°< θ<50° is quite suitable for WEO. Based on
Fig. 4b, the maximum value for droplet evaporation probabil-
ity is 2.6. Considering J0×P0 equal to 1

2:6 for limiting the upper
bound of droplet evaporation probability to 1, and considering
-20 and -50 as the maximum (θmax) and minimum (θmin)
values of contact angle, the droplet evaporation probability
for various contact angles between -50°<θ< -20° are shown
in Fig. 5. For all iterations in the second half of the algorithm,
the objective function of individuals Fiti

t is scaled to the in-
terval [-50°, -20°] via the following scaling function which
represents the corresponding contact angle θ(i)t (contact angle
vector):

θ ið Þt ¼ θmax−θminð Þ � Fitti−Min Fitð Þ� �
max Fitð Þ−Min Fitð Þð Þ þ θmin ð8Þ

where theMin andMax are the minimum and maximum func-
tions. Such an assumption is consistent with MD simulations
as depicted in Fig. 2a and results in a good performance of the
WEO. Negative values have no effect on computations (co-
sine is an even function). In this way, the best and worst

individuals have the smaller and bigger updating probability
like the evaporation speed of a droplet on a substrate with less
(q=0.0e) and more (q=0.4 e) wettability, respectively. In oth-
er words we can have the droplet evaporation probability ma-
trix with minimum (DEPmin) and maximum (DEPmax) values
of droplet evaporation probability equal to 0.6 and 1, respec-
tively as shown in Fig. 5. Our algorithm performance evalua-
tion results show that these values are suitable. However these
parameters can be considered as the next two parameters of
the algorithm.

After generating contact angle vector θ(i)t, the Droplet
Evaporation Probability matrix (DEP) is constructed by the
following equation:

DEFt
i j ¼

1 if randi j < J θ tð Þ
i

� �
0 if randi j ≥□ J θ tð Þ

i

� �
8<
: ð9Þ

where DEPij
t is the updating probability for the jth variable of

the ith individual or water molecule in the tth iteration of the
algorithm.

2.2.3 Updating water molecules

In the MD simulations, the number of evaporated water mol-
ecules in the entire simulation process is considered negligible
compared to the total number of the water molecules resulting
in a constant total number of molecules. In the WEO also the
number of algorithm individuals or number of the water mol-
ecules (nWM) is considered as constant, in all tth algorithm
iterations. nWM is the algorithm parameter like other popula-
tion based algorithms. t is the number of the current iteration.
Considering a maximum value for algorithm iterations (tmax)
is essential for WEO to determine the evaporation phase of the
algorithm, and also use as the stopping criterion. Such stop-
ping criterion is utilized in many of optimization algorithms.
When a water molecule is evaporated it should be renewed.
Updating or evaporation of the current water molecules is
made with the aim of improving objective function. The best
strategy for regenerating the evaporated water molecules is
using the current set of water molecules (WM (t)). In this
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based on the MD simulations
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way a random permutation based step size can be considered
for possible modification of the individuals as:

S ¼ rand: WM tð Þ permute1 ið Þ jð Þ½ �−WM tð Þ permute2 ið Þ jð Þ½ �
� �

ð10Þ

where rand is a random number in [0, 1] range, permute1 and
permute2 are different rows permutation functions. i is the
number of water molecule, j is the number of dimensions of
the problem at hand. The next set of molecules (WM (t+1)) is

generated by adding this random permutation based step size
multiplied by the corresponding updating probability (mono-
layer evaporation and droplet evaporation probability) and can
be stated mathematically as:

WM tþ1ð Þ ¼ WM tð Þ þ S � MEP tð Þ t≤ tmax=2
DEP tð Þ t > tmax=2

�
ð11Þ

Each water molecule is compared and replaced by the cor-
responding renewedmolecule based on the objective function.
It should be noted that random permutation based step size can
help us in two aspects. In the first phase, water molecules are
more far from each other than in the second phase. In this way
the generated permutation based step size will guarantee glob-
al and local search capability in each phase. The random part
guarantees the algorithm to be sufficiently dynamic. It should
also be noted that these two aspects are guaranteed with more
emphasis by considering two specific evaporation probability
mechanisms for each phase. As it is clear from Figs. 3 and 5,
best water molecules are renewed locally (with less evapora-
tion probability) while bad quality molecules are renewed
globally (with more evaporation probability).

-50 -40 -30 -20

0.6

0.8

1

θ

J(
θ)

Fig. 5 Droplet evaporation flux with different contact angles considered
for the WEO
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convergence behavior of the
WEO for: (a) 25-bar tower, (b)
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Table 1 Statistical results of sensitivity analysis with respect to the nWM parameter for the 25-bar and 120-bar truss problems

Function nWM

5 10 15 20 30 50 100

25-bar tower Mean 557.13 545.17 545.18 545.28 545.59 546.56 550.93

Best 548.66 545.16 545.16 545.21 545.41 545.91 547.47

Worst 577.03 545.19 545.21 545.43 545.87 547.34 556.67

SD 9.66 0.01 0.01 0.07 0.15 0.44 2.38

NSA 19,985 19,980 19,950 19,220 19,650 19,350 17,200

72-bar truss Mean 379.64 364.504 364.35 365.27 369.33 387.23 446.41

Best 366.23 364.03 364.11 364.71 366.96 369.39 408.96

Worst 433.81 365.59 364.68 366.38 371.54 404.15 484.108

SD 18.73 0.56 0.19 0.49 1.413 8.67 24.648

NSA 19,985 19,870 19,125 19,980 2000 19,850 19,700

120-bar dome truss Mean 33757.20 33260.89 33253.41 33260.49 33312.68 33515.25 34802.13

