
Struct Multidisc Optim (2016) 53:935–952
DOI 10.1007/s00158-015-1395-9

REVIEW ARTICLE

Improving kriging surrogates of high-dimensional design
models by Partial Least Squares dimension reduction

Mohamed Amine Bouhlel1 ·Nathalie Bartoli2 ·Abdelkader Otsmane1 ·
Joseph Morlier3

Received: 20 June 2014 / Revised: 18 December 2015 / Accepted: 22 December 2015 / Published online: 14 January 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract Engineering computer codes are often compu-
tationally expensive. To lighten this load, we exploit new
covariance kernels to replace computationally expensive
codes with surrogate models. For input spaces with large
dimensions, using the kriging model in the standard way
is computationally expensive because a large covariance
matrix must be inverted several times to estimate the param-
eters of the model. We address this issue herein by con-
structing a covariance kernel that depends on only a few
parameters. The new kernel is constructed based on infor-
mation obtained from the Partial Least Squares method.
Promising results are obtained for numerical examples with
up to 100 dimensions, and significant computational gain is
obtained while maintaining sufficient accuracy.

� Mohamed Amine Bouhlel
mohamed.bouhlel@onera.fr;
mohamed.amine.bouhlel@gmail.com

Nathalie Bartoli
nathalie.bartoli@onera.fr

Abdelkader Otsmane
abdelkader.otsmane@snecma.fr

Joseph Morlier
joseph.morlier@isae.fr

1 SNECMA, Rond-point René Ravaud-Réau, 77550
Moissy-Cramayel, France

2 ONERA, 2 Avenue Édouard Belin, 31055 Toulouse, France

3 Université de Toulouse, CNRS, Institut Clément Ader,
ISAE-SUPAERO, 10 Avenue Edouard Belin, 31055
Toulouse Cedex 4, France

Keywords Kriging · Partial Least Squares · Experiment
design · Metamodels

Symbols and notation

Matrices and vectors are in bold type.

Symbol Meaning

det Determinant of a matrix
| · | Absolute value
R Set of real numbers
R

+ Set of positive real numbers
n Number of sampling points
d Dimensions
h Number of principal components retained
x 1 × d vector
xj j th element of a vector x
X n × d matrix containing sampling points
y n × 1 vector containing simulation of X
x(i) ith training point for i = 1, . . . , n

(a 1 × d vector)
w(l) d × 1 vector containing X weights given by

the lth PLS iteration for l = 1, . . . , h
X(0) X
X(l−1) Matrix containing residual of inner

regression of (l − 1)st PLS iteration for
l = 1, . . . , h

k(·, ·) Covariance function
N (0, k(·, ·)) Distribution of a Gaussian process with

mean function 0 and covariance function
k(·, ·)

xt Superscript t denotes the transpose
operation of the vector x

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s00158-015-1395-9-x&domain=pdf
mailto:
mailto:nathalie.bartoli@onera.fr
mailto:abdelkader.otsmane@snecma.fr
mailto:joseph.morlier@isae.fr

936 M. A. Bouhlel et al.

1 Introduction and main contribution

In recent decades, because simulation models have striven
to more accurately represent the true physics of phenom-
ena, computational tools in engineering have become ever
more complex and computationally expensive. To address
this new challenge, a large number of input design variables,
such as geometric representation, are often considered.
Thus, to analyze the sensitivity of input design variables or
to search for the best point of a physical objective under
certain physical constraints (i.e., global optimization), a
large number of computing iterations are required, which
is impractical when using simulations in real time. This is
the main reason that surrogate modeling techniques have
been growing in popularity in recent years. Surrogate mod-
els, also called metamodels, are vital in this context and
are widely used as substitutes for time-consuming high-
fidelity models. They are mathematical tools that approxi-
mate coded simulations of a few well-chosen experiments
that serve as models for the design of experiments. The
main role of surrogate models is to describe the underly-
ing physics of the phenomena in question. Different types
of surrogate models can be found in the literature, such
as regression, smoothing spline (Wahba and Craven 1978;
Wahba 1990), neural networks (Haykin 1998), radial basis
functions (Buhmann 2003) and Gaussian-process modeling
(Rasmussen and Williams 2006).

In this article, we focus on the kriging model because it
estimates the prediction error. This model is also referred
to as the Gaussian-process model (Rasmussen and Williams
2006) and was presented first in geostatistics (see, e.g.,
Cressie 1988 or Goovaerts 1997) before being extended
to computer experiments and machine learning (Schonlau
1998; Sasena 2002; Jones et al. 1998; Picheny et al. 2010).
The kriging model has become increasingly popular due to
its flexibility in accurately imitating the dynamics of com-
putationally expensive simulations and its ability to estimate
the error of the predictor. However, it suffers from some
well-known drawbacks in high dimension, which may be
due to multiple causes. For starters, the size of the covari-
ance matrix of the kriging model may increase dramatically
if the model requires a large number of sample points. As
a result, inverting the covariance matrix is computation-
ally expensive. The second drawback is the optimization
of the subproblem, which involves estimating the hyper-
parameters for the covariance matrix. This is a complex
problem that requires inverting the covariance matrix sev-
eral times. Some recent works have addressed the draw-
backs of high-dimensional Gaussian processes (Hensman
et al. 2013; Damianou and Lawrence 2013; Durrande et al.
2012) or the large-scale sampling of data (Sakata et al.
2004). One way to reduce CPU time when constructing a

kriging model is to reduce the number of hyper-parameters,
but this approach assumes that the kriging model exhibits
the same dynamics in all directions (Mera 2007).

Thus, because estimating the kriging parameters can be
time consuming, especially with dimensions as large as 100,
we present herein a new method that combines the krig-
ing model with the Partial Least Squares (PLS) technique to
obtain a fast predictor. Like the method of principle compo-
nents analysis (PCA), the PLS technique reduces dimension
and reveals how inputs depend on outputs. PLS is used in
this work because PCA only exposes dependencies between
inputs. Information given by PLS is integrated in the covari-
ance structure of the kriging model to reduce the number
of hyper-parameters. The combination of kriging and PLS
is abbreviated KPLS and allows us to build a fast krig-
ing model because it requires fewer hyper-parameters in its
covariance function; all without eliminating any input vari-
ables from the original problem. In general, the number
of kriging parameters is equal to the number of dimension
which is reduced to at maximum 4 parameters with our
approach.

The KPLS methods is used for many academic and
industrial verifications, and promising results have been
obtained for problems with up to 100 dimensions. The
cases used in this paper do not exceed 100 input vari-
ables, which should be quite sufficient for most engi-
neering problems. Problems with more than 100 inputs
may lead to memory difficulties with the toolbox Scikit-
learn (version 0.14), on which the KPLS method is
based.

This paper is organized as follows: Section 2 summarizes
the theoretical basis of the universal kriging model, recall-
ing the key equations. The proposed KPLS model is then
described in detail in Section 3 by using the kriging equa-
tions. Section 4 compares and analyzes the results of the
KPLS model with those of the kriging model when applied
to classic analytical examples and some complex engineer-
ing examples. Finally, Section 5 concludes and gives some
perspectives.

