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Abstract In this paper, multi-objective optimization of perfo-
rated square tubes is performed considering absorbed energy,
peak crushing force and weight of the tube as three conflicting
objective functions. In the multi-objective optimization prob-
lem (MOP), absorbed energy and peak crushing force are
defined by polynomial models extracted using the software
GEvoM based on the train and test data obtained from the
numerical simulation of quasi-static crushing of the perforated
square tubes using ABAQUS. To verify the numerical proce-
dure, 16 different experimental tests are performed and then
the experimental and numerical results are compared together.
The comparison shows reasonable similarities between the
numerical and experimental results. The MOP is solved using
modified Non-dominated Sorting Genetic Algorithm II
(NSGAII) and Multi-objective Particle Swarm Optimization
(MOPSO) and then the solutions are combined for non-
dominated sorting to obtain the non-dominated individuals
of 3-objective optimization. 105 optimum points are extracted
from the multi-objective optimization process. Finally,
Nearest to Ideal Point (NIP) method and Technique for
Ordering Preferences by Similarity to Ideal Solution
(TOPSIS) method are employed to find trade-off optimum
design points out of all non-dominated individuals
compromising all three objective functions together.

Keywords Perforated square tube . Quasi-static crushing .
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1 Introduction

Investigating different methods of absorbing released energy to
reduce damages and injuries is one of important research areas,
which has received considerable attention over the past decades
(Johnson 1972; Johnson and Reid 1978; Jones and Wierzbicki
1983; Guoxing 2003). Thin walled structures which are capa-
ble of sustaining prescribed loads and dissipating energies
while undergoing plastic deformation are widely used in differ-
ent industries such as automotive, aerospace and marine indus-
tries as energy absorbing structures (Bartczak et al. 2010).
Engineering structures are often perforated for various reasons
such as weight reduction, assembling the equipment and drain-
age paint (in painting process), dirt and water as drain hole.
Another important role of the holes which is specific in energy
absorbing components is the role of crash initiating (Mamalis
et al. 2009). Embodying geometrical discontinuities can affect
the axial collapse mode, by ensuring a stable collapse process
and decreasing the initial peak load (Mamalis et al. 2009).

Crushing behavior of perforated tubes has been studied
experimentally and numerically by various investigators in
previous works. Arnold and Altenh (2004) performed quasi-
static compressive testing of extruded aluminum alloy square
tube specimens with and without the presence of dual
centrally located circular hole discontinuities. They showed
that the presence of the circular discontinuity within some of
the tubes slightly degraded the crush force efficiency. Chenga
et al. (2006) conducted experimental investigation to compare
the crush characteristics of aluminum alloy extrusions with
centrally located through-hole discontinuities. They showed
that the peak crush load was reduced by incorporating the
through-hole crush initiators within a range of 5.2–18.7 %,
and total energy absorption was increased within a range of
26.6–74.6 %. Mamalis et al. (2009) performed finite element
(FE) simulation of square steel tubes with circular
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discontinuities subjected to quasi-static axial loadings using
the LS-DYNA explicit FE code. They found good agreement
between the results of the numerical model and testing results
from the axial loading.

All of the previous works show that there are set of holes
configuration which could provide optimum crashworthiness
characteristic. But, a general study on the optimal holes con-
figuration has not been done in the previous works. Optimum
energy absorbing structures must have high energy absorbing
capability, low weight and low peak crushing force, simulta-
neously (Khakhali et al. 2010a). Thus optimization of such
structures is a multi-objective optimization problem (MOP)
(Arora 2012). Energy absorption and peak crushing force, as
two objective functions of this 3-objective optimization prob-
lem, cannot be calculated using analytical formulas in many of
such problems. Therefore, to approximate these two objective
functions, an appropriate surrogate model can be used based
on experimental or numerical results. To perform multi-
objective optimization under such circumstance, a combina-
tion of numerical simulation, artificial neural network model-
ing and modified NSGAII algorithm has been used success-
fully by some of the authors previously (Khakhali et al.
2010b; Khalkhali and Safikhani 2012; Khalkhali et al. 2011;
Amanifard et al. 2008a). In such studies, training GMDH
neural network using input–output data obtained from numer-
ical simulation gives polynomial models that can be used as
objective function in multi-objective optimization process.

Evolutionary algorithms have been widely used for multi-
objective optimization because of their natural properties suited
for these types of problems. Therefore, most of the difficulties
and deficiencies within the classical methods in solving multi-
objective optimization problems are eliminated (Arora 2012).
Non-dominated Sorting Genetic Algorithm (NSGA-II) pro-
posed by Srinivas and Deb for solving MOPs (Srinivas and
Deb 1994; Collette and Siarry 2003) is one of themost powerful
evolutionary algorithms for solving multi-objective optimiza-
tion problems. To improve NSGA-II, Nariman-Zadeh proposed
modified NSGA-II which use ε-elimination algorithm instead
of crowding factor (Nariman-Zadeh et al. 2006). The Modified
NSGA-II has been used successfully in the previous works
(Khakhali et al. 2010b, 2011; Khalkhali and Safikhani 2012).

Particle Swarm Optimization (PSO) which was introduced
by Kennedy and Eberhart (1995) is a numerical search algo-
rithm that is used to find parameters that minimize a given
objective, or fitness function (Kennedy and Eberhart 1995).
PSO is a robust stochastic optimization algorithm based on
the intelligence and movement of swarms where the concept
of social interaction to problem solving is applied (Ebbesen
et al. 2012). PSO has gained significant popularity due to its
attractive structure and high performance over the past few
years (Kennedy and Eberhart 1995). It uses a number of agents
(particles) that constitute a swarmmoving around in the search
space looking for the optimized answer. Each particle is

treated as a point in a search space which adapts its “flying”
according to its own flying experience as well as the flying
experience of other particles. Each particle keeps track of its
coordinates in the search space which are associated with the
best solution (fitness) that has achieved so far by that particle.
This value is called personal best, Pbest. Another best value
that is tracked by the PSO is the best value gained so far by any
particle in the adjacent of that particle, which is called Gbest.