Best 33351.76 33250.49 33251.51 33255.41 33266.88 33392.91 33940.30

Worst 35236.09 33280.92 33258.79 33264.69 33355.99 33650.11 35923.16

SD 542.87 8.68 2.26 3.40 24.87 97.64 510.21

NSA 19,835 19,880 19,950 19,200 18,780 17,600 18,200
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2.3 The proposed WEO algorithm

In this section, the proposedWEO algorithm is presented. The
flowchart of WEO is illustrated in Fig. 6 and the steps in-
volved are as follows:

Step 1 Initialization

Algorithm parameters are determined in the first step. These
parameters are the number of water molecules (nWM), maxi-
mum number of algorithm iterations (tmax), minimum (MEPmin)
and maximum (MEPmax) values of monolayer evaporation
probability, minimum (DEPmin) and maximum (DEPmax)
values of droplet evaporation probability. As mentioned before,
evaporation probability parameters are determined efficiently
for WEO based on the MD simulations results. The initial po-
sitions of all water molecules are generated randomlywithin the
n-dimensional search space (WM (0)), and are evaluated based
on the objective function of the problem at hand.

Step 2 Generating water evaporation matrix

Every water molecule follows the evaporation probability
rules specified for each phase of the algorithm based on the

(6 and 9). For t≤ tmax/2, water molecules are globally evapo-
rated based on the monolayer evaporation probability (MEP)
rule (6); for t> tmax/2, evaporation occurs based on the droplet
evaporation probability (DEP) rule (9). It should be noted that
for generating monolayer and droplet evaporation probability
matrices, it is necessary to generate the correspondent sub-
strate energy vector (5) and contact angle vector (8),
respectively.

Step 3 Generating random permutation based step size
matrix

A random permutation based step size matrix is generated
according to (10).

Step 4 Generating evaporated water molecules and updating
the matrix of water molecules.

The evaporated set of water moleculesWM(t+1) is generated
by adding the product of step size matrix and evaporation
probability matrix to the current set of molecules WM(t) ac-
cording to (11). These molecules are evaluated based on the
objective function. For the molecule i (i=1, 2,…, nWM) if the
newly generated molecule is better than the current one, the
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latter should be replaced. Return the best water molecule as
the output of the algorithm.

Step 5 Terminating condition check

If the number of iteration of the algorithm (t) becomes
larger than the maximum number of iterations (tmax), the algo-
rithm terminates. Otherwise goes to Step 2.

3 Test problems and optimization results

The WEO algorithm developed in this research is tested in six
continuous weight minimization problems consisting of a pla-
nar 10-bar truss, a spatial 22-bar truss, a spatial 25-bar trans-
mission tower, a spatial 72-bar truss, a 120-bar dome shaped
truss and a planar 200-bar truss. These problems include 10, 7,
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Fig. 10 Schematic of the planar 10-bar truss

Table 2 Comparison of optimization results obtained by WEO and some other metaheuristic algorithmss for the 10-bar truss problem

Element group Optimal cross-sectional areas (in2)

HPSACO ABC-AP SAHS TLBO MSPSO HPSSO WEO
(Kaveh and
Talatahari 2009b)

(Sonmez 2011) (Degertekin 2012) (Degertekin and
Hayalioglu 2013)

(Talatahari
et al. 2013)

(Kaveh
et al. 2014)

