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Abstract Understanding the trade-offs involved in assess-
ing lifetime cost for engineering systems requires under-
standing trends in various engineering disciplines that
require significantly different analysis methods to effi-
ciently explore. The corresponding design spaces can be
flat, defined by weak minima, and thus difficult to under-
stand using traditixonal optimization methods. This paper
presents a new multi-disciplinary framework that uses a
goal-programming enhanced multi-objective collaborative
optimization (eMOCO) approach to facilitate the develop-
ment of the spaces. In order to further increase its efficiency
in discrete or flat spaces well-suited to evolutionary opti-
mization a unique discipline level genetic algorithm is
proposed. Naval vessels are an example of an engineering
system that has a difficult design space with respect to life-
time cost, however, one where it is critical to understand.
As these costs are increasing, they are becoming limiting
factors in a vessel’s operational life. Though they are so
important, the interaction between different cost categories
such as production and operation has not been explored
in depth and is not always clear. Understanding the trade-
offs between different aspects of a vessel’s total ownership
costs early in the design stage can aid in the production of
new ships where they are minimized. The proposed frame-
work is verified on mathematical problems, and then used to
develop trade-spaces between resistance and production for
a nominal naval combatant vessel. These trade-spaces show
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both the knowledge gained by designers in understanding
these trade-offs and the ability of the proposed eMOCO
framework to develop them effectively.
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1 Introduction

The lifetime cost of engineering systems are becoming
an increasingly large burden to owners and operators and,
therefore, an important factor to consider for designers.
Optimization has been used in many applications to attempt
to address reducing these costs over a systems operational
life. Engineers who work on naval platforms are chang-
ing their design approach due to rising operational costs. In
Stambaugh and Barry (2014) the authors outline large costs
the United States Coast Guard is facing maintaining and
operating their current ageing fleet. They posit that the eco-
nomic burden of these costs are becoming the decisive factor
that limits a vessel’s service life. Given this state of naval
design it is important to utilize the total ownership costs as
a design driver. This overall cost includes various categories
such as production, operation, and maintenance. These cat-
egories are often competing with one another and, therefore,
it becomes important to understand their interactions and
trade-offs. Unfortunately, gaining this understanding is a
difficult task as the design space is difficult to explore with
traditional multi-objective optimization algorithms even for
simple problems as shown in Temple and Collette (2015).
This work aims to allow for a greater understanding of this
trade space by developing a new multi-disciplinary opti-
mization framework that is specifically tailored to solve this
unique and difficult problem.
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When analyzing the trade-offs in different categories of
lifetime cost the problem is inherently multi-disciplinary.
Operational costs such as fuel consumption are largely
governed by hydrodynamics, whereas categories such as
production or maintenance incorporate structural analysis.
Multi-disciplinary optimization (MDO) has been used to
design within this type of coupled, difficult space before.
It has been used in the marine design field (Li et al. 2010;
Hannapel 2012; Hart and Vlahopoulos 2009) for various
applications. There are a wide range of architectures for
MDO that approach solving these problems in different
ways. A broad line to divide them by is monolithic and
distributed architectures (Martins and Lambe 2013). Dis-
tributed architectures break the problem into system- and
sub-system level problems in order to facilitate finding
the coupled solution. Collaborative Optimization (CO) is
a distributed multi-disciplinary optimization method that
has been utilized heavily in engineering design optimiza-
tion. Various papers have presented methods of using CO
in a multi-objective environment to develop Pareto fronts
(Aute and Azarm 2006; Ruiyi et al. 2011; Depince et al.
2005; Gunawan et al. 2003). The distributed nature of
CO allows the sub-level problems to exploit the specific
nature of their design spaces. The proposed framework will
take advantage of this quality and make further enhance-
ments that facilitate understanding trade-offs in lifetime
costs.