In the multi-objective problems where the objectives con-
flict with each other, there is no single optimal solution as the
best with respect to all the objective functions. Instead, there is
a set of optimal solutions, known as Pareto optimal solutions
or non-dominated optimum points (Fonseca and Fleming
1993; Coello Coello and Christiansen 2000; Coello Coello
et al. 2002; Pareto 1896). For a MOP with more number of
objective functions the number of non-dominated optimum
points is often more than that for another MOP with the lower
number of objective function. Different evolutionary algo-
rithms with different fundamental natures may neglect some
of optimum points. Therefore, combination of different evo-
lutionary methods for multi-objective optimization could pro-
vide better finding of all non-dominated optimum points. In
this way, combination of modified NSGAII and multi-
objective particle swarm optimization (MOPSO) as two pow-
erful multi-objective optimization techniques can be
employed.

In this paper, quasi-static crushing behavior of the thin-
walled square tubes with geometrical discontinuities in the
form of circular holes under quasi static load is studied exper-
imentally and numerically. Experimental tests were carried out
to validate the numerical model which was performed using
commercial software ABAQUS/Explicit. Using experimen-
tally verified FE model, 96 different finite element analyses
are then performed to obtain the training and testing data for
developing the polynomial models using GEvoM software.
To find optimal configuration of holes and thereby improve
crashworthiness characteristic of the tube, developed polyno-
mials are then used in a multi-objective optimization process
considering absorbed energy, peak crushing force and weight
of the tube as three conflicting objectives. To solve this MOP,
NSGA-II and MOPSO are used and then the solutions are
combined for non-dominated sorting to obtain the optimum
individuals. After finding out the non-dominated points, two
different trade-off optimum points are obtained using NIP and
TOPSIS methods.

2 Experimental procedure

Schematic view of the perforated square tubes is shown in
Fig. 1, where w, L, D and t denote width of the tube, length
of the tube, holes diameter, and thickness of the tube, respec-
tively. According to Fig. 1, four different sides of the square
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tube are named by the latters A, B, C and D. With respect to
these four sides, four different types of specimens are consid-
ered: Type Awhich the holes are located on the side A, Type B
which the holes are located on the sides A and B, Type C
which the holes are located on the sides A and C, Type D
which the holes are located on all sides. In the experimental
tests, total tube length (L), width of the tubes (w), wall thick-
ness (t) and holes diameter (D) were considered constant and
equal to 200 mm, 70 mm, 15 mm, and 1.5 mm, respectively.
Equal distances are considered between the holes which can
be calculated from L/ (n+1) where n represent number of
holes on each side (see Fig. 2). Different specimens with dif-
ferent holes location and holes number can now be consid-
ered. Table 1 shows 16 different specimens evaluated experi-
mentally in the present work.

All specimens were prepared from mild steel. For reducing
the residual stresses, stress relief heat treatment was carried
out. Specimens were heated to 1020 °C which is less than
transformation temperature and held at this temperature for
2 h and then gradually returned to the room temperature.
One standard tensile specimen was also constructed to deter-
mine the mechanical properties of the constitutive material.
The same heat treatment was done equally on this tensile
specimen. Stress–strain curve of the constitutive material ob-
tained from the tensile test is depicted in Fig. 3.

The quasi-static crushing tests on the perforated square
tubes were performed using SANTAM testing machine
STM-150 series with a prescribed cross-head speed of
5 mm/min. Data from the load cell and extensometer was
acquired using a computer controlled data acquisition system.
Results of the quasi static crushing experiments of perforated
square tubes will be used for validation of numerical simula-
tion in the next section.

3 Quasi-static finite element analysis

Quasi-static axial crushing of perforated square tubes was
modeled using ABAQUS/Explicit. Behavior of the material
was considered according to the curve depicted in Fig. 3
which shows the stress–strain curve obtained from the tensile
test. The post-yield material response was defined using 49
points from the stress–strain curve. The testing machine base
and movable crosshead were modeled using two rigid surface
located on the bottom and top of the tube. Medial axis algo-
rithm in ABAQUS mesh control was used to qualify mesh
around the holes. To simulate interactions between the model
surfaces, General Contact with the friction coefficient of 0.3
was used. Velocity was applied to the tube via the top rigid
surface. The loading rate applied in actual quasi-static

Fig. 1 Schematic view of the perforated square tubes

Fig. 2 Distances between holes
for specimens of the type Awith
n= 1, 2, 3 and 4
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experiments, 5 mm/min for performing experiments in this
work, was too slow that increased the time step too much. In
order to reduce the time step of the analysis, the velocity of the
rigid surface was artificially speeded up to 0.115 m/s.
Moreover, it was needed to apply loading as smooth as pos-
sible because sudden movements cause stress waves which
can induce noisy or inaccurate solution. In a typical smooth
loading curve, initial velocity and initial slope of the curve,
which is equal to initial acceleration, are zero. This ensures
that loading takes place gradually and unnecessary dynamic
effects will be avoided. In this way, the applied velocity was
controlled using the AMPLITUDE option and the SMOOTH
STEP sub option was used in ABAQUSE/Explicit to ensure
an accurate quasi-static analysis (Khakhali et al. 2011).