2 Universal kriging model

To understand the mathematics of the proposed methods, we
first review the kriging equations. The objective is to intro-
duce the notation and to briefly describe the theory behind
the kriging model. Assume that we have evaluated a cost
deterministic function at n points x(i) (i = 1, . . . , n) with

x(i) =
[
x(i)
1 , . . . , x(i)

d

]
∈ B ⊂ R

d ,

and we denote by X the matrix [x(1)t , . . . , x(n)t]t . For sim-
plicity, B is considered to be a hypercube expressed by

Improving kriging surrogates of high-dimensional design models... 937

the product between intervals of each direction space, i.e.,
B = ∏d

j=1[aj , bj], where aj , bj ∈ R with aj ≤ bj for
j = 1, . . . , d . Simulating these n inputs gives the outputs
y = [y(1), . . . , y(n)]t with y(i) = y(x(i)) for i = 1, . . . , n.
We use ŷ(x) to denote the prediction of the true function
y(x) which is considered as a realization of a stochastic pro-
cess Y (x) for all x ∈ B. For the universal kriging model
(Roustant et al. 2012; Picheny et al. 2010), Y is written as

Y (x) =
m∑

j=1

βjfj (x) + Z(x), (1)

where, for j = 1, . . . , m, fj is a known independent basis
function, βj ∈ R is an unknown parameter, and Z is a ran-
dom variable defined by Z(x) ∼ N (0, k), with k being
a stationary covariance function, also called a covariance
kernel. The kernel function k can be written as

k(x, x′) = σ 2r(x, x′) = σ 2rxx′ ∀ x, x′ ∈ B, (2)

where σ 2 is the process variance and rxx′ is the correla-
tion function between x and x′. However, the correlation
function r depends on some hyper-parameters θ and it is
considered to be known. We also denote the n × 1 vector as
rxX = [rxx(1) , . . . , rxx(n)]t and the n × n covariance matrix
as R = [rx(1)X, . . . , rx(n)X].

2.1 Derivation of prediction formula

Under the hypothesis above, the best linear unbiased predic-
tor for y(x), given the observations y, is

ŷ(x) = f(x)t β̂ + rt
xXR

−1
(
y − Fβ̂

)
, (3)

where f(x) = [f1(x), . . . , fm(x)]t is the m × 1 vector of
basis functions, F = [

f(x(1)), . . . , f(x(n))
]t

is the n × m

matrix, and β̂ is the vector of generalized least-square
estimates of β = [β1, . . . , βm]t , which is given by

β̂ =
⎡
⎢⎣

β̂1
...

β̂m

⎤
⎥⎦ =

(
FtR−1F

)−1
FtR−1y. (4)

Moreover, the universal kriging model provides an esti-
mate of the variance of the prediction, which is given by

s2(x) = σ̂ 2
(
1 − rt

xXR
−1rxX

)
, (5)

with

σ̂ 2 = 1

n

(
y − Fβ̂

)t

R−1
(
y − Fβ̂

)
. (6)

For more details of the derivation of the prediction for-
mula, see, for instance, Sasena (2002) or Schonlau (1998).
The theory of the proposed method has been expressed
in the same way as for the universal kriging model. The

numerical examples in Section 4 use the ordinary kriging
model, which is a special case of the universal model, but
with f(x) = {1} (and m = 1). For the ordinary kriging
model, (3), (4), and (6) are then replaced by the equations
given in Appendix A.

Note that the assumption of known covariance with
known hyper-parameters θ is unrealistic in reality. For
this reason, the covariance function is typically chosen
from among a parametric family of kernels. Table 12 in
Appendix B gives some examples of typical stationary
kernels. The number of hyper-parameters required for the
estimate is typically greater than (or equal to) the number
of input variables. In this work, we use in the following a
Gaussian exponential kernel:

k(x, x′) = σ 2
d∏

i=1

exp
(
−θi

(
xi − x′

i

)2) ∀ θi ∈ R
+.

By applying some elementary operations to existing ker-
nels, we can construct new kernels. In this work, we use
the property that the tensor product of covariances is a
covariance kernel in the product space. More details are
available in Rasmussen and Williams (2006), Durrande
(2011), Bishop (2007), Liem and Martins (2014).

2.2 Estimation of hyper-parameters θ

The key point of the kriging approximation is how it esti-
mates the hyper-parameters θ , so its main steps are recalled
here, along with some mathematical details.

One of the major challenges when building a kriging
model is the complexity and difficulty of estimating the
hyper-parameters θ , in particular when dealing with prob-
lems with many dimensions or with a large number of
sampling points. In fact, using (3) to make a kriging pre-
diction requires inverting an n × n matrix, which typically
has cost of O

(
n3

)
, where n is the number of sampling

points (Braham et al. 2014). The hyper-parameters are esti-
mated using maximum likelihood (ML) or cross validation
(CV), which are based on observations. Bachoc compared
the ML and CV techniques (Bachoc 2013) and concluded
that, in most cases studied, the CV variance is larger. The
ML method is widely used to estimate the hyper-parameters
θ ; it is also used in this paper. In practice, the following
log-ML estimate is often used:

log -ML(θ) = −1

2

[
n ln(2πσ 2) + ln(detR(θ))

+(y − Fβ)tR(θ)−1(y − Fβ)/σ 2
]
. (7)

Inserting β̂ and σ̂ 2 given by (4) and (6), respectively,
into the expression (7), we get the following so-called

938 M. A. Bouhlel et al.

concentrated likelihood function, which depends only on the
hyper-parameters θ :

log-ML(θ) = −1

2
[n ln σ̂ 2 + ln detR(θ)]

= −1

2

[
n ln

(
1

n
(y − F(FtR−1F)−1FtR−1y)t

×R−1(y − F(FtR−1F)−1FtR−1y)
)

+ ln detR
]

. (8)

To facilitate reading,R(θ) has been replaced byR in the last
line of (8).

Maximizing (8) is very computationally expensive for
high dimensions and when using a large number of sam-
ple points because the (n × n) matrix R(θ) in (8) must be
inverted. The maximization problem is often solved using
genetic algorithms (see Forrester and Sobester 2008 for
more details). In this work, we use the derivative-free opti-
mization algorithm COBYLA that was developed by Powell
(1994). COBYLA is a sequential trust-region algorithm that
uses linear approximations for the objective and constraint
functions.

Figure 1 recalls the principal stages of building a kriging
model, and each step is briefly outlined below:

1. The user must provide the initial design of experiments
(X, y) and the parametric family of the covariance
function k.

2. To derive the prediction formula, the kriging algorithm
assumes that all parameters of k are known.

Fig. 1 The main steps for building an ordinary kriging model

3. Under the hypothesis of the kriging algorithm, we
estimate hyper-parameters θ from the concentrated like-
lihood function given by (8) and by using the COBYLA
algorithm.

4. Finally, we calculate the prediction (3) and the asso-
ciated estimation error (5) after estimating all hyper-
parameters of the kriging model.