There is a rich body of optimization work done in dif-
ferent design disciplines for naval systems. Researcher’s
have used optimization to reduce the drag on a ship’s hull
(Harries et al. 2001; Sariz 2006; Brenner and Sener 2011)
and developed search methods to aid in the exploration of
the design space (Kuhn et al. 2007; Zalek et al. 2008).
Similarly work has been done to optimize ship’s struc-
tures’ for objectives such as production cost (Krol 1991;
Mermiris et al. 2005; Yang and Hwang 2002) and mainte-
nance (Chung et al. 2006; Junca and Sanchez-Silva 2013;
Kim and Frangopol 2011). However understanding the
interactions between these different disciplines and using
optimization to find trade-offs is unexplored. One of the
reasons for this is the mathematical difference between
the design spaces. For example, when considering resis-
tance and lifetime maintenance the hydrodynamic disci-
pline is a continuous mathematical space wherein gradient
based algorithms can be effectively used. The structural
space, however, is often a discrete space with weak min-
ima (Temple and Collette 2013b) that lends itself well to
heuristic methods. Another is that the coupling between
these disciplines is weaker than in other MDO engineer-
ing problems. The authors of this work have found that
traditional multi-objective tools are unable to consistently

converge to the entire Pareto-front for this type of multi-
disciplinary problem. Proposed here is a multi-objective
multi-disciplinary optimization framework that uses two
enhancements to facilitate solving these unique problems: a
novel goal-programming decision making process (DSP) at
the discipline level and a new locally-elitist single objective
genetic algorithm in non-continuous sub-spaces. By utiliz-
ing these two approaches the enhanced MOCO (eMOCO)
is able to efficiently and accurately resolve these diffi-
cult Pareto-fronts. This can aid designers in understanding
these trade-offs in order to ensure that engineering deci-
sions are being made that will minimize the lifetime cost
of a vessel.

A multi-objective collaborative optimization (MOCO)
framework has the benefit of being able to utilize differ-
ent types of optimizers at a sub-system level to effectively
design within each individual space. In order to take advan-
tage of the distributed architecture of the MOCO it is
enhanced using a goal-programming technique at the sub-
system level to aid in minimizing local objectives. Goal
programming is a decision making process (DSP) that has
been used in engineering to give optimization algorithms a
sense of the designers intent. It uses a hierarchy of objective
functions, that are successively minimized, thus allowing
the algorithm to minimize what the designer deems most
important first. In the proposed enhanced MOCO (eMOCO)
framework the goal programming is used to first minimize
the interdisciplinary feasibility, as in a traditional MOCO,
and then reduce local objective functions second. This aids
in pushing the system level optimizer towards the global
Pareto-front, and is specifically useful in solving problems
with weak minima or flat regions as the goal-programming
at the sub-system level helps push the population through
them.

One of the issues that arises when using heuristic algo-
rithms, especially those that are population based, in a
distributed MDO architecture is that the computation time
can quickly become intractable. To counter this a second
enhancement is proposed for the sub-spaces that are dis-
crete or flat in nature: a new variation on the single objective
genetic algorithm (SOGA) called a locally-elitist genetic
algorithm (LEGA). This LEGA allows the discipline opti-
mizer to solve the sub-system problem in a single execution
as opposed to a different one for each solution in the system
level population, allowing for the discipline level prob-
lem to be solved much faster. These two enhancements
can be implemented and used separately, however, they are
designed in tandem to be used in solving this specific type
of naval design problem. In order to show the framework’s
ability to solve the unique type of problem it has been
designed for it is first tested on multi-objective and multi-
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disciplinary test problems followed by a case study in the
naval design field.

The subsequent sections of this paper will cover the
eMOCO algorithm, then proceed to go over the various test
problems used to verify its ability. It will conclude with a
case study using a nominal hull form and structure for a
standard naval combatant and a discussion of the results.

2 Enhanced MOCO framework (eMOCO)

Goal programming is a decision support process (DSP)
that has been used within engineering optimization to han-
dle competing objectives of varying importance. In goal-
programming different objectives are satisfied in an order
based on their relative importance. This work utilizes lex-
icographical goal-programming in which each objective is
satisfied completely before the optimizer begins working on
the next one. This formulation can be expressed as shown in
Eq. 1
minimize: F(x) = [d+

1 , d+
2 , . . . , d+

n ]
subject to: g(x) ≤ 0

fi(x) + d+
i − d−

i = bi ∀ i = 1, . . . , n (1)

In Eq. 1 each objective, fi is being minimzed towards
a goal, bi , according to their respective priority. This man-
ifests in the variables d+

i and d−
i , which represent the

positive or negative variance from the goal of the objec-
tive. In the lexicographical approach to goal-programming
the constraints ensure that it does not increase the objective
functions that have higher priority (Tamiz et al. 1998).