After a FE analysis if the simulation is quasi-static, the
velocity of the material is very small and accordingly inertial
forces are negligible. Therefore, in this situation, internal en-
ergy is nearly equal to the work applied by the external forces
while the kinetic energy is small and should not exceed a small
fraction of internal energy. In the present work, comparison of
the internal and kinetic energy for all specimens shows that
kinetic energy is very small compared to the internal energy
and therefore the numerical simulation can be considered as a
quasi-static analysis, confidently.

Figures 4, 5 and 6 show the experimental and numerical
deformed shapes for some specimens at the cross-head dis-
placement of 30, 100 and 150 mm, respectively. The figures
show close similarity between the numerical and experimental
simulation results. The comparison of the numerical and ex-
perimental force-displacement responses for some of the spec-
imens are also shown in Fig. 7. There is reasonable similarity
between the results obtained from the numerical analysis and

the experimental load deflection responses. Absorbed ener-
gies and peak crushing forces obtained from the numerical
and experimental analysis are also represented in Table 2 for
some of the test specimens. One possible reason for some
degree of difference between the experimental and the numer-
ical load deflection responses could be attributed to non-
homogeneous material properties in the test specimens. Also
the geometrical imperfections due to the forming process can
cause some reduction in the value of peak load. These results
confidently indicate the validity of the numerical analysis.

Such verified FE model can be employed now to generate
input–output data to train and test the GMDH model using
GEvoM software. Considering schematic view of the test
specimens shown in Fig. 1, various designs can be generated
by changing the holes diameter, the holes number and the
holes location. For each type of the tubes, four levels including

Table 1 Different specimens
evaluated using experimental
tests

Type Specimen No. Perforated side Hole location Number of holes
on each side (n)

Total number
of holes

A A1 A L/2 1 1

A2 A L/3 2 2

A3 A L/4 3 3

A4 A L/5 4 4

B B1 A,B L/2 1 2

B2 A,B L/3 2 4

B3 A,B L/4 3 6

B4 A,B L/5 4 8

C C1 A,C L/2 1 2

C2 A,C L/3 2 4

C3 A,C L/4 3 6

C4 A,C L/5 4 8

D D1 A,B,C,D L/2 1 4

D2 A,B,C,D L/3 2 8

D3 A,B,C,D L/4 3 12

D4 A,B,C,D L/5 4 16

Fig. 3 Stress–strain curve for constitutive material of the specimens
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1, 2, 3, and 4 holes have been considered for the holes number
and 6 levels including 5, 15, 25, 35, 45 and 55 mm have been

also considered for the holes diameter. Therefore, if the num-
ber of the cases is considered uniform, using factorial design
of experiments there will be 24 different combinations of the
holes number and diameter. All these combinations have been
modeled and their peak crushing force and absorbed energy
have been determined. Considering four different types of
specimens (A, B, C and D) a data table of 96 different designs
of square tubes with circular holes is developed and then eval-
uated by the finite element method using ABAQUS software.
Some of the simulation results are given Table 3.

4 Modeling using GEvoM

By means of GMDH algorithm a model can be represented as
set of neurons in which different pairs of them in each layer
are connected through a quadratic polynomial and thus pro-
duce new neurons in the next layer. Such representation can be
used in modeling to map inputs to outputs. The formal defi-

nition of the identification problem is to find a function f̂ so
that can be approximately used instead of actual one, f in order
to predict output ŷ for a given input vector X= (x1, x2, x3,…,
xn) as close as possible to its actual output y.

Fig. 5 Comparison of experimental and numerical shape of deformation
for specimen C2

Fig. 6 Comparison of experimental and numerical shape of deformation
for specimen D3

Fig. 4 Comparison of experimental and numerical shape of deformation
for specimen B2
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General connection between inputs and output variables
can be expressed by a complicated discrete form of the
Volterra functional series in the form of

ŷ ¼ a0 þ
Xn

i¼1

aixi þ
Xn

i¼1

Xn

j¼1

ai jxix jþ
Xn

i¼1

Xn

j¼1

Xn

i¼1

ai jkxix jxk þ…; ð1Þ

where is known as the Kolmogorov-Gabor polynomial
(Ivakhnenko 1971; Liu and Kadirkamanathan 1999). This full
form of mathematical description can be represented by a

system of partial quadratic polynomials consisting of only
two neurons in the form of

ŷ ¼ G xi; x j
� � ¼ a0 þ a1xi þ a2x j þ a3xix j þ a4xi

2

þ a5x j
2: ð2Þ

Polynomial coefficient values and network connectiv-
ity configuration are two important points in the design
of GMDH-type neural networks. Some works by
Nariman-zadeh et al . (Amanifard et al . 2008a;
Amanifard et al. 2008b; Atashkari et al. 2007; Tavoli
et al. 2006) represent the deployment of genetic algo-
rithm (GA) and singular value decomposition (SVD)
simultaneously for optimal design of both connectivity
configuration and the values of embodied polynomial
coefficient, respectively. This methodology was devel-
oped as a software named GEvoM (http://research.
guilan.ac.ir/gevom). In fact, GEvoM is a program that
generates polynomials based on GMDH-type neural net-
works to model any kind of input–output data.