3 Kriging model combined with Partial Least
Squares

As explained above, maximizing the concentrated likeli-
hood (8) can be time consuming when the number of
covariance parameters is large, which typically occurs in
large dimension. Solving this problem can be acceler-
ated by combing the PLS method and the kriging model.
The θ parameters from the kriging model represent the
range in any spatial direction. Assuming, for instance,
that certain values are less significant for the response,
then the corresponding θi (i = 1, . . . , d) will be very
small compared to the other θ parameters. The PLS
method is a well-known tool for high-dimensional prob-
lems and consists of maximizing the variance by projecting
onto smaller dimensions while monitoring the correlation
between input variables and the output variable. In this way,
the PLS method reveals the contribution of all variables—
the idea being to use this information to scale the θ

parameters.
In this section we propose a new method that can be used

to build an efficient kriging model by using the informa-
tion extracted from the PLS stage. The main steps for this
construction are as follows:

1. Use PLS to define weight parameters.
2. To reduce the number of hyper-parameters, define a

new covariance kernel by using the PLS weights.
3. Optimize the parameters.

The key mathematical details of this construction are
explained in the following.

3.1 Linear transformation of covariance kernels

Let x be a vector space over the hypercube B. We define a
linear map given by

F : B −→ B ′,
x 	−→ [α1x1, . . . , αdxd] ,

(9)

where α1, . . . , αd ∈ R and B ′ is a hypercube included
in R

d (B ′ can be different from B). Let k be an
isotropic covariance kernel with k : B ′ × B ′ → R.
Since k is isotropic, the covariance kernel k(F (·), F (·))

Improving kriging surrogates of high-dimensional design models... 939

depends on a single parameter, which must be estimated.
However, if α1, . . . , αd are well chosen, then we can
use k(F (·), F (·)). In this case, the linear transformation
F allows us to approach the isotropic case (Zimmerman
and Homer 1991). In the present work, we choose
α1, . . . , αd based on information extracted from the PLS
technique.

3.2 Partial Least Squares

The PLS method is a statistical method that finds a linear
relationship between input variables and the output vari-
able by projecting input variables onto a new space formed
by newly chosen variables, called principal components
(or latent variables), which are linear combinations of
the input variables. This approach is particularly useful
when the original data are characterized by a large num-
ber of highly collinear variables measured on a small
number of samples. Below, we briefly describe how the
method works. For now, suffice it to say that only the
weighting coefficients are central to understanding the new
KPLS approach. For more details on the PLS method,
please see Helland (1988), Frank and Friedman (1993),
Alberto and González (2012).

The PLS method is designed to search out the best
multidimensional direction in X space that explains the
characteristics of the output y. After centering and scaling

the (n × d)-sample matrix X and the response vector y, the
first principal component t(1) is computed by seeking the
best direction w(1) that maximizes the squared covariance
between t(1) = Xw(1) and y:

w(1) =
{
argmax

w
wtXtyytXw

such that wtw = 1.
(10)

The optimization problem (10) is maximized when
w(1) is the eigenvector of the matrix XtyytX correspond-
ing to the eigenvalue with the largest absolute value;
the vector w(1) contains the X weights of the first com-
ponent. The largest eigenvalue of problem (10) can be
estimated by the power iteration method introduced by
Lanczos (1950).

Next, the residual matrix from X = X(0) space and from
y = y(0) are calculated; these are denoted X(1) and y(1),
respectively:

X(1) = X(0) − t(1)p(1),

y(1) = y(0) − c1t(1),
(11)

where p(1) (a 1 × d vector) contains the regression coeffi-
cients of the local regression of X onto the first principal
component t(1), and c1 is the regression coefficient of the
local regression of y onto the first principal component t(1).

Fig. 2 Upper left shows
construction of two principal
components in X space. Upper
right shows prediction of y(0).
Bottom left shows prediction of
y(1). Bottom right shows final
prediction of y

940 M. A. Bouhlel et al.

The system (11) is the local regression of X and y onto the
first principal component.

Next, the second principal component, which is orthog-
onal to the first, can be sequentially computed by replacing
X by X(1) and y by y(1) to solve the system (10). The
same approach is used to iteratively compute the other
principal components. To illustrate this process, a simple
three-dimensional (3D) example with two principal compo-
nents is given in Fig. 2. In the following, we use h to denote
the number of principal components retained.

The principal components represent the new coordinate
system obtained upon rotating the original system with axes,
x1, . . . , xd (Alberto and González 2012). For l = 1, . . . , h,
t(l) can be written as

t(l) = X(l−1)w(l) = Xw(l)∗ . (12)

This important relationship is used for coding the method.
The following matrix W∗ = [w(1)∗ , . . . , .w(h)∗] is obtained
by Manne (1987):

W∗ = W
(
PtW

)−1
,

whereW = [w(1), . . . ,w(h)] and P = [p(1)t , . . . , p(h)t].
The vector w(l) corresponds to the principal direc-

tion in X space that maximizes the covariance of
X(l−1)ty(l−1)y(l−1)tX(l−1). If h = d, the matrix W∗ =
[w(1)∗ , . . . ,w(d)∗] rotates the coordinate space (x1, . . . , xd) to
the new coordinate space (t(1), . . . , t (d)), which follow the
principal directions w(1), . . . ,w(d).

As mentioned in the introduction, the PLS method
is chosen instead of the PCA method because the
PLS method shows how the output variable depends on
the input variables, whereas the PCA method focuses
only on how the input variables depend on each other.
In fact, the hyper-parameters θ for the kriging model
depend on how each input variable affects the output
variable.

3.3 Construction of new kernels for KPLS models

Let B be a hypercube included in R
d . As seen in the previ-

ous section, the vectorw(1)∗ is used to build the first principal
component t(1) = Xw(1)∗ , where covariance between t(1)

and y is maximized. The scalars w(1)
∗1 , . . . ,w(1)

∗d can then
be interpreted as measuring the importance of x1, . . . , xd ,
respectively, for constructing the first principal component
where its correlation with the output y is maximized. How-
ever, we know that the hyper-parameters θ1, . . . , θd (see
Table 12 in Appendix B) can be interpreted as measuring
how strongly the variables x1, . . . , xd , respectively, affect
the output y. Thus, we define a new kernel kkpls1 : B×B →

R given by k1(F1(·), F1(·)) with k1 : B × B → R being an
isotropic stationary kernel and

F1 : B −→ B,

x 	−→
[
w(1)

∗1 x1, . . . ,w
(1)
∗d xd

]
. (13)

F1 goes from B to B because it only works for the new
coordinate system obtained by rotating the original coor-
dinate axes, x1, . . . , xd . Through the first component t(1),
the elements of the vector w(1)∗ reflect how x depends
on y. However, such information is generally insufficient,
so the elements of the vector w(1)∗ are supplemented by
the information given by the other principal components
t(2), . . . , t(h). Thus, we build a new kernel kkpls1:h sequen-
tially by using the tensor product of all kernels kkplsl , which
accounts for all this information in only a single covariance
kernel:

kkpls1:h(x, x′) =
h∏

l=1

kl(Fl (x) , Fl(x′)), (14)

with kl : B × B → R and

Fl : B −→ B

x 	−→
[
w(l)

∗1x1, . . . ,w
(l)
∗dxd

]
.