This work uses goal-programming in a novel approach to
allow the sub-system problems to reduce the local objective
functions while maintaning the inter-discipline feasibility.
This lets them act as a local decision maker, ensuring that
solutions passed back to the system-level optimizer rep-
resent areas of the design space that are locally optimal.
By utilizing this technique, along with the inter-disciplinary
feasibility metrics inherent to collaborative optimization,
the system-level optimizer can efficiently resolve difficult
Pareto-fronts involving sub-spaces of drastically different
natures.

Collaborative Optimization (CO) separates a system-
level problem and discipline-level ones by introducing
copies of coupling and shared design vectors and pass-
ing them to the sub-system optimizers (Martins and Lambe
2013). The system-level optimizer then focuses on min-
imizing the objective vector, f(x); while the sub-system
problem then ensures all local constraints are satisfied
while minimizing discrepancy between local design vari-
ables and the copies sent from the system-level optimizer.

The system- and sub-system level problems can be seen in
Eqs. 2 and 3:

minimize: f (x) = (f0, f1, ..., fN)

with respect to: x = (x0, x̂1, ..., ˆxN, ŷ)

subject to: g0(x) ≥ 0

J ∗
i = ||x̂0i

− x0||22 + ||x̂i − xi ||22+||ŷi − yi ||22 = 0 for i = 1, ..., N
(2)

minimize: Ji = ||x̂0i
− x0i

||22 +
||x̂i − xi ||22 + ||ŷi + yi ||22

with respect to: x̂0i
, xi

subject to: gi(x̂0i
, xi, yi) ≥ 0 (3)

In Eq. 2 x0 represents the vector of variables shared
between disciplines, xi represent design variables unique to
the ith discipline, and yi represents coupling variables from
discipline i to a subset of disciplines j �= i. The coupling
variables may be specific design variables themselves or,
more often, state vectors that are calculated based on the
other design variables. Variables marked with a ˆ represent
copies passed between the system and sub-system problems.
By having local copies of each variables within the vari-
ous problems; the algorithms can work in parallel to reduce
local objectives and constraints. The inter-disciplinary fea-
sibility function, Ji for each discipline ensures that, when
the system-level optimizer converges, each discipline agrees
on the optimal design vectors.

2.1 Goal programming at the discipline level

Due to the distributed nature of the MOCO architecture it
is possible to utilize the sub-system optimizers in the devel-
opment of the Pareto-fronts. By enhancing the MOCO with
the goal-programming DSP outlined above at a sub-system
level the local objective function value can be reduced.
The sub-system populations passed back to the system level
optimizer then represent design vectors that are minimized
with respect to their disciplines, facilitating the movement
of the Pareto-front towards the optimum. This leads to the
revised sub-system problem formulations in Eq. 4:

minimize: F(x) = [d+
iJ

, d+
if1

, ..., d+
ifN

]
with respect to: x̂0i

, xi

subject to: gi(x̂0i
, xi, yi) ≥ 0

Ji(x̂0, xi, yi) + d−
iJ

− d+
iJ

= 0

fi1(x̂0, xi, yi) + d−
if1

− d+
if1

= 0

...

fiN (x̂0, xi, yi) + d−
ifN

− d+
ifN

= 0 (4)
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The system level problem remains as shown in Eq. 2.
The vector of objective functions is reduced while satis-
fying any shared constraints; and ensuring that there is
inter-disciplinary feasibility. However, at a sub-system level
a lexicographical goal-programming approach is used to
accomplish two goals:

1. Minimize the discipline infeasibility for the local design
variables

2. Reduce any local objective functions

Note that the formulation shown in Eq. 4 assumes the
local objective functions are being minimized towards zero;
however, this could be changed to reflect the nature of
whatever problem is being solved. This means the sub-
system problem first minimizes the local J function; then,
secondarily, reduces the local objectives. This can aid the
system-level optimizer in resolving difficult Pareto-fronts
by ensuring that discipline design variables are pushed
towards the front. Note that N number of discipline objec-
tives can be minimized during the goal-programming rou-
tine. This allows the engineer using the algorithm to set a
hierarchy to different objectives, allowing their engineering
experience and intuition to play a part in the outcome of the
optimizer.

