
INDUSTRIAL APPLICATION

High fidelity multidisciplinary design optimisation
of an electromagnetic device

J. N. Stander1 · G. Venter1 · M. J. Kamper2

Abstract The application of multidisciplinary design opti-
misation is mostly confined to bi-disciplinary systems such
as fluid-structure interaction problems. High fidelity mod-
els of three disciplines involving electromagnetic-thermal-
structural designs are rare. Here, the multidisciplinary opti-
misation of such a design is presented. The device com-
prises a C-shaped iron core and a single coil. The problem
is decomposed using a monolithic multidisciplinary fea-
sible architecture. The multidisciplinary analyses involve
a single three-dimensional finite element mesh for tran-
sient non-linear electromagnetic, non-linear-static thermal,
and linear-static structural models. During each multidisci-
plinary iteration the mesh is linearly morphed. A gradient
based optimisation algorithm in combination with a multi-
start routine is applied to the constrained mass minimisation
problem. Multidisciplinary feasibility is ensured by con-
vergence of a single coupling parameter i.e. air-gap defor-
mation. In conclusion, some multidisciplinary optimisation,
analyses, and decomposition considerations are discussed.
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1 Introduction

Multidisciplinary Design Optimisation (MDO) studies are
on the increase, partly because of new multi-physics
numeric models, the ever-growing computational capabil-
ities, and ultimately the goal to eliminate design assump-
tions. Two classes of MDO architectures exist. Architecture
describes the system or problem decomposition scheme
which concerns disciplinary division and the hierarchi-
cal ordering of disciplinary subsystems, the coupling of
such subsystems, the mesh management, and the nesting
of optimisation algorithms. The first and common archi-
tecture class involves monolithic or single-level schemes
(Cramer et al. 1994). These follow the conventional
approach, that is, a single optimisation operation at sys-
tem level. Examples of such schemes are: the All-At-Once
(AAO), the Simultaneous ANalysis and Design (SAND),
the Individual Disciplinary Feasibility (IDF) (Alexandrov
and Lewis 2002), and the Multi-Disciplinary Feasibility
(MDF) schemes. The second architecture class includes
distributed decomposition schemes (Martins and Lambe
2013). Here, optimisation operations are at both subsys-
tem and system levels (Lasdon 2002). In this class, problem
decomposition involves a Concurrent Sub-Space Optimisa-
tion (CSSO) (Sobieszczanski-Sobieski 1989) or a Collab-
orative Optimisation (CO) scheme (Balling and Wilkinson
1997). These differ in the way that the interdisciplinary
constraints are managed. When using CSSO, each disci-
plinary subproblem needs to satisfy its own constraints
as well as the surrogate constraints of other disciplines.
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The CO approach entails balancing disciplinary constraints
and the target values of coupling functions.

The MDO architecture is not the optimisation algorithm.
The latter is a separate routine that evaluates the objective
function by searching/populating different design variable
instances within the specified design space. There are two
types of optimisation algorithms, namely local and global
optimisation algorithms (Venter G 2010). These algorithms
may be applied to constrained and unconstrained prob-
lems, where both infeasible and feasible designs need to
be optimised. A local optimisation algorithm searches for
a local optimum nearest to the initial variable values. This
is done by calculating and evaluating gradients. Occasion-
ally, depending on the problem and initial values, the local
optimum may also be a global optimum.

A global optimisation algorithm find a near global opti-
mum in a design space which may contain numerous local
optima. Global optimisation algorithms include determinis-
tic methods (Floudas and Gounaris 2009), stochastic meth-
ods (Fouskakis and Draper 2007) and heuristic methods
(Vinkó T and Izzo D 2011). These algorithms are applied
in initial system design studies, that is, finding the realm
of feasible designs. Local optimisation algorithms in con-
junction with a multi-start technique may also be applied
to global optimisation problems (Cox et al. 2001). Here, a
design of experiments is used to obtain the starting points.
In general, optimisation algorithm selection guidelines for a
single discipline optimisation problem is also applicable to
MDO problems (Venter G 2010).

In literature, MDO examples that include three or more
disciplines are rare, even more so, if Finite Element (FE)
models are considered. Tri-disciplinary examples mostly
involve lumped analytical models or a combination of
analytical and FE models. Finite element based electri-
cal MDO examples usually entail electromagnetic-thermal
(Kreuawan et al. 2008), electromagnetic and electronic
control (Hammadi et al. 2012) and electro-mechanical sys-
tems (Ammar et al. 2005; Tosserams et al. 2010). In
such problems, the objectives are of a steady-state, sin-
gle metric nature. Full numeric electromagnetic-thermo-
structural MDO examples are not found in literature. How-
ever, examples of Multi-Disciplinary Analysis (MDA) of
electromagnetic-thermo-structural do exist (Amrhein et al.
2013; Keysan et al. 2011). These examples comprise
lumped analytic models for the calculation of disciplinary
physics.

MDO of a three-dimensional electromagnetic-thermo-
structural device using FE models is presented. This device
may be described as an electromagnet. Its mass is to
be minimised in accordance with electrical, thermal, and

mechanical load constraints. This high fidelity constrained
MDO problem may be considered as a possible benchmark.

The problem is decomposed applying two MDF
schemes, a conventional and a compact version, respec-
tively. In the compact MDF scheme the optimisation algo-
rithm is directly coupled to the MDA operation, hence, no
nested disciplinary feasibility loop at MDA level is used.
This scheme simplifies the MDO problem setup and yields
a reduced optimisation solution time. A gradient based
optimisation algorithm in combination with a multi-start
procedure is applied in both MDF schemes. The disciplinary
models and discretisation simplifications prior to optimisa-
tion are discussed. This is followed by discussions on the
decomposition, the disciplinary coupling, and the calcula-
tion of the baseline model. Lastly, the MDO results are
presented.

