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Abstract Many problems in structural optimization can be
formulated as a minimization of the maximum eigenvalue
of a symmetric matrix. In practise it is often observed that
the maximum eigenvalue has multiplicity greater than one
close to or at optimal solutions. In this note we give a suf-
ficient condition for this to happen at extreme points in the
optimal solution set. If, as in topology optimization, each
design variable determines the amount of material in a finite
element in the design domain then this condition essentially
amounts to saying that the number of elements containing
material at a solution must be greater than the order of the
matrix.

Keywords Maximum eigenvalue · Multiplicity · Structural
optimization

1 Introduction

Many problems in structural optimization can be formu-
lated as a minimization of the maximum eigenvalue of
a symmetric matrix. Examples include maximization of
the fundamental eigenfrequency (Seyranian et al. 1994;
Du and Olhoff 2005), robust design optimization (Kobelev
1993; Takezawa et al. 2011; Brittain et al. 2012; Holmberg
et al. 2015), and maximization of the fundamental buckling
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load (Cox and Overton 1992; Rahmatalla and Swan 2003;
Stanford and Beran 2013).1

Let λ1(A) denote the largest eigenvalue of a symmetric
matrix A ∈ R

n×n. In the present context A depends on the
stiffness matrix arising from a finite element discretization
of some structure. The stiffness matrix in turn depends on
a set of design variables x, usually determining the amount
of material present in each finite element. It is frequently
observed that the multiplicity of λ1(A) is greater than one
close to or at an optimal solution x∗, rendering the func-
tion x → λ1(A(x)) non-smooth (Overton and Womersley
1993). In this note we provide sufficient conditions for this
to happen. The most important part of these is that the num-
ber of non-zero elements in x∗ is greater than the order n of
A. Since the conditions depend on the solution they cannot
in general be checked a priori, but this is quite natural since
one expects applied loads and boundary conditions to have a
significant impact on the properties of the optimal solutions.

The work presented here builds on the analysis of Pataki
(1998) and follows it closely in parts. Pataki (1998) con-
sidered unconstrained minimization of the maximum eigen-
value (so did Dedieu (2000) using different techniques),
but for structural optimization it is necessary to (at least)
introduce lower bounds on the design variables and a lin-
ear equality constraint limiting the total amount of material
used. The main result here is Theorem 1 which gives a lower
bound (greater than one) on the multiplicity of λ1(A(x∗))
when A depends linearly on the vector of design variables

1To see that all of these problems can be formulated as a minimiza-
tion of the maximum eigenvalue, note that λ1(A) = −λn(−A), where
λ1 and λn is the largest and, respectively, smallest eigenvalue, of
the symmetric matrix A, and that, for a positive definite A, if λ1
is the maximum eigenvalue for the generalized eigenvalue problem
(B − λA)u = 0, then it plays the same role in the eigenvalue problem
(A−1/2BA−1/2 − λI )u = 0.
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x, and x∗ is an extreme point in the optimal solution set.
In many problems of interest, however, A is a non-linear
function of x. Fortunately, Lemma 1 shows that that such
problems can be reduced to problems of the type treated by
Theorem 1, and Theorem 2 then provides a lower bound on
the multiplicity of λ1(A(x∗)) in the non-linear case.

2 Notation and basic facts

Let Sn denote the space of n × n symmetric matrices with
real entries. If a matrix in S

n is positive semi-definite we say
that it belongs in S

n+. The eigenvalues of A ∈ S
n are denoted

λ1 ≥ . . . ≥ λn, and we can write A = QDiag{λi}QT where
Q ∈ R

n×n is an orthonormal matrix and Diag{λi} is a diag-
onal matrix with λ1, . . . , λn on the diagonal. The functions
λi : Sn → R are Lipschitz continuous and convex. The mul-
tiplicity of λ1 is the largest number p, 1 ≤ p ≤ n, such that
λ1 = . . . = λp > λp+1; we denote this number mult(λ1).
tr(A) is the trace of A.

A face of a convex set C is a non-empty, convex subset F

of C such that if F � x = 1
2 (x1 + x2) for some x1, x2 ∈ C,

then x1, x2 ∈ F . A zero-dimensional face of a convex set,
i.e. a point, is called an extreme point of that set.