Present work

Case 1

1 A1 30.3070 30.5480 30.3940 30.4286 30.5257 30.5384 30.5755

2 A2 0.1000 0.1000 0.1000 0.1000 0.1001 0.1000 0.1000

3 A3 23.4340 23.1800 23.0980 23.2436 23.2250 23.1510 23.3368

4 A4 15.5050 15.2180 15.4910 15.3677 15.4114 15.2057 15.1497

5 A5 0.1000 0.1000 0.1000 0.1000 0.1001 0.1000 0.1000

6 A6 0.5241 0.5510 0.5290 0.5751 0.5583 0.5489 0.5276

7 A7 7.4365 7.4630 7.4880 7.4404 7.4395 7.4653 7.4458

8 A8 21.0790 21.0580 21.1890 20.9665 20.9172 21.0644 20.9892

9 A9 21.2290 21.5010 21.3420 21.5330 21.5098 21.5294 21.5236

10 A10 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000

Best weight (lb) 5056.56* 5060.880 5061.42 5060.96 5061 5060.86 5060.99

NSA 10,650 500 × 103 7081 16,872 N/A 14,118 19,540

Case 2

1 A1 23.1940 23.4692 23.5250 23.5240 23.4432 23.5238 23.5804

2 A2 0.1000 0.1005 0.1000 0.1000 0.1000 0.1000 0.1003

3 A3 24.5850 25.2393 25.4290 25.4410 25.3718 25.3686 25.1582

4 A4 14.2210 14.3540 14.4880 14.4790 14.1360 14.3780 14.1801

5 A5 0.1000 0.1001 0.1000 0.1000 0.1000 0.1000 0.1002

6 A6 1.9690 1.9701 1.9920 1.9950 1.9699 1.9697 1.9708

7 A7 12.4890 12.4128 12.3520 12.3340 12.4335 12.3678 12.4511

8 A8 12.9250 12.8925 12.6980 12.6890 13.0173 12.7972 12.9349

9 A9 20.9520 20.3343 20.3410 20.3540 20.2717 20.3258 20.3595

10 A10 0.1010 0.1000 0.1000 0.1000 0.1000 0.1000 0.1001

Best weight (lb) 4675.78** 4677.077 4678.84 4678.31 4677.26 4676.95 4677.31

NSA 9925 500 × 103 7267 14,857 N/A 14,406 19,890

*HPSACO violates the design constraints as 0.099 % (Degertekin and Hayalioglu 2013)
** HPSACO violates the design constraints as 0.079% (Degertekin and Hayalioglu 2013)
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8, 16, 7 and 29 continuous sizing variables, respectively. The
most effective available state-of-the-art metaheuristic optimi-
zation methods based on the author’s knowledge are used here
for comparison. Since the search process is governed by ran-
dom rules, each test problem is solved by carrying out 50
independent optimization runs to obtain statistically signifi-
cant results. During each run, the maximum number of struc-
tural analyses (NSA) of 2×104 is used. The maximum number
of algorithm iterations (tmax) is equal to the result of dividing
the maximum number of structural analysis to the number of
water molecules (nWM). The performance assessment of the
algorithm is carried out based on three metrics, namely, accu-
racy, reliability and convergence speed. The WEO is coded in
the MATLAB software environment. Structural analyses
entailed by the optimization process are performed by means
of the direct stiffness method (Kaveh 1997).

3.1 Statement of the truss weight minimization problem

The weight minimization problem of a truss structure can be
stated as follows:

Find Xf g ¼ x1; x2;⋯; xng
	 


; xi∈D

tominimize W Xf gð Þ ¼
Xng
i¼1

X i

Xnm ið Þ

j¼1

pjL j

Subject to: gk Xf gð Þ≤0K ¼ 1; 2;⋯; n

ð12Þ

where {X} is the set of design variables; ng is the number of
member groups (i.e., the number of optimization variables)
defined according to structural symmetry; D represents the
design space including the cross-sectional areas of truss ele-
ments that can take discrete or continuous values; W({X}) is

Table 3 Comparison of robustness and reliability of the WEO and other metaheuristic algorithms for the 10-bar truss problem

Algorithm Weight (lb) Difference best–average
solution (%)

Difference best–worst
solution (%)

SD

Best Average Worst

Case 1 SAHS (Degertekin 2012) 5061.42 5061.95 5063.39 0.0105 0.0389 0.71

TLBO (Degertekin and Hayalioglu 2013) 5060.96 5062.08 5063.23 0.0221 0.0449 0.79

MSPSO (Talatahari et al. 2013) 5061.00 5064.46 5078.00 0.07 0.33 5.72

HPSSO (Kaveh et al. 2014) 5060.86 5062.28 5076.90 0.028 0.3159 4.325

WEO 5060.99 5062.09 5075.41 0.0217 0.2841 2.05

Case 2 SAHS (Degertekin 2012) 4678.84 4680.08 4682.26 0.0265 0.0731 1.89

TLBO (Degertekin and Hayalioglu 2013) 4678.31 4680.12 4681.23 0.0387 0.0624 1.016

MSPSO (Talatahari et al. 2013) 4677.26 4681.45 4687.50 0.08 0.22 2.19

HPSSO (Kaveh et al. 2014) 4676.95 4677.38 4679.72 0.0092 0.059 0.46354

WEO 4677.31 4679.06 4688.50 0.0374 0.2387 2.07
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the weight of the structure; nm(i) is the number of members
included in the ith group; ρi and Lj are respectively the mate-
rial density and the length of the jth member included in the ith
group; gk({X}) denote the n optimization constraints.

In order to handle optimization constraints, a penalty ap-
proach is utilized in this study by introducing the following
pseudo-cost function:

f cost Xf gð Þ ¼ 1þ ε1⋅vð Þε2 �W Xf gð Þ; v ¼
Xn

k¼1

max 0; gk Xf gð Þ½ �

ð13Þ
where υ is the total constraint violation. Constants ε1 and
ε2 must be selected considering the exploration and the
exploitation rates of the search space. In this study, ε1 is
set equal to one while ε2 is selected so as to decrease the
total penalty yet reducing cross-sectional areas. Thus, ε2 is
increased from the value of 1.5 set in the first steps of the
search process to the value of 3 set toward the end of the
optimization process.

Stress limits on truss members are imposed according to
ASD-AISC (Manual of steel construction–allowable stress
design 1989) provisions

σþi ¼ 0:6Fy f orσi ≥ 0
σ−
i f orσi < 0

�
ð14Þ

σ−
i ¼

1−
λ2
i

2C2
c

� �
Fy

� �. 5

3
þ 3λi

8Cc
þ λ3

i

8C3
c

� �
f orλi≥Cc

12π2E

23λ2
I

f orλi < Cc

8>>><
>>>:

ð15Þ

where E is the modulus of elasticity; Fy is the yield stress;
λi is the slenderness ratio (λI= kli/ri); Cc is the slenderness
ratio separating elastic and inelastic buckling regions
Cc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π2E=Fy

p� �
; k is the effective length factor; li is

the length and ri the corresponding radius of gyration of
the ith element. The radius of gyration can be related to
cross-sectional areas as (ri= aAi

b) where constants a and b
depend on the type of element cross section (for example,
pipes, angles, and tees). In this study, pipe sections
(a= 0.4993 and b= 0.6777) are adopted for bars (Lee and
Geem 2004).

Optimization constraints on nodal displacements are set as
follows which should be checked for all translational degrees
of freedom:

δi−δui ≤0 i−1; 2;⋯; nn ð16Þ

where δi is the displacement of the ith node of the truss, δi
u is

the corresponding allowable displacement, and nn is the num-
ber of nodes.