2 C-shaped electromagnetic device

The device consists of a C-shaped laminated steel core and
a single preformed wound coil, see Fig. 1. The preformed,
epoxy Vacuum Pressure Impregnated (VPI) coil is tightly
secured to the core. Coil and core are further electrically
insulated with thin glass bonded mica tape. A slit in the core
(i.e. air-gap) is located opposite the coil. Localised widening
of the core section at the air-gap leads to a minimal magnetic
stray flux. Connecting an alternating current supply of fixed
amplitude to the coil excites an alternating magnetic field.

The coil conductor dissipates Joule losses leading to an
increased coil temperature, which in turn increases its resis-
tance. The magnetic flux established by the alternating field
is mostly constricted to the iron core. Iron has a much

Fig. 1 Electromagnetic device with C-shaped core
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higher magnetic permeability (ability to support flux) than
air. Material non-linearities and iron hysteresis yield core
losses which further heat up the device.

The magnetic flux produces magnetomotive forces at the
air-gap which lead to magnetic stresses acting on the core
surfaces. These stresses tend to close the air-gap. Struc-
turally, the needed core dimensions are adjusted as to safely
resist the air-gap stresses while maintaining a certain air-
gap clearance. The important device performance metrics
include its mass, the magnetic flux density distribution, its
steady-state temperatures, and structural stresses. Other dis-
ciplinary design responses are the conductor diameter, the
current density, the maximum magnetic flux in the core,
the thickness of coil-core insulation, and the coil and core
displacements.

3 Mesh

In MDO, two mesh management strategies exist: a common
morphable mesh approach and a discipline-specific mesh
approach. In the former, the number of nodes, the num-
ber of elements, and element types are kept constant across
all disciplines. Mesh modification by linear morphing is
applied since it is simple and fast. However, maintaining
mesh quality and ensuring discipline compatibility are chal-
lenging. Therefore, element feasibility and mesh boundary
checks need to be performed. In the discipline-specific mesh
approach, each disciplinary model holds its own compat-
ible mesh of specific element types, density, refinements
and quality. During each MDA operation, changes in disci-
plinary boundary conditions are mapped and distributed to
other disciplinary models. Critical regions are remeshed as
to minimise discretisation errors.

In this study, the common morphable mesh approach was
followed. The model is set in a Cartesian reference frame
and is discretised with 33 012 linear tetrahedral elements.
This element selection is governed by the electromagnetic
code. This mesh is morphed as described in Section 5.1.
Physical symmetry about the XY, XZ-planes allows model
reduction to a quarter of the model (Fig. 2). These planes are
defined as symmetry boundaries in the structural model, as
natural boundaries in the thermal model, and as a symme-
try and a natural boundaries in the electromagnetic model.
In the latter, a natural boundary enforces a normal magnetic
flux, and a symmetry boundary ensures a parallel flux.

In electromagnetic modelling, a coarse mesh with
localised refinement is preferred (Pinchuk and Silvester
1985; Cros et al. 2011). Typically, the element characteris-
tic length must equal the air-gap clearance, in near air-gap

Fig. 2 Finite element - 1/4 model

regions. The number of elements selected is based on results
of mesh dependency studies (Fig. 3). Morphing and ele-
ment checks ensure that solution mesh independency is
maintained.

Note that the disciplinary specific metrics are nor-
malised. Only electromagnetic and structural parameters
are considered. The mechanical stress metric does not
converge due to poor element type and high stress con-
centrations caused by sharp geometric features. Ther-
mal characteristics are not considered, because there
exits no localised heat sources; in fact, both coil and
core act as heat sources. The total amount of heat
released equals the sum of Joule and iron losses.

Fig. 3 Normalised mesh dependency study results
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Fig. 4 The MDA hierarchy showing the discipline-couplings and
FEA codes in brackets. y1(x) Joule/iron losses, y2(x) temperature
field, y3(x) magnetic force field, y4(x) surface areas, y5(x) nodal
displacements

Therefore, if the calculation of losses are based on mesh
independent results, then the temperature distribution accu-
racy is acceptable.

4 Disciplinary models

The Finite Element Analyses (FEAs) of the Electro-
Magnetic (EM), THermal (TH) and STRuctural (STR) mod-
els are performed applying commercial codes. Analyses
follow a hierarchical order which is based on the functional-
ity of the device. The MDA sequence starts with a transient
EM analysis, followed by steady-state TH and linear-static
STR analyses. These models are coordinated and coupled as
illustrated in Fig. 4.

In the above, x denotes the design vector, yi(x) denotes
the coupling variable vectors, and PARAM represents dis-
cipline state parameters, e.g. material properties. Discipline
coupling involves the mapping and transferal of coupling
vectors, such as: nodal coordinates, nodal displacements,
electromagnetic forces, and nodal temperatures. The EM
derived air-gap vector force field and Joule losses are passed
to the STR and TH models, respectively. Nodal temper-
atures are included in the coil resistance and the thermal
stress calculations. The nodal displacements are added to
the existing mesh. The EM and STR FEA codes require dif-
ferent mesh formats. The mesh data are reformatted into
different NASTRAN input formats (.nas and .dat) and vice
versa. The .nas files only contain mesh data whereas the
.dat files list all STR model properties as well as the morph
vectors.

4.1 Electromagnetic model - EM

The EM model is created and analysed using the JMAG v.13
multiphysics code (JMAG 2014). Its transient response is

analysed applying an implicit solver. A complete cycle of
0.02 s is divided into 100 steps.