Since the interdisciplinary feasibility functions can be
optimized with any type of algorithm, the sub-system prob-
lems can utilize optimization techniques tailored to the
local objectives. For instance, if the space is discontin-
uous or multi-modal a gradient-free algorithm such as a
genetic algorithm or particle swarm optimizer can be used;
however, if it is C1 continuous a more effective gradient-
based method can be used. Thus, the system-level can
employ a multi-objective genetic algorithm to resolve the
full-Pareto front, yet, the specific nature of each discipline
can still be exploited by the sub-system problem to aid
the system-level optimizer. This also allows various opti-
mizers to be implemented at a sub-system level at the
designers will with relative ease depending on the problem
being solved.

2.2 Locally elitist genetic algorithm (LEGA)

In order for the goal-programming enhanced MOCO to
effectively optimize non-continuous sub-spaces; a gradient-
free algorithm must be utilized at a sub-system level. In
current literature sub-system genetic algorithms have been
developed for a MOCO framework by using a design-of-
experiments method to sample points in the local vicin-
ity around each point in the system-level population.
These sample points are then used as the initial popula-
tion for a single-objective genetic algorithm (SOGA). This
means that for every candidate solution in the system-
level a full genetic algorithm must be performed. While

this approach is conceptually intuitive, it is also compu-
tationally expensive. It would be advantageous if a single
execution of a genetic algorithm could be done at the
sub-system level.

However, each candidate solution in the system-level
population will have different values of x̂i , x0, and ŷi . Since
these vectors do not change throughout the discipline-level
optimization they will be referred to as static vectors. Since
the static vectors are fundamental to ith sub-system’s Ji

function, the discipline-level problem associated with each
candidate solution is actually slightly different. This makes
it difficult to use the standards evolutionary operators such
as crossover; since each solution represents a slightly dif-
ferent optimization problem based on its location in the
design space. The problem lies in that if the standard oper-
ators are used the discipline-level SOGA will quickly move
each solution to whichever candidate is nearest to the fea-
sible domain, drastically diminishing thel genetic diversity
in the population. In order to avoid this the diversity of
the static vectors within a population must be maintained
throughout the genetic algorithm. This can be done by
defining new crossover and selection functions that are eli-
tist locally with respect to solutions with identical static
vectors; however, highly non-elitist with respect to the
entire population. The crossover function can be seen in
Algorithm 1:

In Algorithm 1 the static vectors from each parent solu-
tion are stored in: θ1 and θ2. A crossover method is then
used to produce two children from the parents; and each
candidate child solution is given both parents θ vectors, pro-
ducing four unique solutions. All solutions associated with a
given θ vector are then compared; and the winner from these
comparisons is added to the child population. This ensures
that the a strong-candidate solution corresponding to each
static θ vector is added to the child population; thus help-
ing to preserve genetic diversity with respect to the static
vectors.

In order to ensure the diversity of the static vectors
remains from each generation to the next; a selection
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method is also utilized that focuses on maintaining this
diversity.

Algorithm 2 will only ever compare a child candidate
solution (the population of which is generated using Algo-
rithm 1) to one of the parent solutions that produced it.
Therefore, even if a small number of static variable vectors
make up the mating pool, or child pool, the diversity of static
vectors will not degenerate from one generation to the next.
This creates an algorithm that, from a population perspec-
tive, is highly non-elitist; since poor solutions can remain
in the population to preserve the diversity of static vectors,
however, it is quite elitist locally in improving the solutions
attached to each of the static vectors.

The primary reason this must be done is that the disci-
pline level SOGA is seeking to improve the entire system-
level population in a single run; meaning that the entire final
population must be significant to the system-level optimizer,
not only a single optimum solution. While this approach is
not as intuitive as designing an entire SOGA run around
each system-level individual, it functions well within the
MOCO framework and saves significantly on computational
effort.

3 Test problems

In order to show the ability of the enhanced MOCO to solve
multi-objective and multi-disciplinary engineering prob-
lems multiple test cases will be analyzed. First a set of
standard multi-objective problems that have been used to
test algorithms suchs as the NSGA-II will be used to show
the eMOCO’s ability to find the solution to basic multi-
objective problems. Then an MDO test problem has been
used to show the ability of the eMOCO to solve a multi-
disciplinary problem more efficiently than a traditional
MOCO.