The input–output data pairs used in the present work
involve the data tables obtained from the numerical
modeling represented in Section 3. Such results are sep-
arated in four different data tables according to different
type of the tubes (A, B, C and D). Number of the holes
and holes diameters are considered as inputs whilst the
absorbed energy (E) and the peak crushing force (Fmax)

Spe

Spe

ecimen A2

ecimen C2 

S

S

Specimen B2

Specimen D3

Fig. 7 Comparison of experimental and numerical Force-displacement diagram for specimens A2, B2, C2 and D3

Table 2 Absorbed energies and peak crushing forces obtained from
numerical and experimental analysis for some of test specimens

Specimen No. Peak crushing force (KN) Absorbed energy (J)

Numerical Experimental Numerical Experimental

A1 70 71 4402.3 4220.8

A2 78.7 75.8 4328 4691.8

A4 75.7 70.7 3903.2 4373.5

B1 78.7 71.2 4574.4 4633

B3 72.6 69.8 4363 4446.6

B4 73.8 68.6 4289.1 4393.5

C2 64.2 60.1 5092.9 4871.9

D3 63.3 59.1 4747.4 4437.5
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are considered as outputs. Each data table consists of
the total 24 patterns which have been obtained from
the finite element analysis to train and test such
GMDH–type neural networks. However, in order to
demonstrate the prediction ability of evolved GMDH-
type neural networks, the data have been divided into
two different sets, namely, training and testing sets. The
training set consists of 19 out of 24 input–output data
pairs and the testing set also consists of 5 unforeseen
inputs-output data samples. In the evolutionary method
sub option of GEvoM a population of 30 individuals
with a crossover probability (Pc) of 0.7 and mutation
probability (Pm) of 0.07 has been used in 400 genera-
tions in which no further improvement has been
achieved for such population size. Some of the input–
output data employed in GEvoM and their GMDH re-
sponses are depicted in Table 3.

The good ability of GMDH-type neural network
models for modeling and prediction of the numerically
obtained energy absorption data are depicted in Fig. 8
both for training and testing data of type A,B,C,D.
Such behaviors have also been shown for peak crushing
force both for training and testing data of type A, B, C
and D in Fig. 9. It is evident from these figures that the

evolved GMDH-type neural network in terms of simple
polynomial equations can successfully model and predict
the output of the testing data that has not been used
during the training process. The corresponding polyno-
mial representation for absorbed energy and peak
crushing force of type A, B, C and D are given in
Appendix A. The goodness of fit of the obtained
GEvoM models was also measured using Mean
Absolute Percentage Error (MAPE) as a statistical metric
(see Table 4). It is very evident that the model fits well
the set of observations.

5 Methods to find the trade-off optimum point

After multi-objective optimization it is desired to choose
the trade-off optimal design point through the all non-
dominated individuals. Two methods which are used in
the present work are introduced in this section.

5.1 Nearest to ideal point (NIP method)

In the nearest to ideal point method, first, an ideal point
with the best values of each objective function is

Table 3 Some of the input–
output data employed in GEvoM
and their GMDH responses

Specimen type Number of holes Diameter of holes (mm) Absorbed energy
(J)

Peak crushing force
(kN)

FEM GMDH FEM GMDH

A 4 5 4525.06 4370 78700 79864

A 2 20 4095.79 4270 74800 73968

A 4 25 4044.54 4230 73400 74372

A 1 45 4203.65 4090 66500 65132

A 3 45 3848.66 3740 64400 66493

B 2 15 4214.24 4120 74500 72311.04

B 3 25 4097.69 4200 64700 65119.52

B 2 35 4080.96 4020 59100 59804.99

B 1 45 4445.50 4520 59400 60753.38

B 2 45 3866.93 4030 53700 54784.19

C 4 15 5202.89 4930 77100 73573.05

C 2 25 4610.80 4750 67400 65777.06

C 3 35 4537.34 4680 60300 60915.71

C 1 45 4938.75 4740 54900 53601.17

C 2 45 4794.88 4660 55600 53962.23

D 3 5 5069.65 5180 78400 79770.57

D 1 15 6148.43 6290 79600 76797.48

D 1 25 5472.50 5770 62000 61173.54

D 3 35 4264.29 4140 48200 45791.94

D 2 45 3972.07 4160 47500 48902.83
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considered. Secondly, the distances between all non-
dominated points and the ideal point are calculated.

Finally, the desired point represents minimum distance
to the ideal point.

a

c

) Type A 

) Type C 

b) Type B

d) Type D

Fig. 8 Variations of the absorbed energy (E) of types A to D with input data

a) 

c) 

Type A 

Type C 

b) Type B 

d) Type D 

Fig. 9 Variations of the peak crushing force (Fmax) of type A to D with input data
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5.2 Technique for order performance by similarity to ideal
solution (TOPSIS method)

TOPSIS method is able to apply a weight or an importance
factor to each objective function and propose a point accord-
ing to these importance factors. The method consists of sev-
eral steps. Initially, the values of objective functions (S) and
weight of each objective (W) must be specified. Si j denotes the
ith optimum point of the jth objective function.W j represents
the weight of jth objective function which must satisfy the
following equation:X 2

j¼1
W j ¼ 1 ð3Þ

In the second step, values of Si j matrix will be normalized
based on the next equation:

S ¼ Si jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX r

i¼1
S2i j

q for j ¼ 1; 2 i ¼ 1; 2; 3;…; τ ð4Þ

And Ŝ matrix will be formed as follows:

In the third step, elements of the normalized matrix will be
multiplied by related weight factors:

The normalized weight matrix will be appeared as the fol-
lowing equation:

Ŝ ¼ cS11; cS12 : cS21; cS22 : … : cSτ1; cSτ2h i
ð7Þ

In the fourth round, values of Sþ and S� will be found
according to the following equations:

Sþ ¼ min cS11; cS21; …; cSτ1� �
;min cS12; cS22;…; cSτ2� �� �

ð8Þ

S− ¼ max cS11; cS21;…; cSτ1� �
;max cS12; cS22;…; cSτ2� �� �

ð9Þ

In the fifth step, the separation measures hþi and h�i for
each Pareto point will be found using the following equations:

hþi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX 2

j¼1
cSl J−Sþj� �2

r
for i ¼ 1; 2; 3;…; τ ð10Þ

h−i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX 2

j¼1
cSl J−S−j� �2

r
for i ¼ 1; 2; 3;…; τ ð11Þ

In the sixth step, Hi which represents the relative accuracy,
will be calculated for each Pareto curve:

Hi ¼ h−i
hþi −hi

0≤Hi≤1 ð12Þ

In the final step, maximum value ofHi will be selected and
the objective functions’ values and corresponding optimum
design variables will be determined based on the selected val-
ue of H.