Electromagnetic, mechanical and thermal physical prop-
erties are sourced from literature or code catalogues for both
copper (Cu95) and iron (Si-Fe M400-50A). Both electrical
and magnetic material properties are temperature depen-
dent. The magnetisation ability of the core depends on
both its temperature (Takahashi et al. 2010; Cheng-Ju et al.
2014) and its mechanical stress state (Miyagi et al. 2010;
Takahashi and Miyagi 2011). The temperature dependency
of magnetic properties are ignored. Changes in the mag-
netisation (B-H) curve, magnetic permeability, magnetic
hysteresis, and Joule losses within the temperature range of
20 ◦C to 100 ◦C are small, Cheng-Ju et al. (2014). Fur-
thermore, the iron loss calculations do not incorporate the
mechanical stress states. Data for such correlations are not
readily available for the core material considered. The EM
model is broken down into magnetic and electrical submod-
els. The magnetic FEA submodel calculation is based on the
Maxwell equations (Pyrhönen et al. Wiley):

∇ × H = J + ∂D

∂t
(1)

∇ × E = −∂B

∂t
(2)

∇ · D = ρ (3)

∇ · B = 0 (4)

where H, J,D,E,B, and ρ are the magnetic field strength,
current density, electric flux density, electric field, mag-
netic field density, and electric change density, respectively.
For real substances these equations are coupled by the
constitutive equations

H = B

μ0μr

(5)

D = ε0εrE (6)

where μ0, μr , ε0, and εr are the permeability of vacuum,
relative permeability, permittivity of vacuum, and relative
permittivity, respectively. Substituting (5) and (6) into (1) to
(4) and introducing vector and scalar potentials A and φ as
below

B = ∇ × A (7)

E = −∇φ − ∂A

∂t
(8)

one arrives at the coupled equation which links the magnetic
and electrical submodels

∇ × 1

μ0μr

×A = J −σ(∇φ+ ∂A

∂t
)−ε0εr(∇φ+ ∂A

∂t
). (9)

Practically, the magnetic field analysis is based on a
quasi-stationary approach in which the displacement
current term ε0εr(∇φ + ∂A

∂t
) is ignored.
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Fig. 5 M400-50A Si-Fe loss profiles at various frequencies and at 20
◦C

Finally, the magnetic field for a finite element � is
calculated with∫

�

(∇ × 1

μ0μr

× A − J + σ
∂A

∂t
)d� = 0. (10)

The air-gap flux density is obtained by solving (7) for the
calculated magnetic vector potential. With the magnetic flux
density and flux wave frequency known, the iron losses can
be calculated. Iron losses comprise of Joule and hysteresis
losses. Calculation of Joule losses involves the resistivity of
iron. The iron losses and magnetic hysteresis curves at room
temperature are represented in Fig. 5 and Table 1 JMAG
(2014), respectively.

Material resistive properties at the initial temperature and
at no mechanical stress are given in Table 2.

The electrical submodel, i.e. an equivalent electric cir-
cuit, comprises a current supply and a coil (Figs. 6a
and b).

With reference to (10), the magnetic and electric submod-
els are coupled with a current density vector J

I =
∫

s

J · nds = 1

Rcoil

(�φ −
∫

coil

(
∂A

∂t
· c)dl) (11)

Table 1 M400-50A Si-Fe hysteresis profile at 20 ◦C

B [T] H [A/m] B [T] H [A/m]

0.0 0.0 1.0 113.2

0.1 32.6 1.1 137.8

0.2 43.5 1.2 180.2

0.3 50.8 1.3 269.5

0.4 57.2 1.4 516.8

0.5 63.4 1.5 1307.

0.6 69.9 1.6 3180.

0.7 77.3 1.7 6361.

0.8 86.0 1.8 10890.

0.9 97.2

Table 2 Temperature specific material resistivities

Symbol Property [Unit] Value

Copper

ρcu e0 resistivity @ 20 ◦C [� · m] 1.68·10−8

αcu e coeff. of resistivity 0.0068

Si-Fe (M400-50A)

− laminate directionality non-orientated

ρf e e0 resistivity @ 20 ◦C [� · m] 0.0042

αf e e coeff. of resistivity 6.51·10−3

where I, Rcoil , and �φ are the supply current, the total
coil resistance, and the difference in terminal potentials,
respectively. The second right-hand term calculates the elec-
tromagnetic force induced by the oscillating magnetic flux.
Coil resistance and inductance values specific to the FEM
coil are calculated from the coil dimensions and number
of turns. In turn, these depend on the conductor (wire)
diameter.

A sinusoidal current with an amplitude of 20 A at 50 Hz
is supplied. The number of conductor turns in the coil is
fixed. With reference to Fig. 6b, the temperature dependent

Fig. 6 Electrical submodel
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resistance of the coil is given by

Acon = kf illwcoilhcoil

N
, dcon = √

Acon/π (12)

lt = 2(wcore + wcoil + dcoil + dcore) (13)

lcon = Nlt (14)

ρcu e/f e e(T ) = ρcu e0/f e e0(1 + αcu e/f e e0�T ) (15)

Rc = ρcu elcon

Acon

(16)

where Acon, dcon, lt , and lcon are the conductor cross sec-
tional area, wire diameter, average turn length, and total
wire length, respectively.

Coil inductance is internally calculated in JMAG. Induc-
tance is related to the energy stored in the magnetic field
(Pyrhönen et al. Wiley)

Wφ =
∫

V

∫ B

0
HdBdV = 1

2
Li(t)2 (17)

where Wφ, L, and i(t) are the magnetic energy, the coil
inductance, and the current carried in a finite volume,
respectively. Coil leakage inductance is nearly zero and
therefore ignored.

4.2 Thermal model - TH

The device is immersed in quiescent air which is at a con-
stant 20 ◦C and at atmospheric pressure. At these states air
may be treated as an ideal gas. The heat generated (Joule
losses) is passively transferred to the environment by means
of natural convection. A maximum allowable operational
temperature of 100 ◦C is specified. A non-linear steady-state
thermal model is created in JMAG. Model simplifications
involve neglecting the insulation caused by the small air-
gaps between the iron laminates and between the coil and
the core. Furthermore, heat transfer by radiation is also

Fig. 7 Steady-state equivalent thermal circuit

ignored because the device surface temperatures are below
100 ◦C. The equivalent thermal circuit applied is shown in
Fig. 7. Note, the specific heat of components are included
for the sake of completeness.