We use the notation t (n) = n(n + 1)/2 for the n-th
triangular number and let N0 denote the set of non-negative
integers.

3 The affine case

Let A : Rm → S
n be defined by

A(x) = A0 +
m∑

i=1

xiAi ,

where Ai ∈ S
n for i = 0, . . . , m. Consider the optimization

problem

min
x∈X

λ1(A(x)), (1)

where X = {x ∈ R
m | x ≥ 0, aTx = b}. The vector a ∈

R
m is assumed to be such that this convex set is non-empty,

compact and contains a point x > 0. The objective function
in (1) is a composition of a convex and an affine func-
tion, hence convex. Since X is compact and λ1(·) is lower
semi-continuous, the set of optimal solutions to (1) is non-
empty and compact (Andréasson et al. 2005, Theorem 4.7).

The results proved in this paper concern extreme points
of the set of optimal solutions to (1) so it is of interest to
know that such points exist. Let λ∗

1 denote the optimal value
of (1). The set of optimal solutions is then

O = {
x ∈ R

m | λ1(A(x)) = λ∗
1

} ∩ X .

The first of the sets to the right is closed and convex (Pataki
1998, p. 348), so by Theorem 2.1 in (Rockafeller 1972) O is
convex. Proposition 2.3.3 in Hiriart-Urruty and Lemarchal
(1993) then ensures the existence of an extreme point in O.

3.1 SDP-reformulation and the main theorem

There exists several different characterizations of the maxi-
mum eigenvalue of a symmetric matrix (Pataki 1998). Here
we employ a version where the eigenvalue is the optimal
value of a certain semi-definite program (SDP).

Let x be given. A symmetric matrix is positive semi-
definite if and only if all its eigenvalues are non-negative
(Horn and Johnson 1985, Theorem 7.2.1). It follows that
zI −A(x) 	 0 ⇔ z−λ1(A(x)) ≥ 0, where I is an identity
matrix. Therefore λ1(A(x)) is the optimal value of the SDP

min
z∈R,W∈Sn+

z

s. t. zI − W = A(x), (2)

where W is a slack variable. Since A(x) is symmetric,
A(x) = QDiag{λi}QT, with Q an orthonormal matrix of
order n. Then (z∗, W ∗) is an optimal solution to (2) if and
only if z∗ = λ1(A(x)) and

W ∗ = QDiag
{
0, z∗ − λ2, . . . , z

∗ − λn

}
QT.

It follows from the last equality that

mult(λ1(A(x)) = n − rank(W ∗). (3)

This implies that the lower the rank of W ∗, the greater
the multiplicity of λ1(A(x)). Consequently, the proof of
Theorem 1 below amounts to bounding the rank of W ∗.

Now since x in (2) is arbitrary, problem (1) can be
reformulated as

min
x∈X

λ1(A(x)) = min
x∈X ,z∈R,W∈Sn+

z

s. t. zI − W = A(x). (4)

The key step in the proof of Theorem 1 below is the appli-
cation of Theorem 2.2 in Pataki (1998), which provides an
upper bound on the sum of the ranks of the matrix variables
at faces of the feasible set of an SDP. Therefore we need to
reformulate (4) into a problem to which the cited theorem
applies. To this end, note that a scalar xj ≥ 0 can be seen as
a symmetric, positive semi-definite matrix of order 1. This
means that problem (4) can be written as

min
x1∈S1+,...,xm∈S1+,z∈R,W∈Sn+

z

s. t.

{
zI − W = A(x)

aTx = b.
(5)

With this reformulation we can now prove the main theo-
rem.
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Theorem 1 Let x∗ be an extreme point of O such that∑m
i=1 r(x∗

i ) > n, where r(xi) = rank(xi) ∈ {0, 1}. Then
mult(λ1(A(x∗)) ≥

n−max

{
w ∈ N0 | t (w)≤ t (n)−

m∑

i=1

r(x∗
i ), w ≤ n−2

}
.