(15)

If we consider the Gaussian kernel applied with this pro-
posed approach, we get

k(x, x′) = σ 2
h∏

l=1

d∏
i=1

exp

[
−θl

(
w(l)

∗i xi − w(l)
∗i x

′
i

)2]
,

∀ θl ∈ [0, +∞[.
Table 13 in Appendix B presents new KPLS kernels based
on examples from Table 12 (also in Appendix B) that con-
tain fewer hyper-parameters because h � d. The number of
principal components is fixed by the following leave-one-
out cross-validation method:

(i) We build KPLS models based on h = 1, then
h = 2, . . . principal components.

(ii) We choose the number of components that minimizes
the leave-one-out cross-validation error.

The flowchart given in Fig. 3 shows how the information
flows through the algorithm, from sample data, PLS algo-
rithm, kriging hyper-parameters, to final predictor. With the
same definitions and equations, almost all the steps for con-
structing the KPLS model are similar to the original steps
for constructing the ordinary kriging model. The exception
is the third step, which is highlighted in the solid-red box in
Fig. 3. This step uses the PLS algorithm to define the new
parametric kernel kkpls1:h as follows:

a. initialize the PLS algorithm with l = 1;
b. if l = 1, compute the residual of X(l−1) and y(l−1) by

using system (11);

Improving kriging surrogates of high-dimensional design models... 941

Fig. 3 Main steps for
constructing KPLS model. The
solid-red box (step 3 relative to
PLS) is what differentiates this
approach from the ordinary
kriging approach

c. compute X weights for iteration l;
d. define a new kernel kkpls1:h by using (14);
e. if the number of iterations is reached, return to step 3,

otherwise continue;
f. update data considering l = l + 1.

Note that, if kernels kl are separable at this point, the
new kernel given by (14) is also separable. In particular, if
all kernels kl are of the exponential type (e.g., all Gaussian
exponentials), the new kernel given by (14) will be the same
type as kl . The proof is given in Appendix C.

4 Numerical examples

We now present a few analytical and engineering examples
to verify the proper functioning of the proposed method.
The ordinary kriging model with a Gaussian kernel pro-
vides the benchmark against which the results of the
proposed combined approach are compared. The Python
toolbox Scikit-learn v.014 (Pedregosa et al. 2011) is used
to implement these numerical tests. This toolbox provides
hyper-parameters for the ordinary kriging. The computa-
tions were done on an Intel® Celeron® CPU 900 2.20
GHz desktop PC. For the proposed method, we com-
bined an ordinary kriging model with a Gaussian ker-
nel with the PLS method with one to three principal
components.

4.1 Analytical examples

We use two academic functions and vary the characteristics
of these test problems to cover most of the difficulties faced
in the field of substitution models. The first function is g07
(Michalewicz and Schoenauer 1996) with 10 dimensions,

Fig. 4 A two-dimensional Griewank function over the interval
[−600, 600]

942 M. A. Bouhlel et al.

Table 1 Number of data points used for latin hypercube design for the
Griewank test function

d = 2 d = 5 d = 7 d = 10 d = 20 d = 60

n = 70 n = 100 n = 200 n = 300 n = 400 n = 800

which is close to what is required by industry in terms of
dimensions,

yg07(x) = x2
1 + x2

2 + x1x2 − 14x1 − 16x2
+(x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2

+2(x6 − 1)2 + 5x2
7 + 7(x8 − 11)2

+2(x9 − 10)2 + (x10 − 7)2 + 45,

−10 ≤ xi ≤ 10, fori = 1, . . . , 10.

For this function, we use experiments based on a latin
hypercube design with 100 data points to fit models.

The second function is the Griewank function (Regis and
Shoemaker 2013), which is used because of its complexity,
as illustrated in Fig. 4 for the two-dimensional (2D) case.
The function is

yGriewank(x) =
d∑

i=1

x2
i

4000
−

d∏
i=1

cos

(
xi√
i

)
+ 1,

−600 ≤ xi ≤ 600, for i = 1, . . . , d.

Two types of experiments are done with this function. The
first is defined over the interval [−600, 600] and has varying
dimensions (2, 5, 7, 10, 20, 60). This experiment serves to
verify the effectiveness of the proposed approach in both
low and high dimensions. It is based on the latin hypercube
design and uses n data points to fit models, as mentioned in
Table 1.

Fig. 5 A two-dimensional Griewank function over the interval [−5, 5]

Table 2 Results for g07 function in ten dimensions with 100-point
latin hypercube

Surrogate Error (%) CPU time

Ordinary kriging 0.013 5.14 s

KPLS (1 component) 0.014 0.11 s

KPLS (2 components) 0.0015 0.43 s

KPLS (3 components) 0.0008 0.44 s

The second type of experiment is defined over the inter-
val [−5, 5], where the Griewank function is more complex
than for the first type of experiment (cf. Figs. 4 and 5).
Over this reduced interval, experiments are done with 20
and 40 dimensions (20D and 40D) and with 50, 100, 200,
and 300 sampling points. To analyse the robustness of
the method, ten experiments, each with a different latin
hypercube design, are used for this case.

To compare the three approaches (i.e., the g07 function
and the Griewank function of the intervals [−600, 600] and
[−5, 5]), 5000 random points are computed and the results
are stored in a database. The following relative error is used
to compare the performance of the ordinary kriging model
with the KPLS model:

Error = ||Ŷ − Y||2
||Y||2 100, (16)

where || · ||2 represents the usual L2 norm, and Ŷ and Y are
the vectors containing the prediction and the real values of
random points, respectively. The CPU time required to fit
models is also noted (“h” refers to hours, “min” refers to
minutes, and “s” refers to seconds).

4.1.1 Comparison with g07 function

The results listed in Table 2 show that the proposed
KPLS surrogate model is more accurate than the ordinary
kriging model when more than one component is used.
Using just one component gives almost the same accu-
racy as the ordinary kriging model. In this case, only a
single θ hyper-parameter from the space correlation needs
be estimated compared to ten θ hyper-parameters for the

Table 3 Griewank function in two dimensions with 70-point latin
hypercube over the interval [−600, 600]
Surrogate Error (%) CPU time

Ordinary kriging 5.50 0.09 s

KPLS (1 component) 7.23 0.04 s

KPLS (2 components) 5.50 0.10 s

Improving kriging surrogates of high-dimensional design models... 943

Table 4 Griewank function in five dimensions with 100-point latin
hypercube over the interval [−600, 600]
Surrogate Error (%) CPU time

Ordinary kriging 0.605 0.55 s

KPLS (1 component) 0.635 0.12 s

KPLS (2 components) 0.621 0.31 s

KPLS (3 components) 0.623 0.51 s

ordinary kriging model. Increasing the number of com-
ponents improves the accuracy of the KPLS surrogate
model. Whereas the PLS method treats only linearly related
input and output variables, this example shows that the
KPLS model can treat nonlinear problems. This result is
not contradictory because (23) shows that the KPLS model
is equivalent to the kriging model with specific hyper-
parameters.