The rms values of Joule (Qcu) and iron losses (Qf e)
computed in the EM analyses are the heat sources. The tem-
perature dependent conductivity coefficients (kcu, kf e, kair )
are linearly interpolated from tables given by Incropera and
DeWitt (2002) as

kcu(T ) = 401.8 − 0.0821(T − 20.0) (18)

kf e(T ) = 51.9 − 0.019(T − 20.0) (19)

kair (T ) = 25.74 · 10−3 + 0.075 · 10−3(T − 20.0) (20)

where T ∈ [20.0 ◦C, 127 ◦C],C, and k are in [J/kg·◦C],
and [W/m·◦C], respectively. Thermal conduction resistance
is calculated as

Rθ = L

kA
(21)

where L, k, and A are the separation thickness, the ther-
mal conductivity, and the area, respectively. The coefficient
of thermal conductivity of the resin is constant. The TH
model comprises two submodels. The first is limited to the
FE domain. Here, material properties and boundary con-
ditions are specified and applied to the FE model. This is
followed by the internal coupling of the thermal and electro-
magnetic models. The second submodel includes external
(environmental) thermal features such as convection. These
features are included and linked in the FE model by means
of a thermal equivalent circuit (Fig. 8). The circuit compo-
nents, FEM(), RθvandRθh present the FE model surfaces,
and the calculated convection resistance for vertical and
horizontal surfaces, respectively. Calculation of the con-
vection resistances Rθv and Rθh includes correlations for
the non-linear Rayleigh (RaL) and length averaged Nus-
selt (NuL) numbers. Nusselt number correlation selection
further distinguishes between vertical and horizontal heated
surfaces.

The convection resistance for either core or coil, and
vertical or horizontal surfaces are given by

Rθv,h =
[

1

h1A1
+ 1

h2A2
+ · · · + 1

hnAn

]−1

(22)

where hn is the length averaged convection coefficient,
which in turn is a function of the Nusselt number

hn = NuLk

L
. (23)

The NuL numbers for vertical and horizontal surfaces,
(24) and (25) respectively, are calculated as below. Note the
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Fig. 8 Convention thermal circuit - parallel connected thermal
resistances

Rayleigh number is constant as a laminar flow regime is
assumed.

NuL = 0.68 + 0.513RaL
0.25 ∀ RaL ≤ 109 (24)

NuL = 0.54RaL
0.25 ∀ 104 ≤ RaL ≤ 109 (25)

RaL = gβ(Ts − Tair )L
3

νth air (Tf )αth air (Tf )
(26)

where g, β, Ts, L, νth air (Tf ), and αth air (Tf ) are the
gravitional acceleration, the expansion coefficient, the core
or coil surface temperature, the characteristic length, the
film temperature kinematic viscosity and thermal diffusiv-
ity, respectively. The temperature dependency of the two
latter properties are approximated with linear interpola-
tion functions derived from tables given by Incropera and
DeWitt (2002). These functions are

νth air (Tf ) = 15.28 · 10−6 − 0.104 · 10−6(T − 20.0) (27)

αth air (Tf ) = 21.83 · 10−6 − 0.153 · 10−6(T − 20.0) (28)

where both νth air (Tf ), and αth air (Tf ) are in [m2/s]. In
an ideal gas, the expansion coefficient equals the reciprocal
of its temperature in degree Kelvin. Characteristic length of
a horizontal surface is approximated as the ratio between
the surface area and surface perimeter. Core and coil film
temperatures are given by

Tf = 0.5(Ts + Tair ). (29)

The above empirical equations are included in JMAG by
means of Python scripting. Once these thermal parameters
are known, the FE equation of the form

κ(T ) · T = Q + R(∇T ) (30)

is solved. Here κ, T , Q, and R are the temperature depen-
dent coefficients, the nodal temperature field, the volumetric
heat sources, and the heat fluxes, respectively.

4.3 Structural model - STR

A linear-static STR analysis is executed using the GENESIS
v13.1 code of Vanderplaats (2014). The model consists of
two solid components: the laminated iron core, and the pre-
formed copper coil. These bodies are discretised with linear
tetrahedral elements (CTETRA). Separate PSOLID ele-
ment properties are assigned to allow part distinction when
analysing the EM model. Modified anisotropic (MAT9) and
isotropic (MAT1) material properties are assigned to the
core and coil, respectively. These are presented in Table 3.

The orthotropic material type is not native to GENE-
SIS. This material is modelled by modifying an anisotropic
material type (Mukundan 2003). The coil is a composite
structure in which the copper conductor is formed and set
within a resin. Oddly, no literature on structural coil mod-
elling was found. With a resin-to-copper volume ratio is less
than 20 % allows the coil to be modelled as a solid. The
stiffening caused by the resin is ignored. The structural con-
straints and loads are allocated as shown in Fig. 9. The static
linear-elastic problem solved is

K(∂u + ∂uT ) = Fδ + Fb (31)

where, K, u, uT , Fδ , and Fb are the global stiffness matrix,
the structural deformation matrix, the thermal deformation
matrix, and the structural load combination, respectively.
The model stress field is calculated by

(∂u + ∂uT ) = E−1σ (32)

Table 3 Structural material properties at 20 ◦C

Symbol Property [Unit] Value

Copper

ρcu density [kg/m3] 8750.0

Ecu modulus of elasticity [kN/mm2] 132.0

σcu y yield strength [N/mm2] 150.0

σcu t tensile strength [N/mm2] 260.0

νcu poison ratio 0.33

αcu coeff. of thermal expansion 1.77·10−5

Si-Fe (M400-50A)

ρf e density [kg/m3] 7750.0

Ef e X modulus of elasticity X [kN/mm2] 185.0

Ef e YZ modulus of elasticity Y,Z [kN/mm2] 205.0

σf e yX yield strength X [N/mm2] 310.0

σf e yYZ yield strength Y,Z [N/mm2] 325.0

σf e tX tensile strength X [N/mm2] 450.0

σf e tYZ tensile strength Y,Z [N/mm2] 472.0

νf e poison ratio 0.3

αf e coeff. of thermal expansion 9.5·10−6

An electromagnetic MDO problem 1119



Fig. 9 Load case setup in GENESIS where (�) indicates SPCs, and
Fδ and Fb the respective air-gap and body force vector fields

where E and σ represent the material constitutive matrix
and the element stress matrix.