3.1 Multi-objective test problems

Two mathematical problems are used to show the algo-
rithm’s ability to resolve different Pareto-fronts. These can
be seen in Eqs. 5 and 6. They are called CONSTR and

TNK respectively. Both of these are taken from Deb et al.
(2002) and have been used in the validation of many multi-
objective optimization algorithms.

minimize: f (x) = (x1,
1 + x2

x1
)

subject to: g1(x) = −x2 + 9x1 − 1 ≥ 0

g2(x) = x2 + 9x1 − 6

6
≥ 0 (5)

minimize: f (x) = (x1, x2)

subject to: g1(x) = x2
1 + x2

2 − 1 − 0.1 cos(16 arctan(
x1

x2
)) ≥ 0

g2(x) = − (x1 − 0.5)2 − (x2 − 0.5)2 + 0.5

0.5
≥ 0 (6)

The problem in Eq. 5 is driven largely by the second
objective function and first constraint; whereas the problem
in Eq. 6 is clearly driven entirely by the constraints.

In order to test the enhanced MOCO using these prob-
lems they were divided into two disciplines each; where x1
is the discipline variable for the first discipline, x2 is the
discipline variable for the second, and there are no shared
variables. Equation 5 can be transformed into the following
system-level and sub-system problems:

System Level:

minimize: f (x) =
(

x̂1,
1 + x̂2

x̂1

)

subject to: ||x̂1 − x1|22|| + ||x̂2 − x2||22 = 0 (7)

Discipline 1:

minimize: F(x) = [d+
1J

, d+
1f

]
subject to: g1(x) = −x̂2 + 9x1 − 1 ≥ 0

g2(x) = ||x̂1 − x1||22 + d+
1J

− d−
1J

= 0

g3(x) = x1 + d+
1f

− d−
1f

= 0 (8)

Discipline 2:

minimize: F(x) = [d+
2J

, d+
2f

]

subject to: g1(x) = x2 + 9x̂1 − 6

6
≥ (9)

g2(x) = ||x̂2 − x2||22 + d+
1J

− d−
1J

= 0

g3(x) =
(
1 + x2

x̂1

)
+ d+

2f
− d−

2f
= 0 (10)

By breaking Eq. 5 into Eqs. 7, 8 and 10 it can be
solved using the enhanced-MOCO algorithm. The goal-
programming is lexicographical in approach; this means
that the sub-system optimizers will first minimize the dis-
ciplinary infeasibility as much as possible; and then focus
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on reducing the local objective function; without increas-
ing the value of Ji . This allowed the algorithm to ensure
the inter-disciplinary infeasibility, and also allow the sub-
system optimizers to reduce the objectives specific to their
subspaces.

The problem shown in Eq. 6 can be broken down simila-
raly as seen in Eqs. 11, 12, and 14.

System Level:

minimize: f (x) =
(
x̂1, x̂2

)

subject to: ||x̂1 − x1|22|| + ||x̂2 − x2||22 = 0 (11)

Discipline 1:

minimize: F(x) = [d+
1J

, d+
1f

]
subject to: g1(x) = x2

1 + x̂2
2 − 1

−0.1 cos

(
16 arctan

(
x1

x̂2

))
≥ 0

g2(x) = ||x̂1 − x1||22 + d+
1J

− d−
1J

= 0

g3(x) = x1 + d+
1f

− d−
1f

= 0 (12)

Discipline 2:

minimize: F(x) = [d+
2J

, d+
2f

]

subject to: g1(x) = − (
x̂1 − 0.5

)2 − (x2 − 0.5)2 + 0.5

0.5
≥ 0 ≥(13)

g2(x) = ||x̂2 − x2||22 + d+
1J

− d−
1J

= 0

g3(x) = x2 + d+
2f

− d−
2f

= 0 (14)

It is important to note that the division of this prob-
lem into two disciplines is arbitrary. This means it is
not expected for the enhanced-MOCO to outperform more
traditional algorithms, however, it is important that the
algorithm is able to resolve these Pareto-fronts.

The Pareto-fronts for these problems using both the
enhanced-MOCO and a traditional genetic algorithm (in this
case an implementation of the NSGA-II (Deb et al. 2002))
are shown in Figs. 1 and 2. In both cases the system level
optimizer evolved the initial population of 50 individuals
through 50 generations. Both discipline optimizers used to
produce the results are the LEGA presented above; how-
ever, similar ones were found using an SQP algorithm at the
discipline level.