Table 4 Comparison of
optimization results obtained by
the WEO and some other
metaheuristic algorithms for the
22-bar truss problem

Element group Optimal cross-sectional areas (in2)

HS MSPSO HPSSO WEO
(Lee and Geem 2004) (Talatahari et al. 2013) (Kaveh et al. 2014) Present work

1 A1 ~A4 2.588 2.6320 2.620593 2.6196

2 A5 ~A6 1.083 1.1952 1.206836 1.1344

3 A7 ~A8 0.363 0.3541 0.355719 0.3461

4 A9 ~A10 0.422 0.4145 0.419223 0.4218

5 A11 ~A14 2.827 2.7644 2.783028 2.8002

6 A15 ~A18 2.055 2.0297 2.082686 2.1261

7 A19 ~A22 2.044 2.0909 2.029553 1.9849

Best weight (lb) 1022.23 1024 1023.9857 1023.9703

NSA 10,000 12,500 14,406 19,510

Table 5 Comparison of robustness and reliability of the WEO and other metaheuristic methods for the 22-bar truss problem

Algorithm Weight (lb) Difference best–average
solution (%)

Difference best–worst
solution (%)

SD

Best Average Worst

MSPSO (Talatahari et al. 2013) 1024 1028.550 1049.180 0.44 2.46 6.63

HPSSO (Kaveh et al. 2014) 1023.9857 1027.599 1052.048 0.3528 2.7405 6.357

WEO 1023.9703 1024.5075 1028.0314 0.0524 0.3950 0.7321
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3.2 Sensitivity analysis on WEO search behavior

In this section, the search behavior of WEO is studied. The
effects of each evaporation phase, the number of water mole-
cules (nWM), minimum and maximum values of monolayer
(MEPmin and MEPmax) and droplet (DEPmin and DEPmax)
evaporation probabilities will be analyzed in detail. In partic-
ular the suitability of minimum and maximum value of mono-
layer and droplet evaporation probability based on the

molecular dynamic simulation results (MEPmin=0.03 and
MEPmax=0.6; DEPmin=0.6 and DEPmax=1) will be sought.

The search behavior of WEO is investigated using the pla-
nar spatial 25-bar transmission tower, the spatial 72-bar truss,
and the 120-bar dome shaped truss.

For a better study of the performance of the monolayer
and droplet evaporation phases, Fig. 7 depicts the average
convergence curves resulted by 10 independent runs of
WEO for these trusses. Each truss is solved two more
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Table 6 Comparison of optimization results obtained by WEO and some other metaheuristic algorithms for the 25-bar tower problem

Element group Optimal cross-sectional areas (in2)

HPSACO HBB–BC SAHS TLBO MSPSO HPSSO WEO
(Kaveh and
Talatahari 2009b)

(Kaveh and
Talatahari 2009c)

(Degertekin 2012) (Degertekin and
Hayalioglu 2013)

(Talatahari
et al. 2013)

(Kaveh
et al. 2014)

Present work

1 A1 0.0100 2.6622 0.0100 0.0100 0.0100 0.01 0.01

2 A2 ~A5 2.0540 1.9930 2.0740 2.0712 1.9848 1.9907 1.9814

3 A6 ~A9 3.0080 3.0560 2.9610 2.9570 2.9956 2.9881 3.0023

4 A10 ~A11 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100

5 A12 ~A13 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100

6 A14 ~A17 0.6790 0.6650 0.6910 0.6891 0.6852 0.6824 0.6827

7 A18 ~A21 1.6110 1.6420 1.6170 1.6209 1.6778 1.6764 1.6778

8 A22 ~A25 2.6780 2.6790 2.6740 2.6768 2.6599 2.6656 2.6612

Best weight (lb) 544.9900 545.1600 545.1200 545.0900 545.16 545.164 545.166

Constraint tolerance (%)
(Degertekin and
Hayalioglu 2013)

3.52 2.06 None None None None None

NSA 9875 12,500 9051 15,318 10,800 13,326 19,750
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series of 10 independent runs considering monolayer and
droplet evaporation updating mechanisms alone for all tmax
algorithm iterations which are reported as WEO-MEP and
WEO–DEP, respectively. It should be noted that nWM is con-
sidered as 10. For a more precise monitoring of the results, the
weight minimization convergence histories are divided into
two parts by taking four hundredths iteration as the separating
point. Based on these values, it is clear that considering two
phases in the content ofWEO is inevitable to guarantee a good
balance between global and local search ability and keep the
dynamicity of the algorithm and preserves it from premature
convergence. The most interesting observed result is the way
WEOmatchesWEO-MEP in the first half of the iterations and
then tries to coincide with the WEO-DEP.

Table 1 presents the statistical results of 10 independent
runs for these three trusses considering variable number of
water molecules: 5, 10, 15, 20, 30, 50 and 100, in which
Mean, Best, Worst and SD stand for average, best observed,
worst observed, standard deviation of optimum designs result-
ed by 10 independent runs, respectively. NSA stands for the
number of structural analyses. For clarity, the best observed
results for each performance metric are marked in boldface.
Considering nWM between 10 and 20, results in better perfor-
mance of the algorithm. nWM will be considered 10 for all
trusses. Increasing the number of water molecules results in
poor performance of the algorithm in the aspect of accuracy.