Two STR symmetry planes are defined. Translations in
the Y and Z-directions are constrained in the XZ and XY
symmetry planes, respectively. The model is anchored by
single point constraints (SPCs) that restrict translation along
the X-axis. The mapped air-gap (Fδ) and body (Fb) vec-
tor force fields are included as FORCE data deck entries.
Only X and Y force components are applied to the air-gap
nodes that fall in the XY symmetry plane. The model ini-
tial temperature is set to 20 ◦C, using the TEMPD data deck.
Thermal stresses are derived from the nodal temperature
distribution calculated in the thermal analysis (Section 4.2).
Nodal temperatures are incorporated with the TEMP data
deck. Temperature effects on material mechanical proper-
ties are ignored. The model weight is added by applying a
gravitional acceleration (g = −9.81m/s2) acting along the
Y-axis. The total mass, nodal displacements, and von Mises
element stresses are extracted.

5 Optimisation

The MDO problem formulation, which involves the cou-
pling of the three disciplines, the feasibility checks, the
normalisation of design variables and constraints, and the
calculation of five random baseline designs, are presented
next.

The high interdisciplinary coupling and the strong deter-
ministic sequence (EM→TH→STR) of this MDO problem
allows for the simplification of the conventional MDF

(Martins and Lambe 2013) scheme. The MDO flow dia-
gram in Fig. 10 presents the conventional MDF scheme and
a compact version thereof.

The conventional MDF scheme involves no coupling
variable consistency or analysis constraints at system level.
Instead, coupling variable consistency is ensured at the
MDA level. Here, the MDA calculations are looped until
disciplinary state consistency is within a certain error toler-
ance. The compact MDF scheme differs in that the MDA
feasibility loop is removed and replaced by the calcula-
tion of the sum of state consistency errors. This error sum
is then managed as a system level optimisation constraint.
Note that this compact MDF does not yield an AAO or IDF
(Section 1) scheme, because the disciplinary FEAs are
not executed at once and no estimated state consistency
variables are included.
Of all the coupling variables (see Fig. 4), the system state
is most sensitive to air-gap deformations y5(x). This allows
for a simplified state consistency error calculation by only
considering the convergence of the air-gap deformations.
Figure 11 shows the normalised magnetic stress at the air-
gap y3(x), the core Joule losses y1(x), and the average core
temperatures y2(x) with respect to air-gap clearance varia-
tions. It is clear that the smaller the air-gap clearance, the
larger the core magnetic flux density, the higher the iron
losses, and the larger air-gap attraction forces. Note that
the magnetic stress gradient increases dramatically for air-
gap clearances smaller than 1 mm. The air-gap deformation
consistency metric is applied in both MDF schemes.

Fig. 10 The flow diagram shows the conventional MDF (− · −) and
the compact MDF (− − −) schemes
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Fig. 11 Coupling variable sensitivities

The MDO problem considered, is expressed as

min
x

mass(x, yi(x)), i = 1, . . . , 5

subject to
g1(x, y5(x)) = err(x,y5(x)))

tol
− 1.0 ≤ 0

g2(x, y4(x)) = Ĵ (x,y4(x)))
Jn

− 1.0 ≤ 0

g3(x, y5(x)) = Bδrms (x,y5(x))

Bδ n
− 1.0 ≤ 0

g4(x, y5(x)) = B̂core(x,y5(x))
Bcore n

− 1.0 ≤ 0

g5(x, y1,2,4(x)) = T̄core(x,y1,2,4(x))

Tcore n
− 1.0 ≤ 0

g6(x, y1,2,4(x)) = T̄coil (x,y1,2,4(x))

Tcoil n
− 1.0 ≤ 0

g7(x, y2,3,5(x)) = σ̄core(x,y2,3,5(x))

σcore n
− 1.0 ≤ 0

g8(x, y2,3,5(x)) = σ̄coil (x,y2,3,5(x))

σcoil n
− 1.0 ≤ 0

g9(x) = dzcore(x)
dmin

− 1.0 ≤ 0

g10(x) = dyt (x)
htooth

− 1.0 ≤ 0

g11(x) = dxt (x)
1.2wcore2

− 1.0 ≤ 0
x = [ψx6:7, ψx8:9:10, ψy1:2, ψy1:4:5, ψy3, ψy5, ...

ψz3:8:9:10, ψz8:9:10]∀ψ ∈ [−1.0, 1.0]

(33)

where x, yi(x), and gj () are the normalised design variable
vector, the coupling vectors in hierarchical order, and the
normalised inequality constraints, respectively.

The normalisation of the design variables and the con-
straints are to ensure a well-conditioned problem. These
constraints are functions of both the design vector and
coupling variables. Note that the first constraint is only
applicable in the compact MDF scheme. The design variable

vector x only contains sets of morphing vectors. The applied
linear morphing operation is discussed in Section 5.1.

The distribution and declaration of the coupling vector
yi(x) variables are presented in Section 5.2. Constraint and
the relevant normalisation values are defined in Section 5.3.
This local optimisation problem is solved with the Mod-
ified Method of Feasible Directions (MMFD) algorithm.
The local optimum is calculated by combining this gradient-
based algorithm with a multi-start approach. Details of
the multi-start approach are discussed in Section 5.4. The
MMFD algorithm is one of the embedded options in the
Design Optimisation Toolbox (DOT) code (Vanderplaats
2014). Default search and sensitivity parameters are applied.
The coupling and handling of the disciplinary models and
DOT are managed within a Python script.