6 Multi-objective crashworthiness optimization
of the square tubes

In the present work, to improve the crashworthiness charac-
teristics of perforated square tubes, a multi-objective optimi-
zation problem (MOP) has been defined and solved consider-
ing absorbed energy (E), peak crushing force (Fmax) and
weight of the tube (W) as three conflicting objectives. The
polynomial neural network models obtained in previous sec-
tions are now deployed in the three-objective optimization
problem which can be formulated in the following form:

Maximize E ¼ f 1 T ; n;Dð Þ AbsorbedEnergyð Þ
Minimize W ¼ f 2 T ; n;Dð Þ Weight of theTubeð Þ
Minimize Fmax ¼ f 3 T ; n;Dð Þ Peak CrushingForceð Þ
DesignVariableBounds :

T∈ A; B; C; Df g
n∈ 1; 2; 3; 4f g
5mm ≤ D ≤ Dmax

8>>>>>>><
>>>>>>>:

ð13Þ

Due to the geometrical restriction between holes diameter
and length of the tube, Dmax which is the upper bound of the

Table 4 Mean absolute
percentage error list for GEvoM
models

Type MAPE

Training set Testing set

Absorbed energy Peak crushing force Absorbed energy Peak crushing force

A 0.98 % 0.56 % 2.90 % 1.53 %

B 0.60 % 1.50 % 1.88 % 1.39 %

C 1 % 0.58 % 3.50 % 1.72 %

D 1 % 1.22 % 3.43 % 3.62 %

(5)

(6)
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holes diameter in equation (13) is considered 35 mm for n=4,
45 mm for n=3 and 55 mm for both n=2 and n=1. To solve
the above multi-objective optimization problem, the modified
NSGAII (Khalkhali and Safikhani 2012) and MOPSO were
used and consequently two separate sets of optimal solutions
were obtained. All optimum points obtained from both
methods were combined together and then non-dominated
sorting procedure, which takes all of populations as input
and then returns the first non-dominated front as output, was
performed. After non-dominated sorting, some of the points
found by modified NSGAII and also some of the points found
by MOPSO were eliminated. The remained set of optimum
points which is the respond of the MOP is called re-fronted
optimum points.

MOPSO approach which was first proposed by Coello
et al. (2004) is based on the traditional particle swarm optimi-
zation (PSO). In this approach, to solve the multi-objective
optimization problems, Pareto dominance is incorporated into
PSO algorithm. MOPSO also uses a constraint-handling
mechanism and a special mutation operator that considerably
improves the exploratory capabilities of this algorithm. Main
algorithm of MOPSO is summarized as:

1. The population POP is initialized.
2. The speed of each particle is initialized.
3. Each of the particles in POP is evaluated.
4. The positions of the particles are stored, which represent

non-dominated vectors in the repository REP.
5. Hypercubes of the search space explored so far are gen-

erated, and the particles are located using these hyper-
cubes as a coordinate system, where each particle’s coor-
dinates are defined according to the values of its objective
functions.

6. The memory of each particle is initialized.

PBESTSi ¼ POPi ð14Þ

7. WHILEmaximum number of cycles has not been reached
DO

a) The speed of each particle is computed using the fol-
lowing expression:

V tþ1
i ¼ ωV t

i þ C1r
t
1 PBESTSi−POPt

i

� �
þ C2r

t
2 REPm−POPt

i

� � ð15Þ

where Vi
t denotes velocity vector associated with ith

particle in iteration t, PBESTSi is the best position that
the particle has had, REPm is value of mth element of
the repository, ω is the inertia weight of the particle
introduced by Shi and Eberhart (1998). Inertia weight
(ω) controls the trade-off between global (largeω) and
local (small ω) experiences. Index m in REPm is

calculated using the hypercubes of the search space
and performing roulette wheel (Coello et al. 2004).
The algorithm uses two independent random num-
bers, r1 and r2 between 0 and 1. C1 and C2 are param-
eters which control the influence of the personal and
global best particles.

In Equation (15) it is necessary to note to the def-
inition of PBESTSi because in multi-objective opti-
mization, unlike single objective optimization, best
position that the particle has had cannot be found
simply. To solve a single objective optimization prob-
lem using PSO, best position of a particle is where
that the cost function has minimum value (or maxi-
mum value for maximization problems) based on its
travel history. In a multi-objective optimization prob-
lem, considering that multiple objective functions are
supposed to be optimized simultaneously, a position
may be considered a good position in the point of
view of one objective function, while it may not be
a good one in the point of view of the other objective
function. Therefore in MOPSO for determining the
PBESTSi the concept of Pareto dominance is used.
In this way, if in an increment the objective functions
values for the ith particle dominate those contained in
PBESTSi, the new value will be inserted in PBESTSi.
Otherwise the PBESTSi value for the ith particle re-
mains unchanged. If neither of them is dominated by
the other, then one of them will be selected randomly.

The value ofVi
t is clamped to the range [Vmin, Vmax]

to weaken the likelihood that the particle might leave
the search space. Clerc and Kennedy showed that the
constriction factor x as expressed in equation 16 and
equation 17 may help to ensure convergence (Clerc
and Kennedy 2002).