To study the suitability of monolayer and droplet evaporation
probability values (MEPmin = 0.03 and MEPmax = 0.6;
DEPmin=0.6 and DEPmax=1) legislated based on the MD sim-
ulations results, the algorithm is employed for these three trusses
several times and it is found that these values lead to efficient
performance of theWEO. Let us consider [-3.5, -3, -2.5, -2, -1.5,
-1] as minimum values of Esub which result inMEPmin between
[0.03, 0.6]. For eachMEPmin different values are considered for
MEPmax and 10 independent runs of algorithm (only monolayer
evaporation phase) is conducted. For example, considering Esub
equal to -3.5 (MEPmin=0.03) different values ofMEPmaxwill be
obtained considering [-3, -2.5, -2, -1.5, -1, -0.5, -0.3, -0.1] as
maximum values for Esub. The obtained mean weight of 10

independent runs for different sets of monolayer evaporation
probabilities for the 25-bar truss and 120-bar dome are depicted
in the Fig. 8. Figure 9 shows the penalized weight convergence
curves of a single trial run monitored for 25-bar truss with
MEPmin=0.03 and different values of MEPmax. For further clar-
ity, the Yaxis is in the logarithmic scale. As it is clear considering
maximum value of substrate energy equal to -0.5 which is equiv-
alent to MEPmax=0.6 provides better performance of the algo-
rithm. It can be seen from Fig. 8 that the performance of the
WEO algorithm is rather insensitive to the value of MEPmin.
Furthermore, Fig. 9 shows that considering MEPmax=0.6 en-
sures dynamicity and good convergence behavior of the search
process. Sensitivity analysis also indicates that DEPmin and
DEPmax are suitable values.

Table 7 Comparison of robustness and reliability of WEO and some other metaheuristic algorithms for the 25-bar tower problem

Algorithm Weight (lb) Difference best–average
solution (%)

Difference best–worst
solution (%)

SD

Best Average Worst

HPSACO (Kaveh and Talatahari 2009b) 544.9900 545.52 N/A 0.0972 — 0.315

HBB–BC (Kaveh and Talatahari 2009c) 545.1600 545.66 N/A 0.0917 — 0.367

SAHS (Degertekin 2012) 545.1200 545.94 545.94 0.1504 0.1504 0.91

TLBO (Degertekin and Hayalioglu 2013) 545.0900 545.41 546.33 0.0587 0.2275 0.42

MSPSO (Talatahari et al. 2013) 545.160 546.030 548.780 0.16 0.66 0.8

HPSSO (Kaveh et al. 2014) 545.164 545.556 546.990 0.0718 0.3349 0.432

WEO 545.166 545.226 545.592 0.01 0.08 0.083
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Table 8 Comparison of optimization results obtained by HPSSO and some other metaheuristic algorithms for the 72-bar truss problem

Element group Optimal cross-sectional areas (in2)

ABC-AP SAHS TLBO MSPSO HPSSO WEO
(Sonmez 2011) (Degertekin 2012) (Degertekin and

Hayalioglu 2013)
(Talatahari
et al. 2013)

(Kaveh
et al. 2014)

Present work

1 A1 ~A4 1.8907 1.8890 1.8929 1.9005 1.8933 1.8618

2 A5 ~A12 0.5166 0.5200 0.5160 0.5056 0.5111 0.5206

3 A13 ~A16 0.0100 0.0100 0.0100 0.0100 0.0100 0.0105

4 A17 ~A18 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100

5 A19 ~A22 1.2968 1.2890 1.2917 1.2914 1.2912 1.2455

6 A23 ~A30 0.5191 0.5240 0.5176 0.5158 0.5151 0.5177

7 A31 ~A34 0.0100 0.0100 0.0100 0.0100 0.0100 0.0101

8 A35 ~A36 0.0101 0.0100 0.0100 0.0100 0.0100 0.0100

9 A37 ~A40 0.5208 0.5390 0.5229 0.5178 0.5361 0.5327

10 A41 ~A48 0.5178 0.5190 0.5193 0.5188 0.5212 0.5109

11 A49 ~A52 0.0100 0.0150 0.0100 0.0108 0.0100 0.0100

12 A53 ~A54 0.1048 0.1050 0.0997 0.1165 0.1109 0.1205

13 A55 ~A58 0.1675 0.1670 0.1680 0.1659 0.1667 0.1655

14 A59 ~A66 0.5346 0.5320 0.5359 0.5479 0.5340 0.5397

15 A67 ~A70 0.4443 0.4250 0.4457 0.4437 0.4537 0.4554

16 A71 ~A72 0.5803 0.5790 0.5818 0.5619 0.5746 0.5995

Best weight (lb) 364 364.0500 363.8410 363.9 363.8581 363.9827

NSA 400 × 103 12,852 17,954 18,400 13,086 19,860
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3.3 Continuous truss design problems

3.3.1 Planar 10-bar truss

This test case is frequently used in structural design optimiza-
tion to test optimization algorithms. The optimization problem
formulation is described in detail in (Kaveh and Talatahari
2009b). Truss geometry including node and element number-
ing, loading conditions (there may be two variants) and kine-
matic constraints are shown in Fig. 10.

Table 2 presents the best optimized designs found byWEO
for the two problem variants and the corresponding number of
structural analyses. The present algorithm is compared with
PSO variants (Multi-stage Particle Swarm Optimization
(MSPSO) (Talatahari et al. 2013), Hybrid Particle Swallow
Swarm Optimization (HPSSO) (Kaveh et al. 2014)), a hybrid
scheme of Particle Swarm Optimizer, Ant Colony Strategy
and Harmony Search (HPSACO) (Kaveh and Talatahari
2009b), Artificial Bee Colony algorithmwith an adaptive pen-
alty function approach (ABC-AP) (Sonmez 2011), a Self
Adaptive Harmony Search algorithm (SAHS) as an advanced
version of Harmony Search algorithm presented by
Degertekin (Degertekin 2012), and Teaching Learning
Based Otimization algorithm (TLBO) (Degertekin and
Hayalioglu 2013). In both loading cases, WEO is competitive
with other algorithms from accuracy point of view and leads
to optimum design obtained by HPSSO as the best available
result. It should be noted that the lightest design obtained by
HPSACO slightly violates the design constraints. The present
algorithm used all of its predefined number of iterations for
converging to the optimum design and shows low conver-
gence speed in comparison to the other algorithms. Table 3
presents the statistical results obtained for 50 independent runs
carried out from different initial populations randomly gener-
ated. It is clear thatWEO is competitive with other algorithms.