5.1 Morphing

Linear mesh morphing was performed by using the GEN-
ESIS code. Morphing the mesh involves the selection of
shape domains, the allocation of morph vectors, and ele-
ment/mesh feasibility checks. Domains are associated with
BAR elements of which the element lengths and orienta-
tions are confined to a selection of nodes. The design vector
in (33) comprises of morph vector sets. A typical set, like
ψx6:7, denotes vectors parallel to the x-axis assigned to
morph Domains 6 and 7. The allocation of these domains
and vectors are depicted in Fig. 12.

These vectors coincide with the BAR elements at specific
BAR endpoints. All mesh domains are simultaneously mor-
phed. This is followed by the calculation of the new nodal
coordinates (i.e. y1(x)) and model surface areas (i.e. y5(x)).
The mesh is updated by replacing the nodal coordinates

Fig. 12 Example of morph domain and morph vector allocations

An electromagnetic MDO problem 1121



of the previous MDA run with the newly calculated coor-
dinates. This operation is performed in both MDF schemes
before every MDA calculation. Therefore, for a fixed morph
vector direction, the vector magnitude increases succes-
sively per iteration. This leads to the distortion of elements
(mathematically) and the violation of FEA boundary con-
ditions. Such issues can be mitigated by either limiting the
morph vector magnitude or by adding an element qual-
ity check routine. In this study, the element quality and
boundary feasibility are checked prior to MDA calculations
(Fig. 10). Elements are checked by calling the SHAPECK
parameter in GENESIS. Boundary conditions are conserved
using geometry constraints i.e. g9−11(x). Additionally, the
modification of discipline-specific element quality parame-
ter specifications is also possible. Numerically, this allows
the setting of the model/discipline fidelity level. In this
study, the element quality parameters specific to the EM
discipline are considered.

5.2 Disciplinary coupling

The hierarchical coupling of EM-TH, TH-STR, and EM-
STR are shown in Fig. 13. The disciplinary coupling vari-
able transferals are managed with a Python dictionary
mapping data type (Python 2014). Typically, a dictionary
entry consists of a key and a value pair which, in turn, may
be a single vector or an array of vectors. Here, mapped nodal
data is indexed using node IDs as keys, while the corre-
sponding data (e.g. temperature) is included as scalar/vector
arrays, e.g. GRID[′12′]=[0.01,0.25,0.2]. The dis-
ciplinary coupling and state variables are declared in
Table 4.

Fig. 13 MDA variable distribution; RESP - response

Table 4 Model state parameters and coupling variables

Symbol Property [Unit] Value/Eqn.

EM
Î supply current amplitude [A] 20.0

f supply frequency [Hz] 50.0

ϕ supply phase angle [◦] 0.0

N number of coil turns 48.0

kstack lamination stacking factor 0.98

kf ill coil solidity factor 0.80

αcu e coeff. resistivity copper see Table 2

αf e e coeff. resistivity iron see Table 2

B magnetic field [T] (7)

E electric field [V/m] (8,11)

ρcu e(T ) resistivity of copper (15)

ρf e e(T ) resistivity of copper (15)

wcoil coil-side width [mm] see Fig. 6

hcoil coil height [mm] see Fig. 6

Acoil coil-side area [mm2] (12)

Acon conductor area [mm2] (12)

dcon conductor diameter [mm] (12)

lt coil turn length [mm] (13)

lcon avg. conductor length [mm] (14)
Rc coil resistance [Ohm] (16)
TH
Tref reference temperature [◦C] 20.0
Tair air temperature [◦C] 20.0
kresin cond. of resin [W/m·◦C] 0.26
tresin resin layer thickness [mm] 0.5

β expansion coeff. of air [1/◦C] 3.41·10−3

T nodal temperature field [◦C] (30)

kcu(T ) cond. of copper [W/m·◦C] (18)

kf e(T ) cond. of iron [W/m·◦C] (19)

kair (T ) cond. of air [W/m·◦C] (20)

h̄coil (T ) conv. coeff. for coil [W/m2·◦C] (23)

h̄core(T ) conv. coeff. for core [W/m2·◦C] (23)

νth air (T ) kinematic viscosity of air [m2/s] (27)

αth air (T ) thermal diffusivity of air [m2/s] (28)

STR

State PARAMs are declared in Table 3

Fδ air-gap loads [N] (31)

Fb body loads [N] (31)

σcu stress distribution in copper (32)

σf e stress distribution in iron (32)

uT thermal induced displacements (32)

u load induced displacements (31)

5.3 Constraints

Normalised inequality constraints (gj (x)) comprising disci-
pline and system limitations are applied. The first constraint
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Table 5 Constraint functions normalisation parameters

Symbol Property [Unit] Value

Jn max. current density [A/mm2] 3.0

Bδ n r.m.s air-gap flux density [T] 0.6

Bcore n allowable core flux density [T] 1.2

Tcore n max. core temperature [◦C] 60.0

Tcoil n max. coil temperature [◦C] 100.0

σcore n allowable core stress [N/mm2] 200.0

σcoil n allowable coil stress [N/mm2] 150.0

dmin allowable core depth [mm] 5.0

htooth allowable tooth height [mm] 1.0

1.2wcore2 allowable tooth width [mm] 22.0

in (33) is a system state consistency constraint only applica-
ble to the compact MDF scheme. In the conventional MDF
scheme, this constraint is removed and embedded in the
MDA block as a while-loop argument. In both cases, the
maximum air-gap deformation is to limited to less than 0.01
mm. Functions g2→8 are disciplinary constraints, whereas
g9→11 are system geometry constraints. The normalisation
values for the constraint functions in (33) are specified in
Table 5.

5.4 Baseline models

Five randomly selected initial designs were considered in
the multi-start approach. These designs differ significantly
in geometry (Fig. 14). Note that the geometry of both the
yoke and the coil differs. The model dimensions with refer-
ence to Fig. 6, the corresponding constraint values, and the
initial objective values are given in Table 6.