V tþ1
i ¼ x ωV t

i þ C1r
t
1 PBESTSi−POPt

i

� �þ C2r
t
2 REPm−POPt

i

� �� �
ð16Þ

x ¼ 2

2−L −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L 2−4

p			 			
L ¼ C1 þ C2 ; L > 4

ð17Þ

b) Particles are moved to their new positions according
to:

X tþ1
i ¼ X t

i þ V tþ1
i ð18Þ

where Xi
t is the current position of particle i.

c) The particles are maintained within the search space
in case they go beyond their boundaries.

d) Each of the particles in POP is evaluated.
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e) The contents of REP are updated together with the
geographical representation of the particles within
the hypercubes. This update consists of inserting all
the currently non-dominated locations into the
repository.

f) If the current position of the particle dominates the
position in memory, the current position replaces the
one in memory as follow:

PBESTSi ¼ POPi ð19Þ
Otherwise the PBESTSi value is kept; if neither of the

values is dominated by the other, then one of them can be
selected randomly.

g) The loop counter is incremented.
8. End WHILE

The optimization parameters used in MOPSO are repre-
sented in Table 5.

In Fig. 10, all obtained optimum design points which are
105 points are shown in the 3D objective space. Figure 11
depicts the re-fronted non-dominated individuals of 3-
objective optimization in the plane of (E-Fmax), (E-W) and
(Fmax-W), separately. It should be noted that there is a single
set of re-fronted individuals as a result of the 3-objective op-
timization of E, Wand Fmax that are shown in different planes
together. In this figure, the remaining points from those ob-
tained by modified NSGAII are shown by blue color and
similarly the points remained from MOPSO are shown by
red color.

It is clear that all of these optimum points are non-
dominated and could be chosen by a designer. Evidently,
choosing a better value for any objective function in the ob-
tained non-dominated optimum points would cause a worse
value for another objective. The corresponding design vari-
ables of these optimum points are the best possible design
points. Hence, if any other set of design variables is chosen,
the corresponding values of the pair of objectives will locate a
point inferior to the obtained non-dominated optimum points.

It should be noted that the results of the three-objective
optimization include results of the single objective optimiza-
tion. The design point ‘a’ is the result of single objective

optimization of absorbed energy. In fact, if a designer aims
to maximize the absorbed energy, the design point ‘a’ which
gives the best value of absorbed energy must be chosen. On
the other hand, similarly, the design points ‘b’ and ‘c’ are the
results of single objective optimization of weight and peak
crushing force respectively. These optimum design points
are shown in the Fig. 12 and the values of their design vari-
ables and objective functions are represented in Table 6. It is
clear from Fig. 12 that the points ‘a’ and ‘b’ are almost located
on two corners of the graph. It means that the optimum point
with maximum absorbed energy has also maximum weight
between all non-dominated individuals. On the other hand
the optimum point with minimum weight has almost mini-
mum absorbed energy between all non-dominated individuals
too.

It may be desired to find trade-off optimum design points
out of all non-dominated individuals compromising all three
objective functions. This can be achieved by two methods
described in Section 5, namely, the Technique for Ordering
Preferences by Similarity to Ideal Solution (TOPSIS) method
and Nearest to Ideal Point (NIP) method. Consequently, trade-
off optimum design points ‘p’ and ‘q’ are the points which
have been obtained from the TOPSISmethod and NIPmethod
(considering equal weights for all objectives), respectively. In
Fig. 12, on the planes of (E-W) and (Fmax-W), both points ‘p’
and ‘q’ are non-dominated. But, on the plane of (E-Fmax), it
can be seen that point ‘q’ dominates point ‘p’. Comparing
locations of the optimum design points ‘p’ and ‘q’ on the
planes show that from point ‘p’ to point ‘q’, energy absorption
(E) and peak crushing force (Fmax) improves about 39 % and
3% respectively. However, another objective function, weight
of the tube, is weakened about 36%. Because increase in Fmax

from point ‘q’ to point ‘p’ is very low (about 3 %) and there-
fore it is negligible, the designer can choose one of these two
points (‘p’ and ‘q’) by compromising between only two

Table 5 optimization
parameters used in
MOPSO

Common parameters Magnitude

Swarm size 100 Particles

Iterations 250

C1, C2 2.05

ω 0.97

Mutation probability 0.05

Fig. 10 Obtained refronted optimum points in the 3D objective space
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objective functions E and W. Values of design parameters and
objective functions for the points ‘p’ and ‘q’ are represented in
Table 6. It is noteworthy that the design point ‘p’ chosen by
TOPSIS is the same as the point ‘b’ which is the answer of
single objective optimization of W. Moreover, the value of its
peak crushing force is very close to the point ‘c’ which is the
answer of single objective optimization of Fmax. It is clear that
the optimum design points represented in Table 6 are some
useful optimal design points which could not have been dis-
covered without the use of the optimization process presented
in this paper.

For comparison between the trade-off optimum design
points, the point ‘b’ was chosen as the base line solution and
the other solutions were compared with this optimum point by
showing the percentage of increase or decrease on each objec-
tive. Such comparison results given in Table 6 contain inter-
esting information and can help the designer to choose the best
design point.

To investigate the effect of perforating the tubes on their
energy absorption characteristics, a non-perforated sample has
been modeled in ABAQUS/Explicit according to the condi-
tions stated in Section 3 and its absorbed energy and peak
crushing force have been determined numerically. The simu-
lation results of the non-perforated sample have been

compared with those of the trade-off optimum design points
in Table 7. This comparison implies that, with neglecting the
small reduction in the absorbed energy, at the optimum points
the peak crushing force and weight of the perforated tubes
have been remarkably improved compared to those of the
non-perforated sample.