3.3.2 Spatial 22-bar truss

The second structural optimization problem solved in this study
is the optimal design of the spatial 22-bar truss shown in
Fig. 11. This test case, described in detail in (Lee and Geem

2004), was previously studied by Lee and Geem (Lee and
Geem 2004) using Harmony Search (HS) algorithm,
Talatahari et al. (Talatahari et al. 2013) using multi-stage parti-
cle swarm optimization (MSPSO) algorithm, and Kaveh et al.
(Kaveh et al. 2014)) using Hybrid Particle Swallow Swarm
Optimization (HPSSO) algorithm. The optimized designs
found by different algorithms are compared in Table 4 showing
that the WEO is capable to find slightly lighter design than
those obtained by HPSSO, andMSPSOwhich were practically
identical. WEO again required more structural analyses than
others and used all of its predefined number of iterations.

Table 9 Comparison of the robustness and reliability of HPSSO and other metaheuristic algorithms for the 72-bar truss problem

Algorithm Weight (lb) Difference best–average
solution (%)

Difference best–worst
solution (%)

SD

Best Average Worst

SAHS (Degertekin 2012) 364.05 366.57 369.15 0.6922 1.4009 2.02

TLBO (Degertekin and Hayalioglu 2013) 363.841 364.42 365.01 0.1591 0.3213 0.49

MSPSO (Talatahari et al. 2013) 363.900 364.350 365.850 0.12 0.53 0.32

HPSSO (Kaveh et al. 2014) 363.858 364.065 364.966 0.0569 0.3045 0.305

WEO 363.9827 364.3536 364.8913 0.1017 0.2490 0.2188
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Statistical results of independent optimization runs are present-
ed in Table 5.WEO is muchmore robust than other algorithms.

3.3.3 Spatial 25-bar tower

The third structural optimization problem solved in this re-
search is the weight minimization of the spatial 25-bar truss

schematized in Fig. 12. This is a very well-known test prob-
lem and described in detail in (Kaveh and Bakhshpoori 2013).
Table 6 compares the optimized design found by WEO with
those found by HPSACO (Kaveh and Talatahari 2009b), hy-
brid Big-Bang Big-Crunch algorithm (HBB-BC) (Kaveh and
Talatahari 2009c), SAHS (Degertekin 2012), TLBO
(Degertekin and Hayalioglu 2013), MSPSO (Talatahari et al.
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2013) and HPSSO (Kaveh et al. 2014). The lightest design is
obtained by TLBO algorithm which is 0.076 lb lighter than
that found by WEO. SAHS is overall the most efficient opti-
mizer considering both convergence speed and structural
weight. WEO again uses all of its defined number of FEs.
Statistical results of 50 independent runs are compared in
Table 7. The present WEO is the most robust algorithm.

Figure 13a compares the convergence curves obtained for
WEO, HPSACO (Kaveh and Talatahari 2009b), HBB-BC
(Kaveh and Talatahari 2009c), SAHS (Degertekin 2012),
TLBO (Degertekin and Hayalioglu 2013), MSPSO
(Talatahari et al. 2013) and HPSSO (Kaveh et al. 2014).
Each curve is relative to the best optimization run amongst
the independent runs carried out from different initial popula-
tions randomly generated. It can be seen that the present algo-
rithm converges more slowly than the other metaheuristic op-
timizers. HPSACO is the fastest algorithm and requires about
half of the structural analyses of WEO.

Convergence curves reported for HPSACO (Kaveh and
Talatahari 2009b), HBB-BC (Kaveh and Talatahari 2009c),
SAHS (Degertekin 2012), TLBO (Degertekin and
Hayalioglu 2013), PSO and MSPSO (Talatahari et al. 2013)
and HPSSO (Kaveh et al. 2014) as the best optimization ob-
served run for independently runs starting from a different

population randomly generated beside the obtained one based
on theWEO are compared in Fig. 13a.WEO shows the slower
convergence rate in comparison to the other algorithms. The
best converging rate is obtained by HPSACO: in particular
WEO needs the number of structural analyses as big as twice
the ones needed by HPSACO. In order to further evaluate
algorithm performance, Fig. 13b shows the penalized weight
optimized histories for a trial run seen for the best water mol-
ecule, average of all molecules, and worst one. The most no-
table fact is that optimization histories converge to the same
point.