Fig. 14 Baseline designs and optimum design (in box)

Table 6 Constraint and objective function values for initial and
optimum designs

Symbols D-1 D-2 D-3 D-4 D-5 Opt.

Dimensions [mm]

dcon 3.5 5.5 6.0 4.5 5.0 3.5

wcoil 10.0 15.0 15.0 18.0 15.0 10.0

dcoil 20.0 23.0 25.5 38.0 20.0 11.0

hcoil 15.0 20.0 25.0 10.0 20.0 19.1

hcore1 45.0 35.0 9.66 34.8 41.2 37.7

hcore2 54.5 49.5 49.5 39.3 37.7 51.3

hcore3 20.0 20.2 20.3 14.9 21.8 12.7

wcore1 70.0 70.0 70.0 70.0 70.0 70.0

wcore2 20.0 20.0 18.0 21.0 20.0 20.0

dcore 10.0 8.0 10.5 20.0 5.0 3.0

ht 5.0 4.0 5.5 5.0 5.0 5.0

wt 30.0 29.8 31.0 29.8 40.0 21.8
δ 1.0 1.0 1.0 1.0 1.0 1.0

Constraint function values
g1 -0.99 -0.99 -0.98 -0.99 -0.99 -0.99
g2 0.69 -0.20 -0.40 0.28 -0.13 -0.07
g3 0.02 0.06 0.01 0.00 0.36 -0.03
g4 -0.01 -0.03 0.04 -0.06 -0.07 -0.39
g5 -0.71 -0.74 -0.74 -0.72 -0.74 -0.49
g6 -0.49 -0.55 -0.56 -0.52 -0.54 -0.88
g7 -0.82 -0.96 -0.95 -0.96 -0.96 -0.71
g8 0.41 -0.43 -0.57 0.15 -0.37 -0.88
g9 -2.00 -1.02 -0.90 -0.42 0.00 -0.82
g10 -1.50 -0.48 0.03 -2.46 -1.36 -1.52
g11 -4.00 -4.00 -4.00 -4.00 -4.00 -3.96

Objective function values [kg]
mass 0.315 0.346 0.461 0.598 0.286 0.160

6 Results

All optimisation runs were executed on a single desktop
computer with a INTEL Core i7-4770 CPU clocking at
3.4 GHz, with 16 GB RAM supporting a 64-bit architec-
ture. The averaged optimisation results are presented in the
last column in Table 6. All constraints listed in (33) were
satisfied.

The optimum design weighs about 0.160 kg and is shown
in Fig. 14. Comparing this design against the initial designs,
its clear that the gaps between coil and core are min-
imised. A comparison of the MDF scheme performances is
presented in Table 7. The compact MDF scheme is more
effective as it delivers comparative results in less com-
putational time. Notably, the conventional MDF scheme
required more MDA iterations per single objective function
evaluation.
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Table 7 Comparison of MDF schemes

Schemes D-1 D-2 D-3 D-4 D-5

Compact MDF

Obj. value [kg] 0.158 0.161 0.162 0.160 0.157

No. of MDA iterations 234 203 271 263 206

Run time [h] 199 173 231 224 176

Conventional MDF

Obj. value [kg] 0.158 - - - -

No. of MDA iterations 211 - - - -

Run time [h] 316 - - - -

On average, a MDA iteration took about 55 minutes of
which, the EM and TH FEAs took about 54 minutes and 1
minute, respectively. The EM is the dominating discipline.
The clearance between the coil top-side and the core can-
tilever arm is enforced by a geometric constraint. This con-
straint ensures that the coil magnetic flux leakage remains
minimal. Furthermore, as expected, a decrease in the width
of the tooth increased the air-gap flux density. The MDO
limiting constraint is the air-gap magnetic flux density.
Figures 15, 16, 17, 18, 19 show the magnetic flux density,
the current density, the temperature, the Von Mises stress,
and the displacement distributions, respectively. These con-
tour values are comparable to the normalisation values
specified in Table 5.

7 Discussion

In this section important MDO/MDA considerations are
addressed. These include the mesh management strategy,
the MDA disciplinary coupling and disciplinary sequence,
the MDF schemes, and the multi-start approach.

Fig. 15 Magnetic flux densities in [T]

Fig. 16 Current densities in [A/m2]

Starting with the MDA mesh management strategy, a
remeshing or a morphing (single mesh) approach is pos-
sible. In applying the remeshing approach a new mesh is
generated after either a single discipline analysis or a MDA;
that is, a single mesh at system level or multiple meshes spe-
cific to the various disciplines. In this approach, the model
mesh quality is conserved, but the mesh density is not.

Applying the morphing approach, a single mesh that sat-
isfies all MDA requirements is generated. Here, the model
mesh density is conserved but the mesh quality is not. This
mesh may be partitioned to allow easy morph domain selec-
tion, localised mesh refinements, and disciplinary specific
mesh refinements.

In addition, two linear morphing application methods are
possible: the fixed vector magnitude and the fixed element
quality methods. The former involves morphing vectors of
fixed magnitudes for all MDA iterations. With the fixed
element quality method, morphing vector magnitudes are
varied during MDA iterations. Here, the range of variation
is indirectly governed by a set of element quality proper-
ties that are verified during each MDA iteration. Comparing
these morphing methods, the latter is more robust and
requires fewer objective function evaluations.

Fig. 17 Temperatures in [◦C]
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Fig. 18 Von Mises stresses in [N/m2]

Furthermore, the morphing approach may be more appli-
cable to MDO problems where the feasible design space is
small, meaning the initial model is close to the optimum,
or the problem comprises a large number of disciplines, as
the large number of disciplinary constraints yields a smaller
feasible design space. Here, the morphing vector magni-
tudes are governed by the mesh element dimensions and
element type. That is, the smaller the characteristic element
size the smaller the vector magnitudes, hence more opti-
misation iterations. A coarser mesh comprising hexahedral
elements may yield a shorter solution time with a compara-
ble accuracy. For all other MDO problems, remeshing that
incorporates a mesh density check routine is recommended.