4.1.2 Comparison with complex Griewank function
over interval [−600, 600]

Table 3 compares the ordinary kriging model and the KPLS
model in two dimensions.

If two components are used for the KPLS, we expect
to obtain the same accuracy and time cost for the two
approaches because the difference between the two mod-
els consists only of a transformation of the search-space
coordinates when a Gaussian kernel is used (the space in
which the θ hyper-parameters exist). In this case, the KPLS
model with only one component degrades the accuracy of
the solution.

Tables 4, 5, and 6, show the results for 5, 7, and 10
dimensions, respectively.

Varying the number of principal components does
not significantly affect the accuracy of the model. The
gain in computation time does not appear upon increas-
ing the number of principal components: the computa-
tion time is reduced when we use the KPLS model.
Upon increasing the number of principal components, the
CPU time for constructing the KPLS model increases but

Table 5 Griewank function in seven dimensions with 200-point latin
hypercube over the interval [−600, 600]
Surrogate Error (%) CPU time

Ordinary kriging 0.138 3.09 s

KPLS (1 component) 0.141 0.25 s

KPLS (2 components) 0.138 0.52 s

KPLS (3 components) 0.141 0.94 s

Table 6 Griewank function in ten dimensions with 300-point latin
hypercube over the interval [−600, 600]
Surrogate Error (%) CPU time

Ordinary kriging 0.052 21 s

KPLS (1 component) 0.033 0.6 s

KPLS (2 components) 0.035 2.41 s

KPLS (3 components) 0.034 3.58 s

still remains lower than for ordinary kriging. For these
three examples, the combined approach with only one
PLS component offers sufficient accuracy with a CPU
time reduced 35-fold for 10 dimensions (i.e., 21 s for
the ordinary kriging model and 0.6 s for the combined
model).

In the 20-dimension (20D) example (Table 7), using
KPLS with only one principal component leads to a poor
relative error (10.15 %) compared with other models. In this
case, two principal components are required to build the
combined model. The CPU time remains less than that for
the ordinary kriging model (11.7 s vs 107 s).

The results in Table 8 for the KPLSmodel with 60 dimen-
sions (60D) show that this model is faster than the ordinary
kriging model. Compared with the kriging model, the CPU
time is reduced 42-fold when one principal component is
used and over 17-fold when three principal components are
used.

Thus, for the Griewank function over the interval
[−600, 600] and at the highest dimensions, the majority of
the results obtained for the analytical examples are better
when using the KPLS model than when using the ordi-
nary kriging model. The proposed method thus appears
interesting, particularly in terms of saving CPU time while
maintaining good accuracy.

4.1.3 Comparison with complex Griewank function
over interval [−5, 5]

As shown in Fig. 4, the Griewank function looks like
a parabolic function. This is because, over the interval

Table 7 Griewank function in 20 dimensions with 400-point latin
hypercube over the interval [−600, 600]
Surrogate Error (%) CPU time

Ordinary kriging 0.35 107 s

KPLS (1 component) 10.15 1.16 s

KPLS (2 components) 0.003 11.7 s

KPLS (3 components) 0.002 16.23 s

944 M. A. Bouhlel et al.

Table 8 Griewank function in 60 dimensions with 800-point latin
hypercube over the interval [−600, 600]
Surrogate Error (%) CPU time

Ordinary kriging 11.47 293 s

KPLS (1 component) 7.4 6.88 s

KPLS (2 components) 6.04 12.57 s

KPLS (3 components) 5.23 16.82 s

[−600, 600], the cosine part of the Griewank function
does not contribute significantly compared with the sum of
x2
i /4000. This is especially true given that the cosine part

is a product of factors each of which is less than unity. If
we reduce the interval from [−600, 600] to [−5, 5], we can
see why the Griewank function is widely used as a multi-
modal test function with a very rugged landscape and a large
number of local optima (see Fig. 5). Compared with the
interval [−600, 600], the opposite happens for the interval
[−5, 5]: the “cosine part” dominates; at least for moderate
dimensions where the product contains few factors. For this
case, which seems very difficult, we consider 20 and 60
input variables. For each problem, ten experiments based on
the latin hypercube design are built with 50, 100, 200, and
300 sampling points. The mean and the standard error are
given in Tables 14 and 15 in Appendix D. To better visu-
alize the results, boxplots are used to show CPU time and
the relative error RE given by Figs. 7, 8, 9, 10 and 11 in
Appendix D.

For 20 input variables and 50 sampling points, the KPLS
model gives a more accurate solution than the ordinary krig-
ing model, as shown in Fig. 7a. The rate of improvement
with respect to the number of sampling points is less for
the KPLS model than for the kriging model (cf. Fig. 7b–d).
Nevertheless, the results shown in Fig. 8 indicate that the

KPLS model leads to an important reduction in CPU time
for the various number of sampling points.

Similar results occur for the 60D Griewank function
(Fig. 9). The mean RE obtained with the ordinary krig-
ing model improves from approximately 1.39 to 0.65 %
upon increasing the number of sampling points from 50
to 300 (cf. Fig. 9a, d). However, a very important reduc-
tion in CPU time is obtained, as shown in Fig. 10. The
CPU time required for the KPLS model is hardly visible
because it is much, much less than that required by the
ordinary kriging model. We thus show in Fig. 11 the CPU
time required by the KPLS model alone to show the dif-
ferent CPU times required for the various configurations
(KPLS1, KPLS2, and KPLS3). For Griewank function over
the interval [−5, 5], the KPLS method seems to perform
well when the number of observations is small compared
to the dimension d. In this case, the standard separable
covariance function for the ordinary kriging model is almost
impossible to use because the number of parameters to be
estimated is too large compared with the number of observa-
tions. Thus, the KPLS method seems more efficient in this
case.

4.2 Industrial examples

The following engineering examples are based on results
of numerical experiments done at SNECMA on multidisci-
plinary optimization. The results are stored in tables.

Aerospace turbomachinery consists of numerous blades
that transfer energy between air and the rotor. The disks with
compressor blades are particularly important because they
must satisfy the dual criteria of aerodynamic performance
and mechanical stress. Blades are mechanically and aero-
dynamically optimized by searching parameter space for an
aerodynamic shape that ensures the best compromise that

Fig. 6 Example of 2D cut of
blade (c is chord; CG is gravity
center; β1 is angle for BA; β2 is
angle for BF; Ep is maximum
thickness)

Improving kriging surrogates of high-dimensional design models... 945

satisfies a set of constraints. The blade, which is a 3D entity,
is first divided into a number of radial 2D profiles whose
thickness is a given percentage of the distance from the hub
to the shroud (see Fig. 6).

A new 3D blade is constructed by starting with the
2D profiles and then exporting them to various meshing
tools before analyzing them in any specific way. The cal-
culation is integrated into the Optimus platform (Noesis
Solutions 2009), which makes it possible to integrate mul-
tiple engineering software tools (computational structural
mechanics, computational fluid dynamics, . . .) into a single
automated work flow. Optimus, which is an industrial soft-
ware package for screening variables, optimizing design,
and analyzing the sensitivity and robustness, explores and
analyzes the results of the work-flow to optimize product
design. Toward this end, it uses high-fidelity codes or a
reduced model of these codes. It also exploits a wide range
of approximation models, including the ordinary kriging
model.