3.3.4 Spatial 72-bar truss

Figure 14 shows the schematic of the spatial 72-bar truss
(numbering of nodes and elements and element grouping are
indicated in the figure). Detailed information on this test prob-
lem are given in (Kaveh and Talatahari 2009b). Table 8 com-
pares optimization results of the WEO with those of MSPSO
(Talatahari et al. 2013), HPSSO (Kaveh et al. 2014), ABC-AP
(Sonmez 2011), SAHS (Degertekin 2012) and TLBO
(Degertekin and Hayalioglu 2013). It can be seen that the
lightest design is obtained by TLBOwhich is 0.1417 lb lighter
than that obtained by WEO. The present algorithm is

Table 10 Comparison of optimization results obtained by WEO and some other metaheuristic algorithms for the 120-bar dome problem

Element group Optimal cross-sectional areas (in2)

HPSACO CSS ICA CS MSPSO HPSSO WEO
(Kaveh and
Talatahari 2009b)

(Kaveh and
Talatahari 2010a)

(Kaveh and
Talatahari 2010c)

(Kaveh and
Bakhshpoori 2013)

(Talatahari
et al. 2013)

(Kaveh
et al. 2014)

Present work

1 A1 3.0950 3.0270 3.0275 3.0244 3.0244 3.0241 3.0243

2 A2 14.4050 14.6060 14.4596 14.7168 14.7804 14.7809 14.7943

3 A3 5.0200 5.0440 5.2446 5.0800 5.0567 5.0522 5.0618

4 A4 3.3520 3.1390 3.1413 3.1374 3.1359 3.1369 3.1358

5 A5 8.6310 8.5430 8.4541 8.5012 8.4830 8.5004 8.4870

6 A6 3.4320 3.3670 3.3567 3.3019 3.3104 3.2888 3.2886

7 A7 2.4990 2.4970 2.4947 2.4965 2.4977 2.4969 2.4967

Best weight (lb) 33248.9 33251.9 33256.2 33250.42 33,251.22 33250.05 33250.24

Average weight (lb) N/A N/A N/A 33253.28 33,257.29 33,260.700 33255.55

NSA 10,000 7000 6000 6300 15,000 13,422 19,510

Table 11 Comparison of robustness and reliability of the WEO and some other metaheuristic algorithms for the 120-bar dome problem

Algorithm Weight (lb)

Best Average Worst Difference best–average
solution (%)

Difference best–worst
solution (%)

SD

MSPSO (Talatahari et al. 2013) 33,251.22 33,257.29 33,269.13 0.02 0.05 4.29

HPSSO (Kaveh et al. 2014) 33,250.05 33,260.70 33,307.16 0.032 0.17 10.49

WEO 33250.24 33255.55 33296.38 0.016 0.14 8.07
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competitive with other algorithms but requires 7000 structural
analyses more than the fastest algorithm, SAHS. It should be
noted that WEO used all of predefined number of iterations
for reaching the optimum design. Statistical results of 50 in-
dependent runs for HPSSO, SAHS, TLBO, MSPSO and
WEO are presented in Table 9. WEO is competitive with other
algorithms from the robustness point of view.

Figure 15a compares the convergence curves obtained for
WEO, SAHS (Degertekin 2012), TLBO (Degertekin and
Hayalioglu 2013), MSPSO (Talatahari et al. 2013) and
HPSSO (Kaveh et al. 2014). Each curve is relative to the best
optimization run amongst the independent runs carried out
from different initial populations randomly generated. The
present algorithm converges to the optimum design more
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slowly than the other metaheuristic optimizers: in particular, it
is 50% slower than SAHS.

3.3.5 120-bar dome truss

The 120-bar dome truss optimized in this study is schematized
in Fig. 16. For the sake of clarity, not all the element groups
are numbered in the figure. Because of structural symmetry,
the 120 members are divided into seven groups. Stress con-
straints are defined by (14) and (15), and displacement limi-
tations are imposed on all nodes in x, y and z coordinate

directions. Further details on this optimization problem can
be found in (Kaveh and Bakhshpoori 2013). The structure
was previously optimized by HPSACO (Kaveh and
Talatahari 2009b), Charged system Search algorithm (CSS)
(Kaveh and Talatahari 2010a), Imperialist Competitive
Algorithm (ICA) (Kaveh and Talatahari 2010c), Cuckoo
Search algorithm (CS) (Kaveh and Bakhshpoori 2013), stan-
dard PSO (Talatahari et al. 2013), MSPSO (Talatahari et al.
2013), and HPSSO (Kaveh et al. 2014).

Table 10 compares the optimization results of the WEO
algorithm with those found by other methods. The statistical

Table 12 Comparison of optimization results obtained by WEO and other metaheuristic algorithms for the 200-bar truss problem

Element group Optimal cross-sectional areas (in2)

HPSACO CMLPSA SAHS TLBO HPSSO WEO
(Kaveh and
Talatahari 2009b)

(Lamberti 2008) (Degertekin 2012) (Degertekin and
Hayalioglu 2013)

(Kaveh
et al. 2014)