Problem properties that concern the MDA formulation
are the degree of disciplinary coupling/interdependencies
and disciplinary dominance. As a first approach, the degree
of disciplinary coupling may be measured by the cou-
pling variable to disciplinary state variable ratio. The degree
of disciplinary coupling increases as this ratio approaches
unity. In cases where the ratio equals unity, one may com-
bine the relevant disciplines into a cluster in order to
simplify the problem and to reduce computational expenses.
In this study, the electromagnetic model is an example of
such a cluster.

With reference to Section 4, the strong MDA hierarchi-
cal structure ensures the simulation stability needed for the
formulation of the compact MDF scheme. This ranking is
indicative of the existence of a dominating discipline. Disci-
plinary dominance in MDO problems may be more relevant
if more than two disciplines are considered. A bi-discipline
MDO problem may be seen as a system balancing exer-
cise. For MDO problems of more than two disciplines, the
coordination of the disciplinary FEAs needs to be deter-
mined. The MDA coordination/sequencing rule proposed
and followed in this work involves the discipline specific
time constants or energy conversion rates.

In a MDA setup, the disciplinary model with shortest
time constant or highest energy conversion rate is analysed

Fig. 19 Displacements in [m]

first, followed by the consecutive analyses of models with
longer time constants.

The common time constant/frame selection is based on
the longest time constant found in the MDA. The match-
ing of disciplinary responses may be achieved by time-
averaging operations or by FEA fidelity reductions (e.g.
reduce to quasi-static). For example, the time constant of
the electromagnetic response is shorter than that of the
thermal and structural responses. From a MDO perspec-
tive, modelling the transient behaviour of the thermal and
the structural subsystems will yield no improved design
for the added computational expenses. Consequently, these
subsystem models were reduced to quasi-static states of
comparable time constants. The electromagnetic subsystem
responses were time-averaged as to match the structural and
thermal subsystem responses.

Another MDA coordination approach involves the asyn-
chronous analyses of specific disciplinary models. Here,
disciplinary models with long time constants or low energy
conversion rates are analysed at different intervals or fre-
quencies with respect to the dominating discipline. It may be
described as the ”harmonic” layering of disciplinary anal-
yses/responses within the MDA. The computational cost
saved through the frequent exclusion of some models per
MDA iteration may allow higher fidelity analyses across
the entire system/problem. Consider this example; the small
geometric alterations have a large affect of the magnetic flux
density, but little impact on the thermal response of the core.
Hence, the thermal model is only included and analysed
during every, say, 5th MDA iteration.

When comparing the two MDF schemes applied in
this study, the compact MDF scheme showed an addi-
tional design constraint which in effect reduced the feasible
design space. Furthermore, the stability of this scheme may
be ascribed to the weak coupling (or low interdependent
sensitivity) between the disciplinary models considered.
However, it is debatable whether this scheme is suitable
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Fig. 20 MDO/MDA properties which need to be considered prior to
modelling and problem decomposition

for strong coupled multidisciplinary systems such as FSI,
MEMS, and photo-electromagnetic problems.

The multi-start approach can be applied by specifying
different initial designs, as in this study, or by specifying
different initial design vectors to a single initial design.
However, in a MDO scheme the multi-start technique can
be implemented differently. Instead of performing separate
MDO operations for each initial design; these operations
can be combined as parallel copies into a single MDO
calculation; that is, a single MDO operation instead of
multiple MDOs. This technique may also be extended to
single-discipline global optimisation problems, where the
use of monolithic MDO architectures in combination with
gradient-based algorithms are applied.

Another multi-start related aspect concerns the degree of
initial system feasibility. This concerns the feasibility of the
individual sub-systems. In design space size, the infeasi-
ble region usually exceeds that of the feasible region. The
degree of system feasibility may be defined as the recipro-
cal of the shortest spatial distance between the initial design
point and the wholly feasible space. Of course, the highest
degree is incurred when the initial design point falls within
the fully feasible region. For example, the shorter the dis-
tance between initial design point and fully feasible region
the higher the degree of system feasibility. Starting with an
initial design of a low feasibility degree may incur unneces-
sary MDA iterations or worse it may lead to a lesser feasible
design. It is therefore important to initiate the multi-start
approach using designs of high degrees of feasibility.

In conclusion, formulating a full numeric MDO/MDA prob-
lem, one needs to consider numerous problem/system properties
of which the most important are summarised in Fig. 20.

8 Conclusions

In this paper a high fidelity multidisciplinary design
optimisation problem involving a electromagnetic-thermo-

structural device was presented. The system comprised
three disciplines that were numerically modelled and anal-
ysed using commercial codes. These models were based
on a single mesh. A system mass minimisation, subjected
to operational constraints, was performed. The design vec-
tor comprised the model morphing vectors. Two mono-
lithic MDO architectures in combination with a multi-start
algorithm were applied. A conventional and a new com-
pact version of the multidisciplinary feasible decomposition
scheme were considered and compared. The results indi-
cated that solving the problem using the compact MDF is
more efficient.

This problem is a suitable MDO benchmark, because
it is reproducible, it consists of full numeric models, its fidelity
level can be set, different mesh management strategies can be
tested, disciplinary coupling strategies and sensitivities can be
investigated, and different objectives can be specified.

A number of MDO/MDA setup considerations specific
to full numeric problems were also presented. These con-
cerned the MDA mesh management, the MDA disciplinary
coupling and disciplinary sequence, the MDF schemes, and
the multi-start approach. The conclusion is that there is no
single mesh management strategy, decomposition scheme,
or optimisation algorithm suitable for all types MDO prob-
lems. MDO is a problem specific operation.
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