Input variables designate geometric hyper-parameters at
different percent height and outputs are related to aerody-
namic efficiency, vibration criteria, mechanical stress, geo-
metric constraints, and aerodynamic stress. Three numerical
experiments are considered:

(i) The first experiment is denoted tab1 and contains 24
input variables and 4 output variables. It has 99 train-
ing points and 52 validation points. The outputs are
denoted y1, y2, y3, and y4.

(ii) The second experiment is denoted tab2 and contains
10 input variables and only 1 output variable. It has
1295 training points and 500 validation points.

(iii) The third experiment is denoted tab3 and contains
99 input variables and 1 output variable. It has 341
training points and 23 validation points.

Table 10 Results for tab2 experiment data (10 input variables, 1 out-
put variable y1) obtained by using 1295 training points, 500 validation
points, and error given by (16)

10D Surrogate Error (%) CPU time

tab2 Kriging 5.37 1 h 30 min

KPLS1 5.07 11.69 s

KPLS2 5.02 1 min 22 s

KPLS3 5.34 7 min 34 s

“Kriging” refers to the ordinary kriging optimus solution and
“KPLSh” refers to the KPLS model with h principal components

Points used in tab1, tab2, and tab3 come from previ-
ous computationally expensive computer experiments done
at SNECMA, which means that this separation between
training points and verification points was imposed by
SNECMA. The goal is to compare the ordinary kriging
model that is implemented in the Optimus platform with
the proposed KPLS model. The relative error given by (16)
and the CPU time required to fit the model are reported in
Tables 9–11.

The relative errors for the four models are very simi-
lar: the KPLS model results in a slightly improved accuracy
for the solutions y1, y2, y4 from tab1, y1 from tab2, and
y1 from tab3 but degrades slightly the solution y3 from
tab1. The main improvement offered by the proposed model
relates to the time required to fit the model, particularly for
a large number of training points. Table 10 shows that, with
only one principal component, the CPU time is drastically
reduced compared with the Optimus model. More precisely,
for tab2, the ordinary kriging model requires 1 h 30 min
whereas the KPLS1 model requires only 11 s and pro-
vides better accuracy. In addition, the results for KPLS2 and

Table 9 Results for tab1 experiment data (24 input variables, 4 output variables y1, y2, y3, y4) obtained by using 99 training points, 52 validation
points, and the error given by (16)

24D Surrogate y1 y2 y3 y4

Error (%) CPU Error (%) CPU Error (%) CPU Error (%) CPU

time time time time

tab1 Kriging 0.082 8 s 4.45 8.4 s 8.97 8.17 s 6.27 8.12 s

KPLS1 0.079 0.12 s 4.04 0.11 s 10.35 0.18 s 5.67 0.11 s

KPLS2 0.079 0.43 s 4.06 0.69 s 10.33 0.42 s 5.67 0.19 s

KPLS3 0.079 0.82 s 4.05 0.5 s 10.41 1.14 s 5.67 0.43 s

“Kriging” refers to the ordinary kriging Optimus solution and “KPLSh” refers to the KPLS model with h principal components

946 M. A. Bouhlel et al.

Table 11 Results for tab3 experiment data (99 input variables, 1 out-
put variable y1) obtained by using 341 training points, 23 validation
points, and error given by (16)

99D Surrogate Error (%) CPU time

tab3 Kriging 0.021 20 min 02 s

KPLS1 0.19 46.6 s

KPLS2 0.03 2 min 15 s

KPLS3 0.02 4 min 56 s

“Kriging” refers to the ordinary kriging optimus solution and
“KPLSh” refers to the KPLS model with h principal components

KPLS3models applied to a 99D problem are very promising
(see Table 11).

One other point of major interest for the proposed method
is its natural compatibility with sequential enrichment tech-
niques such as the efficient global optimization strategy (see
Jones et al. 1998).

4.3 Dimensional limits

This project is financed by SNECMA and most of their
design problems do not exceed 100 input variables. In addi-
tion, the toolbox Scikit-learn (version 0.14) may have mem-
ory problems when a very large number of input variables
is considered. Thus, problems with more than 100 input
variables are not investigated in this work. However, by opti-
mizing memory access and storage, this limit could easily be
increased.

5 Conclusion and future work

Engineering problems that require integrating surrogate
models into an optimization process are receiving increasing
interest within the multidisciplinary optimization commu-
nity. Computationally expensive design problems can be
solved efficiently by using, for example, a kriging model,
which is an interesting method for approximating and
replacing high-fidelity codes, largely because these mod-
els give estimation errors, which is an interesting way to
solve optimization problems. The major drawback involves
the construction of the kriging model and in particular the
large number of hyper-parameters that must be estimated in
high dimensions. In this work, we develop a new covari-
ance kernel for handling this type of higher-dimensional
problem (up to 100 dimensions). Although the PLS method
requires a very short computation time to estimate θ , the

estimate is often difficult to execute and computationally
expensive when the number of input variables is greater
than 10. The proposed KPLS model was tested by apply-
ing it to two analytic functions and by comparing its results
to those tabulated in three industrial databases. The com-
parison highlights the efficiency of this model for up to
99 dimensions. The advantage of the KPLS models is not
only the reduced CPU time, but also in that it reverts to the
kriging model when the number of observations is small rel-
ative to the dimensions of the problem. Before using the
KPLS model, however, the number of principal components
should be tested to ensure a good balance between accuracy
and CPU time.

An interesting direction for future work is to study
how the design of the experiment (e.g., factorial) affects
the KPLS model. Furthermore, other verification functions
and other types of kernels can be used. In all cases stud-
ied herein, the first results with this proposed method
reveal significant gains in terms of computation time while
still ensuring good accuracy for design problems with up
to 100 dimensions. The implementation of the proposed
KPLS method requires minimal modifications of the clas-
sic kriging algorithm and offers further interesting advan-
tages that can be exploited by methods of optimization by
enrichment.

Acknowledgments The authors thank the anonymous reviewers for
their insightful and constructive comments. We also extend our grate-
ful thanks to A. Chiplunkar from ISAE SUPAERO, Toulouse and R.
G. Regis from Saint Joseph’s University, Philadelphia for their careful
correction of the manuscript and to SNECMA for providing the tables
of experiment results. Finally, B. Kraabel is gratefully acknowledged
for carefully reviewing the paper prior to publication.

Appendix A: Equations for ordinary kriging model

The expression (3) for the ordinary kriging model is trans-
formed into (see Forrester and Sobester 2008)

y(x) = β̂ + rt
xXR

−1
(
y − 1β̂

)
, (17)

where 1 denotes an n-vector of ones and

β̂ = (1tR−11)−11tR−1y. (18)

Improving kriging surrogates of high-dimensional design models... 947

In addition, (6) is written as

σ̂ 2 = 1

n

(
y − 1β̂

)t

R−1
(
y − 1β̂

)
. (19)

Appendix B: Examples of kernels

Table 12 presents the most popular examples of stationary
kernels. Table 13 presents the new KPLS kernels based on
the examples given in Table 12.