Present work

1 0.1033 0.1468 0.1540 0.1460 0.1213 0.1144

2 0.9184 0.9400 0.9410 0.9410 0.9426 0.9443

3 0.1202 0.1000 0.1000 0.1000 0.1220 0.1310

4 0.1009 0.1000 0.1000 0.1010 0.1000 0.1016

5 1.8664 1.9400 1.9420 1.9410 2.0143 2.0353

6 0.2826 0.2962 0.3010 0.2960 0.2800 0.3126

7 0.1000 0.1000 0.1000 0.1000 0.1589 0.1679

8 2.9683 3.1042 3.1080 3.1210 3.0666 3.1541

9 0.1000 0.1000 0.1000 0.1000 0.1002 0.1003

10 3.9456 4.1042 4.1060 4.1730 4.0418 4.1005

11 0.3742 0.4034 0.4090 0.4010 0.4142 0.4350

12 0.4501 0.1912 0.1910 0.1810 0.4852 0.1148

13 4.9603 5.4284 5.4280 5.4230 5.4196 5.3823

14 1.0738 0.1000 0.1000 0.1000 0.1000 0.1607

15 5.9785 6.4284 6.4270 6.4220 6.3749 6.4152

16 0.7863 0.5734 0.5810 0.5710 0.6813 0.5629

17 0.7374 0.1327 0.1510 0.1560 0.1576 0.4010

18 7.3809 7.9717 7.9730 7.9580 8.1447 7.9735

19 0.6674 0.1000 0.1000 0.1000 0.1000 0.1092

20 8.3000 8.9717 8.9740 8.9580 9.0920 9.0155

21 1.1967 0.7049 0.7190 0.7200 0.7462 0.8628

22 1.0000 0.4196 0.4220 0.4780 0.2114 0.2220

23 10.8262 10.8636 10.8920 10.8970 10.9587 11.0254

24 0.1000 0.1000 0.1000 0.1000 0.1000 0.1397

25 11.6976 11.8606 11.8870 11.8970 11.9832 12.0340

26 1.3880 1.0339 1.0400 1.0800 0.9241 1.0043

27 4.9523 6.6818 6.6460 6.4620 6.7676 6.5762

28 8.8000 10.8113 10.8040 10.7990 10.9639 10.7265

29 14.6645 13.8404 13.8700 13.9220 13.8186 13.9666

Best weight (lb) 25156.5 25445.63 25491.9 25488.15 25,698.85 25674.83

Average weight (lb) N/A N/A 25610.2 25533.14 28386.72 26613.45

SD (lb) N/A N/A 141.85 27.44 2403 702.80

NSA 9875 9650 19,670 28,059 14,406 19,410
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results of 50 independent runs are provided in Table 11 for
HPSSO, MSPSO and WEO. It can be seen that the present
algorithm is competitive with the other metaheuristic methods
except for the slow convergence rate: in fact, WEO required
three times more structural analyses than the fastest optimizer.

3.3.6 Planar 200-bar truss

The planar 200-bar truss optimized as the last test problem is
shown in Fig. 17. The elastic modulus of the material is 30,
000 ksi while density is 0.283 lb/in3. The allowable stress for
all members is 10 ksi (the same in tension and compression).
No displacement constraints are included in the optimization
process. The structure is divided into 29 groups of elements.
The minimum cross-sectional area of all design variables is
taken as 0.1 in2. This truss is subjected to three independent
loading conditions. Further details on this optimization prob-
lem can be found in (Degertekin and Hayalioglu 2013).
Table 12 presents the optimum designs obtained by WEO,
HPSACO (Kaveh and Talatahari 2009b), a Corrected Multi-
Level and Multi-Point Simulated Annealing algorithm
(CMLPSA) (Lamberti 2008), SAHS (Degertekin 2012),
TLBO (Degertekin and Hayalioglu 2013), and HPSSO
(Kaveh et al. 2014). CMPLSA, TLBO and SAHS designed
the lightest structures amongst feasible or almost feasible op-
timized designs: the corresponding optimized weights are
25445.63, 25488.15 and 25491.9 lb. The scaled weight of
CMPLSA to recover the 0.071% violation on stress con-
straints is 25463.7 lb. The design optimized by WEO weigh
25674.83 lbs, hence it is only 0.71%, 0.73% and 0.83% heavi-
er than those optimized by SAHS, TLBO and CMPLSA, re-
spectively. WEO again needs all of its predefined number of
iterations to reach the optimum design.WhileWEO needs less

structural analyses than SAHS and TLBO, it requires more
than twice the structural analyses of CMPLSA. However,
CMPLSA adopted a hybrid formulation, tailored to sizing
optimization of truss structures, utilizing explicit gradient in-
formation on cost function. Amore logical comparison should
have entailed the use of the same information also for WEO.

3.4 Diversity assessment of WEO

In order to further asses the performance of the algorithm, a
diversity index defined by Kaveh and Zolghadr (Kaveh and
Zolghadr 2014) is utilized in this study. Diversity Index (DI)
reflects the ratio of the portion of the search space covered by
the population to the entire search space at each step, and it is
defined as:

DI ¼ 1

nWM

XnWM

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX ng

i¼1

GB ið Þ−WM j ið Þ
xi;max−xi;min

� �2
s

ð17Þ

where WMi(j) is the value of the ith variable of the jth mole-
cule; xi,min and xi,max are the minimum andmaximum values of
the ith design variable, respectively; ng is the number of de-
sign variables and nWM is the number of water molecules. In
fact the diversity index represents the distribution of the solu-
tion candidates around the best solution of the current itera-
tion. Figure 18 depicts the variation of the diversity index for a
single run of the WEO for all test problems with respect to the
iteration number. Desirable trend of variation of the diversity
index is obtained by WEO. Up down step like movements of
the DI convergence history in the early stages of the optimi-
zation process shows how WEO covers numerous promising
points of the search space. High values of diversity are pro-
vided in the early stages of the optimization process. As the
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optimization process continues, the water molecules focus on
more promising regions of the search space in order to perform
local search and diversity index values gradually decrease.

4 Conclusions

A novel physically inspired population based metaheuristic for
continuous structural optimization called as Water Evaporation
Optimization (WEO) is proposed in this paper. WEO mimics
the evaporation of a tiny amount of water molecules adhered on
a solid surface with different wettability which can be studied
by molecular dynamics simulations. A set of six truss design
problems from small to normal scale are considered for evalu-
ating the WEO. The most effective available state-of-the-art
metaheuristic optimization methods are used as basis of com-
parison. The optimization results demonstrate its competitive
performance for continuous structural optimization problems
in terms of solution quality and robustness. At this stage the
only weak point of the algorithm is its low convergence speed.
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