As another interesting obtained result which is shown
in Fig. 12, 71 points from all of 105 non-dominated
optimum design points (about 70 %) are from type D
and the other remained points (about 30 %) are from
Type C. It means that square tubes with more perforated
sides dominate the other points. In fact, perforating the
holes on the tubes considerably decreases weight of the
tube and peak crushing force, which affects the domi-
nance of the individuals significantly. However, the op-
timum design points of Type C also have interesting
behavior. It can be seen from Fig. 12 that the values
of all three objective functions in most of design points
of Type C are moderate. It means that, from viewpoint
of all objective functions, the design points of Type C
exhibit moderate behavior. Design point ‘r’ can be sim-
ply recognized and chosen from the points of Type C.
Its values of design variables and objective function are
represented in Table 6. It can be seen from this table

Fig. 11 Re-fronted optimum points in different planes, blue and red points were remained from the points obtained by modified NSGAII and MOPSO
respectively
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that this point have moderate values for objective func-
tions in comparison to other obtained optimum design
points.

To show the accuracy of the optimum solutions, the trade-
off optimum design points have been re-evaluated by the finite
element method in a post numerical study. It should be noted
that the trade-off optimum design points in both cases are not
included in the training and testing sets which makes such re-
evaluation sensible. The results of such FEM analysis re-
evaluations are compared with those obtained from the opti-
mization process in Table 7. The close agreement of such

comparison demonstrates the effectiveness of the approach
of this paper both in deriving the surrogate model and in
obtaining the optimum solutions.

7 Conclusion

The crashworthiness characteristics of the thin-walled square
tubes with geometrical discontinuities in the form of circular
holes under quasi-static axial load were studied both experi-
mentally and numerically. Static tests with 16 specimens were

Fig. 12 The obtained optimum
design points in different planes
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carried out to validate the finite element model performed
using ABAQUS. Comparison between the load–displacement
graphs, collapse modes, amount of the absorbed energies and
peak crushing forces showed that the numerical results are in
good agreement with the experimental data. GEvoM software
was introduced and successfully employed to obtain polyno-
mials for modeling the absorbed energy and peak crushing
force based on 96 input–output data obtained from the FE
simulations. Such polynomial models showed very good be-
havior in the test and train sets. To find the optimal configu-
ration of holes on the perforated square tubes to achieve im-
proved crashworthiness characteristics of the tubes under qua-
si static axial load, a multi-objective optimization problem
was defined. The absorbed energy, peak crushing load and
weight of the structure were considered as three conflicting
objectives in the MOP. To solve this MOP the modified
NSGAII and MOPSO were employed and the solutions were
combined for non-dominated sorting to obtain the optimum

points. 105 non-dominated optimum design points were ex-
tracted from solving the MOP. About 70 % of the non-
dominated optimum points are from type D. This interesting
result shows that square tubes with more perforated sides have
better crashworthiness characteristics. To find the trade-off
design point among the non-dominated optimum points, NIP
and TOPSIS methods were applied. Optimum design points
found from these two methods can be selected by designers as
compromising optimum points confidently.

Appendix A

Corresponding polynomial representation for absorbed energy
of types A, B, C and D obtained using GEvoM are as follows:

For Type A:

Y 1 ¼ 4849:3294−37:2842Dþ 0:42835D2

Y 2 ¼ 4922:798−543:668nþ 91:682n2

Y 3 ¼ −0:0058þ 16:5079Y1−16:629Y2−0:000984Y2
1 þ 0:002858Y2

2−0:0016112Y 1

Y 4 ¼ 0:000394þ 0:0055219Dþ 0:848535Y2 þ 0:3681567D2 þ 6:8241156Y2
2−0:008267Y2D

Energy ¼ 0:005755−24:66255Y3 þ 25:44598Y4 þ 0:01772Y2
3 þ 0:0119459Y2

4−0:0296227Y3Y4

ð4Þ

For Type B:

Y 1 ¼ 4189:0752−195:03608nþ 36:69127Dþ 83:207066n2−0:34526D2−14:05867nD
Y 2 ¼ 4321:49518−7:42745D−0:02677D2

Y 3 ¼ −0:46187−91:45453Dþ 1:94702Y 1 þ 0:10591D2−0:00022Y1
2 þ 0:0205698DY1

Y 4 ¼ −0:003539þ 10:14823Y1−8:94379Y2−0:000487Y1
2 þ 0:0017609Y2

2−0:001321Y1Y2

Energy ¼ −0:03759−14:38065Y3 þ 15:49129Y4−0:03292Y3
2−0:03677Y4

2 þ 0:06967Y3Y4

ð5Þ

For Type C:

Y 1 ¼ 5778:8423−811:9339nþ 60:38783Dþ 142:6619n2−1:38307D2−5:90438892781643nD
Y 2 ¼ 4787:22183þ 39:71079D−1:1467D2

Y 3 ¼ 5974:887−1188:5924nþ 227:629n2

Y 4 ¼ −0:00215þ 5:2949Y1−4:32067Y2−0:000182Y1
2 þ 0:00075Y2

2−0:000568Y1Y2

Y 5 ¼ 4:579*10‐5 þ 0:986081Y2 þ 0:004101þ 2:8974*10‐6Y 2
2

Y 5 ¼ 0:007725−0:421966nþ 0:96043Y2 þ 105:5038n2 þ 5:60010*10‐5Y 2
2−0:15632nY2

Y 6 ¼ 0:000523þ 0:008127Dþ 1:2338Y3−1:1458D2−4:4885*10‐5Y32þ 0:008275DY3

Y 7 ¼ −0:00091þ 3:00512Y4−1:87748Y5−0:00035Y4
2 þ 0:0001Y5

2 þ 0:00023Y4Y5

Y 8 ¼ 0:0025106−9:26457Y5 þ 10:43103Y6 þ 0:00177Y5
2−0:00029Y6

2−0:001524Y5Y6

Energy ¼ −0:00504þ 8:22627Y7−6:74763Y8 þ 0:00338Y7
2 þ 0:004716Y8

2−0:008209Y7Y7

ð6Þ
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For Type D:

Y 1 ¼ 6860:736−980:45n−14:57Dþ 179:605n2−0:1042D2−10:9524nD
Y 2 ¼ 6051:591−1054:599nþ 139:517n2

Y 3 ¼ 5931:642þ 56:764Dþ 0:44536D2

Y 4 ¼ 0:14737 þ 0:9183Y1 þ 10:1842Dþ 1:4308Y1
2−0:0636D2−0:0013Y1D

Y 5 ¼ −0:001627−6:610366Y2 þ 6:45366Y3 þ 0:00097Y2
2−0:00044Y3

2−0:000278Y2Y 3

Y 6 ¼ 9:6249þ 0:7868Y1 þ 0:21856Y2−4:341*10‐5Y 1
2−9:0711*10‐5Y 2

2 þ 0:0001338Y1Y 2

Y 7 ¼ 0:004549*10−5 þ 9:6103Y4−8:568Y5 þ 0:00247Y4
2 þ 0:00465Y5

2−0:0071Y4Y 6

Y 8 ¼ 0:0024þ 11:954Y7−10:825Y5−0:001643Y7
2 þ 0:00106Y6

2 þ 0:000551Y7Y6

Energy ¼ −0:04637−9:368Y7−9:368Y8 þ 10:2556Y7
2 þ 0:05517Y8

2 þ 0:05395Y7Y 8

ð7Þ

Similarly, the corresponding GEvoM polynomial represen-
tations to model the peak crushing force of types A, B, C and
D are in the form of:

For Type A:

Y 1 ¼ 71238:1224−870:4868nþ 454:9678n2

Y 2 ¼ 84266:5655−2926:3874nþ −376:9989Dþ 518:2299n2−0:259431D2 þ 29:1475nD

Y 3 ¼ 1:3662*10−5 þ 0:499Y2 þ 0:49771Y1 þ 1:16274*10‐6Y 2
2−5:7945*10‐6Y 1

2 þ 4:668*10‐6Y 2Y 1

Fmax ¼ 1:38108*10−5 þ 0:48753Y3 þ 0:48719Y2 þ 0:122235Y3
2 þ 0:122339Y2

2−0:24457Y3Y 2

ð8Þ

For Type B:

Y 1 ¼ 85895:284− 3899:7748n þ − 582:285D þ 1253:2236n2 þ 4:76153D2 − 125:8719n D
Y 2 ¼ 3:05887*10−5 þ 1:00757Y1 þ 3:6393*10‐5n−1:00799*10−7Y 1

2 þ 2:24438*10−5n2−0:00032Y1n
Fmax ¼ 1:24071*10−5 þ 0:5155Y1 þ 0:51372Y2−0:16627Y1

2−0:16633Y2
2 þ 0:33261Y2Y 1

ð9Þ

For Type C:

Y 1 ¼ 66993:5678−4235:856 6nþ 1348:3893n2

Y 2 ¼ 108903:8198−14710:046n−1185:1545Dþ 2066:7706n2 þ 3:29294D2 þ 131:38259nD

Y 3 ¼ 84253:48327−597:72D−1:352117D2

Y 4 ¼ 2:70313*10−4 þ 1:00426Y1−6:42003*10−8Y 1
2

Y 5 ¼ 1:58153*10−5 þ 0:50779Y2 þ 0:5082Y3 þ 0:0004234Y2
2 þ 0:0004294Y3

2−0:0008536Y2Y 3

Fmax ¼ 9:97831*10−6 þ 0:3374849Y4 þ 0:33079Y5 þ 2:156436*10−6Y 4
2 þ 7:03301Y5

2−4:36705Y4Y 5

ð10Þ

For Type D:

Y 1 ¼ 99723:8754−9784:638n−1747:028Dþ 1608:228n2 þ 16:2803D2 þ 52:97698nD

Y 2 ¼ 61963:2877−2577:7168nþ 310:175n2

Y 3 ¼ −1:50565*10−5 þ 0:962219Y1−0:00595Dþ 3:348628*10−7Y 1
2−0:841921D2 þ 0:0012934Y1D

Y 4 ¼ 1:3662*10−5 þ 0:4074Y1 þ 0:39829Y 2−8:0952*10−6Y 1
2−1:58136*10−5Y 2

2 þ 2:75687*10−5Y 1Y2

Y 5 ¼ 1:3662*10−5 þ 0:39831Y2 þ 0:40747Y1−1:58138−05Y2
2−8:0952*10−6Y 1

2 þ 2:75686*10−5Y 2Y1

Y 6 ¼ 1:62774*10−5 þ 0:49318Y3 þ 0:489156Y4 þ 0:004105Y3
2 þ 0:004102Y4

2−0:008209Y3Y4

Y 7 ¼ 1:68271*10−5 þ 0:49943Y5 þ 0:50486Y1 þ 0:00382Y5
2 þ 0:0038Y1

2−0:007657Y5Y 1

Fmax ¼ 1:76673*10−5 þ 0:532Y6 þ 0:531Y7−0:00276Y6
2−0:00276Y7

2 þ 0:005484Y6Y 7

ð11Þ
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