Appendix C: Proof of equivalence kernel

For l = 1, . . . , h, kl are separable kernels (or a
d-dimensional tensor product) of the same type, so
∃ φl1, . . . , φld such that

kl

(
x, x′) =

d∏
i=1

φli(Fl (x)i , Fl

(
x′)

i
), (20)

Table 12 Examples of commonly used stationary covariance functions

Covariance Expression Hyper-parameters θ Number of

functions hyper-parameters

to estimate

Generalized exponential σ 2
d∏

i=1
exp(−θim

pi

i) (θ1, . . . , θd , p1, . . . , pd) 2d

Gaussian exponential σ 2
d∏

i=1
exp(−θim2

i) (θ1, . . . , θd) d

Matern 5
2 σ 2

d∏
i=1

(
1 + √

5θimi + 5
3 θ2i m

2
i

)
exp(−√

5θimi) (θ1, . . . , θd) d

Matern 3
2 σ 2

d∏
i=1

(
1 + √

3θimi

)
exp(−√

3θimi) (θ1, . . . , θd) d

The covariance functions are written as functions of the ith component mi = |xi − x′
i | with θi ≥ 0 and pi ∈ [0, 2] for i = 1, . . . , d

Table 13 Examples of KPLS covariance functions

Covariance functions Expression Hyper-parameters θ Number of

hyper-parameters

to estimate

Generalized exponential σ 2
h∏

l=1

d∏
i=1

exp
[
−θl

(
m(l)

i

)pl
]

(θ1, . . . , θh, p1, . . . , ph) 2h � 2d

Gaussian exponential σ 2
h∏

l=1

d∏
i=1

exp

[
−θl

(
m(l)

i

)2]
(θ1, . . . , θh) h � d

Matern 5
2 σ 2

h∏
l=1

d∏
i=1

[
1 + √

5θlm
(l)
i + 5

3
θ2l

(
m(l)

i

)2]
exp

(
−√

5θlm
(l)
i

)
(θ1, . . . , θh) h � d

Matern 3
2 σ 2

h∏
l=1

d∏
i=1

(
1 + √

3θlm
(l)
i

)
exp

(
−√

3θlm
(l)
i

)
(θ1, . . . , θh) h � d

The covariance functions are written as functions of the ith component m(l)
i = |w(l)

∗i (xi − x′
i)| with θl ≥ 0 and pl ∈ [0, 2] for l = 1, . . . , h

948 M. A. Bouhlel et al.

where Fl(x)i is the ith coordinate of Fl(x). If we insert (20)
in (14) we get

kkpls1:h(x, x′) =
h∏

l=1

kl(Fl (x) , Fl

(
x′))

=
h∏

l=1

d∏
i=1

φli(Fl (x)i , Fl

(
x′)

i
)

=
d∏

i=1

h∏
l=1

φli(Fl (x)i , Fl

(
x′)

i
)

=
d∏

i=1

ψi

(
xi , x′

i

)
, (21)

with

ψi

(
xi , x′

i

) =
h∏

l=1

φli(Fl (x)i , Fl

(
x′)

i
),

corresponding to an one-dimensional kernel. Hence,
kkpls1:h is a separable kernel. In particular, if we consider a

generalized exponential kernel with p1 = · · · = ph = p ∈
[0, 2], we obtain
ψi

(
xi , x′

i

) = σ
2
d exp

(
−

h∑
l=1

θl

∣∣∣w(l)
∗i

∣∣∣
p ∣∣xi − x′

i

∣∣p
)

= σ
2
d exp

(−ηi

∣∣xi − x′
i

∣∣p)
, (22)

with

ηi =
h∑

l=1

θl

∣∣∣w(l)
∗i

∣∣∣
p

.

We thus obtain

kl

(
x, x′) = σ 2

d∏
i=1

exp
(−ηi

∣∣xi − x′
i

∣∣p)
. (23)

Appendix D: Results of Griewank function in 20D
and 60D over interval [−5, 5]
In Tables 14 and 15, the mean and standard deviation (std)
of the numerical experiments with the Griewank function
are given for 20 and 60 dimensions, respectively. To better
visualize the results, boxplots are used in Figs. 7–11.

Table 14 Results for Griewank function in 20D over interval [−5, 5]
Surrogate Statistic 50 points 100 points 200 points 300 points

Error (%) CPU time Error (%) CPU time Error (%) CPU time Error (%) CPU time

Kriging Mean 0.62 30.43 s 0.43 40.09 s 0.15 120.74 s 0.16 94.31 s
std 0.03 9.03 s 0.04 11.96 s 0.02 27.49 s 0.06 21.92 s

KPLS1 Mean 0.54 0.05 s 0.53 0.12 s 0.48 0.43 s 0.45 0.89 s
std 0.03 0.007 s 0.03 0.02 s 0.03 0.08 s 0.03 0.02 s

KPLS2 Mean 0.52 0.11 s 0.48 1.04 s 0.42 1.14 s 0.38 2.45 s
std 0.03 0.05 s 0.04 0.97 s 0.04 0.92 s 0.04 1 s

KPLS3 Mean 0.51 1.27 s 0.46 3.09 s 0.37 3.56 s 0.35 3.52 s
std 0.03 1.29 s 0.06 3.93 s 0.03 2.75 s 0.06 1.38 s

Ten trials are done for each test (50, 100, 200, and 300 training points)

Table 15 Results for Griewank function in 60D over interval [−5, 5]
Surrogate Statistic 50 points 100 points 200 points 300 points

Error (%) CPU time Error (%) CPU time Error (%) CPU time Error (%) CPU time

Kriging Mean 1.39 560.19 s 1.04 920.41 s 0.83 2015.39 s 0.65 2894.56 s
std 0.15 200.27 s 0.05 231.34 s 0.04 239.11 s 0.03 728.48 s

KPLS1 Mean 0.92 0.07 s 0.87 0.10 s 0.82 0.37 s 0.79 0.86 s
std 0.02 0.02 s 0.02 0.007 s 0.02 0.02 s 0.03 0.04 s

KPLS2 Mean 0.91 0.43 s 0.87 0.66 s 0.78 2.92 s 0.74 1.85 s
std 0.03 0.54s 0.02 1.06 s 0.02 2.57 s 0.03 0.51 s

KPLS3 Mean 0.92 1.57 s 0.86 3.87 s 0.78 6.73 s 0.70 20.01 s
std 0.04 1.98 s 0.02 5.34 s 0.02 10.94 s 0.03 26.59 s

Ten trials are done for each test (50, 100, 200, and 300 training points)

Improving kriging surrogates of high-dimensional design models... 949

Fig. 7 RE for Griewank
function in 20D over interval
[−5, 5]. Experiments are based
on the 10 latin hypercube design

Fig. 8 CPU time for Griewank
function in 20D over interval
[−5, 5]. Experiments are based
on the 10 latin hypercube design