Proof Since x∗ is an extreme point of O, it follows from
Lemma 4.2 in Pataki (1998) (omit V and take k = 1)
that (x∗, z∗, W ∗), (z∗, W ∗) solving (2) with x = x∗, is an
extreme point of the feasible set of (5). Let w = rank(W ∗).
Problem (5) has q = 1 unconstrained scalar variables and
t (n) + 1 equality constraints (counting a symmetric matrix-
constraint as t (n) scalar constraints), and an extreme point
is a face of dimension zero, so Theorem 2.2 from Pataki
(1998) yields

m∑

i=1

r(x∗
i ) + t (w) ≤ t (n) + 1 − q ⇔

t (w) ≤ t (n) −
m∑

i=1

r(x∗
i ). (6)

To get a contradiction, assume that w = n − 1 [by (3) then,
mult(λ1(A(x∗)) = 1]. Straightforward calculations show
that

t (n − 1) = t (n) − n > t(n) −
m∑

i=1

r(x∗
i ), (7)

since by assumption,
∑m

i=1 r(x∗
i ) > n. But now (7) contra-

dicts (6) and it follows that w < n − 1; hence w ≤ n − 2.
This result together with (6) substituted in (3) then yields

mult
(
λ1(A(x∗)) = n − w ≥

n−max

{
w ≥ 0 | t (w) ≤ t (n)−

m∑

i=1

r(x∗
i ), w≤n−2

}
.

Remark If x ≥ 0, y ≥ 0 and x+y = u, then 0 ≤ x ≤ u and
0 ≤ y ≤ u. Based on this observation we could account for
an upper bound ui on each of the xi’s in (5) by introducing
additional variables yi ∈ S

1+, i = 1, . . . , m, and m linear
equality constraints xi + yi = ui . Inequality (6) in the proof
above then becomes

t (w) ≤ t (n) + m −
m∑

i=1

[
r
(
x∗
i

) + r
(
y∗
i

)]
.

It holds that r(x∗
i )+ r(yi)

∗ = 2 if 0 < x∗
i < u; 1 otherwise.

Following the same arguments as in the proof one is thus
led to a version of Theorem 1 where

∑m
i=1 r(x∗

i ) > n is
replaced by
∣∣{ i ∈ {1, . . . , m} | 0 < x∗

i < u
}∣∣ > n,

where | · | denotes the cardinality of a set. In terms of topol-
ogy optimization this means that the number of ”grey” ele-
ments in the solution should exceed the order of the matrix.
This seems overly restrictive since researchers report coa-
lescing of eigenvalues despite using penalization methods
which lead to solutions where almost all variables attain
their upper or lower bound (Holmberg et al. 2015).

Remark It is straightforward to modify the theorem to
account for additional linear equality constraints – adding
s such constraints leads to an additional term ”+s” to the
right in (6). Linear inequality constraints may be treated by
introduction of (non-negative) slack variables. Adding one
linear inequality and a slack variable s then implies that a
term ”r(s)” should be added to the left-hand side of (6) and
”+1” to the right-hand side.

4 The non-linear case

Consider the optimization problem

min
x∈X

λ1(A(x)), (8)

where x → A(x) is a continuously differentiable, non-
linear function. Lemma 1 below shows than any solution x∗
to this problem is also a solution to a problem of type (1).
Therefore it makes sense to assume that x∗ is an extreme
point in the optimal solution set of the latter problem. This
is done in Theorem 2, the proof of which is then a direct
application of Theorem 1.

Lemma 1 Let x∗ be an optimal solution to (8). Then x∗
solves

min
y∈X

λ1

(
A∗ +

m∑

i=1

(yi − x∗
i )A∗

i

)
, (9)

where A∗ = A(x∗), and A∗
i = ∂A

∂xi
(x∗).

Proof We begin by noting that X satisfies Slater’s con-
straint qualification (Andréasson et al. 2005, Def. 5.38),
ensuring the necessity of the optimality conditions that
follow.

Introduce the Lagrangian

L(x; μ, γ ) = λ1(A(x)) + μ(aTx − b) − γ Tx.

The necessary first-order optimality conditions for a point
x∗ ∈ X in (8) is (Clarke 1983, Theorem 6.1.1) the existence
of (μ, γ ) �= 0, with γ ≥ 0 such that

0 ∈ ∂L(x∗; μ, γ )

γix
∗
i = 0, i = 1, . . . , m, (10)
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where ∂L(x∗; μ, γ ) = ∂λ1(A
∗) + μa − γ is the

Clarke’s generalized gradient of L. Let p = mult(λ1(A
∗)).

Theorem 3.9 in Overton and Womersley (1993) provides
an expression for the generalized gradient ∂λ1(A

∗) using
which the optimality conditions become the existence of
(μ, γ ) �= 0, with γ ≥ 0, and U ∈ S

p
+ such that

0 = tr
(
UQT

1A∗
i Q1

) + μai − γi, i = 1, . . . , m

γix
∗
i = 0, i = 1, . . . , m

tr(U) = 1,

(11)

where the columns of Q1 ∈ R
n×p are eigenvectors associ-

ated with λ1(A
∗).

Problem (9) is convex, so the generalized gradient of
the associated Lagrangian coincide with the subdifferential
(Clarke 1983, Proposition 2.2.7). The necessary and suffi-
cient, first-order optimality conditions for (9) then follows
from Theorem 28.3 in Rockafeller (1972), and are the exis-
tence of (μ, γ ) �= 0, with γ ≥ 0, and U ∈ S

p
+ such that

0 = tr
(
UQT

1A∗
i Q1

) + μai − γi, i = 1, . . . , m

γiyi = 0, i = 1, . . . , m

tr(U) = 1.

(12)

But these conditions coincide with conditions (11). This
shows that y = x∗ satisfies the optimality conditions (12)
of problem (9). Since these are sufficient for optimality it
follows that x∗ solves (9).

Theorem 2 Assume that
∑m

i=1 r(x∗
i ) > n and that x∗ is an

extreme point in the set of optimal solutions to problem (9).
Then

mult(λ1(A
∗)) ≥

n−max

{
w ∈ N0 | t (w)≤ t (n)−

m∑

i=1

r(x∗
i ), w≤n−2

}
.

Proof Since problem (9) is of the form (1) with optimal
value λ1(A

∗) the assertion follows from Theorem 1.

5 Discussion

This paper has presented sufficient conditions for the maxi-
mum eigenvalue at an optimal solution to a type of problems
occurring in structural optimization to have multiplicity
greater than one. The conditions are given in Theorems 1
and 2, whose proofs are based on results obtained by Pataki
(1998).

It is common in structural optimization to require that the
design variables satisfy xj ≥ ε for some small number ε >

0 to avoid singularity of the stiffness matrix (Christensen
and Klarbring 2009). A simple change of variables xi →

yi + ε results in a problem with zero as the lower bound on
the design variables to which the presented results apply.

In Holmberg et al. (2015) the author and co-workers con-
sidered minimization of the worst-case compliance for a
structure subject to self-weight loadings. The problem was
formulated as a non-linear SDP, which is likely the best way
to treat it numerically, but it is not difficult to show that it is
equivalent to

min
x∈H

λ1(H (x)),

where H is similar to X , but includes upper bounds on x,
and H (x) = B(x)K(x)−1B(x)T ∈ S

s , in which K(x)

is the global stiffness matrix, B(x) is a scaling matrix and
s ∈ {2, 3} is the number of spatial dimensions. For this prob-
lem, n in Theorem 2 equals s – a very small number – so the
inequality

∑m
i=1 r(x∗

i ) > n will, in practise, always hold.
Numerical experience (Holmberg et al. 2015) strongly cor-
roborates the suggestion by Theorem 2 that the maximum
eigenvalue at an optimal solution will have multiplicity
greater than one.

6 Future work

There are at least three items that should be addressed in
future work:

(i) Are numerical solutions to structural optimization
problems typically extreme points in the optimal
solution set? Is it possible to modify the results in
this paper so that they apply also to non-extremal
solutions?

(ii) Problems involving generalized eigenvalues fit into
the present framework by assuming that they solve
ordinary eigenvalue problems (see footnote in the
Introduction). This hinges on the non-singularity of
at least one of the involved matrices. This assump-
tion is satisfied in the bulk of the relevant litera-
ture, but important exceptions exist (Achtziger and
Kočvara 2007). Therefore direct treatment of general-
ized eigenvalues would be desirable.

(iii) The results given in this paper should be extended to
account for upper bounds on the variables xi . This
is needed to analyze, for instance, three-dimensional
topology optimization problems for continuum bod-
ies. The issue was discussed in the remark following
Theorem 1 above, but the obtained condition seems
overly restrictive.
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