950 M. A. Bouhlel et al.

Fig. 9 RE for Griewank
function in 60D over interval
[−5, 5]. Experiments are based
on the 10 latin hypercube design

Fig. 10 CPU time for Griewank
function in 60D over interval
[−5, 5]. Experiments are based
on the 10 latin hypercube design

Improving kriging surrogates of high-dimensional design models... 951

Fig. 11 CPU time for Griewank
function in 60D for only KPLS
models over interval [−5, 5].
Experiments are based on the 10
latin hypercube design

References

Alberto P, González F (2012) Partial Least Squares regression on
symmetric positive-definite matrices. Rev Col Estad 36(1):177–
192

Bachoc F (2013) Cross Validation and Maximum Likelihood esti-
mation of hyper-parameters of Gaussian processes with model
misspecification. Comput Stat Data Anal 66:55–69

Bishop CM (2007) Pattern recognition and machine learning (infor-
mation science and statistics). Springer

Braham H, Ben Jemaa S, Sayrac B, Fort G, Moulines E (2014) Low
complexity spatial interpolation for cellular coverage analysis. In:
2014 12th international symposium on modeling and optimization
in mobile, ad hoc, and wireless networks (WiOpt). IEEE, pp 188–
195

Buhmann MD (2003) Radial basis functions: theory and implementa-
tions, vol 12. Cambridge University Press, Cambridge

Cressie N (1988) Spatial prediction and ordinary kriging. Math Geol
20(4):405–421

Damianou A, Lawrence ND (2013) Deep gaussian processes. In: Pro-
ceedings of the sixteenth international conference on artificial
intelligence and statistics, AISTATS 2013, Scottsdale, pp 207–215

Durrande N (2011) Covariance kernels for simplified and interpretable
modeling. A functional and probabilistic approach. Theses, Ecole
Nationale Supérieure des Mines de saint-Etienne

Durrande N, Ginsbourger D, Roustant O (2012) Additive covariance
kernels for high-dimensional gaussian process modeling. Ann Fac
Sci Toulouse Math 21(3):481–499

Forrester A, Sobester A, Keane A (2008) Engineering design via
surrogate modelling: a practical guide. Wiley, New York

Frank IE, Friedman JH (1993) A statistical view of some chemometrics
regression tools. Technometrics 35:109–148

Goovaerts P (1997) Geostatistics for natural resources evaluation
(applied geostatistics). Oxford University Press, New York

Haykin S (1998) Neural networks: a comprehensive foundation, 2nd
edn. Prentice Hall PTR, Upper Saddle River

Helland I (1988) On structure of partial least squares regression.
Commun Stat - Simul Comput 17:581–607

Hensman J, Fusi N, Lawrence ND (2013) Gaussian processes for big
data. In: Proceedings of the twenty-ninth conference on uncer-
tainty in artificial intelligence, Bellevue, p 2013

Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization
of expensive black-box functions. J Glob Optim 13(4):455–492

Lanczos C (1950) An iteration method for the solution of the eigen-
value problem of linear differential and integral operators. J Res
Natl Bur Stand 45(4):255–282

Liem RP, Martins JRRA (2014) Surrogate models and mixtures
of experts in aerodynamic performance prediction for mission
analysis. In: 15th AIAA/ISSMO multidisciplinary analysis and
optimization conference, Atlanta, GA, AIAA-2014-2301

Manne R (1987) Analysis of two Partial-Least-Squares algorithms for
multivariate calibration. Chemom Intell Lab Syst 2(1–3):187–197

Mera NS (2007) Efficient optimization processes using kriging
approximation models in electrical impedance tomography. Int J
Numer Methods Eng 69(1):202–220

Michalewicz Z, Schoenauer M (1996) Evolutionary algorithms for
constrained parameter optimization problems. Evol Comput 4:
1–32

Noesis Solutions (2009) OPTIMUS. http://www.noesissolutions.com/
Noesis/optimus-details/optimus-design-optimization

http://www.noesissolutions.com/Noesis/optimus-details/optimus -design-optimization
http://www.noesissolutions.com/Noesis/optimus-details/optimus -design-optimization

952 M. A. Bouhlel et al.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel
O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al (2011)
Scikit-learn: machine learning in python. J Mach Learn Res
12:2825–2830

Picheny V, Ginsbourger D, Roustant O, Haftka RT, Kim NH (2010)
Adaptive designs of experiments for accurate approximation of a
target region. J Mech Des 132(7):071008

Powell MJ (1994) A direct search optimization method that mod-
els the objective and constraint functions by linear interpolation.
In: Advances in optimization and numerical analysis. Springer,
pp 51–67

Rasmussen C, Williams C (2006) Gaussian processes for machine
learning. Adaptive computation and machine learning. MIT Press,
Cambridge

Regis R, Shoemaker C (2013) Combining radial basis function surro-
gates and dynamic coordinate search in high-dimensional expen-
sive black-box optimization. Eng Optim 45(5):529–555

Roustant O, Ginsbourger D, Deville Y (2012) DiceKriging, DiceOp-
tim: two R packages for the analysis of computer experiments

by kriging-based metamodeling and optimization. J Stat Softw
51(1):1–55

Sakata S, Ashida F, Zako M (2004) An efficient algorithm for Kriging
approximation and optimization with large-scale sampling data.
Comput Methods Appl Mech Eng 193(3):385–404

Sasena M (2002) Flexibility and efficiency enhancements for con-
strained global design optimization with Kriging approximations.
PhD thesis, University of Michigan

Schonlau M (1998) Computer experiments and global optimization.
PhD thesis, University of Waterloo

Wahba G (1990) Spline models for observational data, CBMS-NSF
regional conference series in applied mathematics, vol 59. Society
for Industrial and Applied Mathematics (SIAM), Philadelphia

Wahba G, Craven P (1978) Smoothing noisy data with spline func-
tions. Estimating the correct degree of smoothing by the method
of generalized cross-validation. Numer Math 31:377–404

Zimmerman DL, Homer KE (1991) A network design criterion for
estimating selected attributes of the semivariogram. Environ-
metrics 2(4):425–441

	Improving kriging surrogates of high-dimensional design models...
	Abstract
	Symbols and [-2pc]Please check Symbols and notation if presented correctly.notation
	Introduction and main contribution
	Universal kriging model
	Derivation of prediction formula
	Estimation of hyper-parameters

	Kriging model combined with Partial Least Squares
	Linear transformation of covariance kernels
	Partial Least Squares
	Construction of new kernels for KPLS models

	Numerical examples
	Analytical examples
	Comparison with g07 function
	Comparison with complex Griewank function over interval [-600,600]
	Comparison with complex Griewank function over interval [-5,5]

	Industrial examples
	Dimensional limits

	Conclusion and future work
	Acknowledgments
	Appendix A Equations for ordinary kriging model
	 Examples of kernels
	Appendix B Examples of kernels
	 Proof of equivalence kernel
	Appendix C Proof of equivalence kernel
	 Results of Griewank function in 20D and 60D over interval [-5,5]
	Appendix D Results of Griewank function in 20D and 60D over interval [-5,5]
	References