Figures 1 and 2 show that the eMOCO is able to resolve
both pareto fronts as well or better than a traditional
NSGA-II. The TNK problem is a constraint-dominated
function with a highly non-linear Pareto-front, while the

Fig. 1 CONSTR Problem - solved with eMOCO and NSGA-II

CONSTR problem is objective-dominated in one region and
constraint-dominated in another. For both these problems
the eMOCO performs well.

3.2 Multi-disciplinary test problem

In order to test the algorithm on an intentionally multi-
disciplinary problem a test problem based on one shown in
Ruiyi et al. (2011) is used. The problem involves three vari-
ables and two disciplines; each of which has a state variable
that is passed to the other. An outline of the problem can be
seen in Fig. 3.

The problem involves one shared variable, two discipline
variables, and two state variables that are passed between

Fig. 2 TNK Problem - solved with eMOCO and NSGA-II
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Fig. 3 Basic data flow for the two-discipline example

the disciplines. The system and discipline formulations are
shown in in Eq. 15

System Level:

minimize: f1(x) = x1 + √
x2 + y2

2 − y3
1

104
+ 150,

f2(x) = x2
2 + x3 + y1 + e−y1

with respect to: x1, x̂2, x̂3, ŷ1, ŷ2

subject to:
3∑

i=1

||xi − x̂i ||22 +
2∑

i=1

||yi − ŷi ||22 = 0

(15)

Discipline 1:

minimize: F(x) = [d+
1J

, d+
1f

]
with respect to: x̂1, x2, y1

subject to:
(
x̂1

2 + x2 − 0.2ŷ2
)

− y1 = 0

||x1 − x̂1||22 + ||x2 − x̂2||22 + . . .

. . . ||y1 − ŷ1||22 + d+
1J

+ d−
1J

= 0

f1(x) + d+
1f

− d−
1f

= 0 (16)

Discipline 2:

minimize: F(x) = [d+
2J

, d+
2f

]
with respect to: x̂1, x3, y2

subject to:
(
x̂1 + x3 +

√
ŷ1

)
− y2 = 0

||x1 − x̂1||22 + ||x3 − x̂3||22 + . . .

. . . ||y2 − ŷ2||22 + d+
2f

+ d−
2f

= 0

f2(x) + d+
2f

− d−
2f

= 0 (17)

In Eqs. 15 through 17 x1 is a shared variable, x2 is spe-
cific to discipline 1 and x3 is specific to discipline 2. Both
disciplines have state variables y1 and y2 that are dependent
on each other and the entire vector of design variables. The
objective function also involve both disciplines and their
respective state variables. This is an example problem that is
somewhat representative of the naval design situations this

Fig. 4 An example of a true Pareto front and threshold front

algorithm is being developed for. The design vector and,
more specifically, the number of state variables are small,
yet they are critical to resolving the front.

In order to show the benefit of using the enhanced
MOCO this problem will be solved using both a traditional
MOCO and the eMOCO.

3.2.1 Convergence measurement

Though the MDO example is more complex than the prob-
lems shown in the previous section, it is still mathematically
simple enough that both the enhanced MOCO and a tra-
ditional one can solve it. Thus, it is necessary to have a
measurement of convergence in order to analyze the speed
at which they solve the problem. Measuring the speed of
convergence in a multi-objective problem is not as straight
forward or standardized as in single-objective optimiza-
tion, however, different approaches have been proposed.
In Collette and Siarry (2005) a convergence speed metric
was proposed based on a threshold frontier. In this met-
ric a true Pareto front is offset by a vector, v as seen in
Fig. 4.

In the metric proposed in Collette and Siarry (2005) con-
vergence is measured as the portion of a population that falls
between the true Pareto front and threshold front at a given
generation. This work proposes a similar metric to compare
the convergence of the two different MOCO algorithms.
A metric such as the threshold front is useful, however,
it is possible to report unrealistic convergences where a
candidate population is clustered in a small portion of the
Pareto-front. Therefore a metric is proposed that combines
a threshold measurement with a Pareto-span metric. The
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Fig. 5 The results for th MDO test problem for both the traditional
and enhanced MOCO

convergence at the ith generation, denoted as ê(i) ∈ (0, 1),
is calculated using Eq. 18.

ê(i) = 1

2

(
WT H (Si)

|Si | + fF1(x)max − fi1(x)min

fF1(x)max − fF1(x)min

)
(18)

In Eq. 18 WT H (S) is the number of individuals in the ith

solution set that fall under the threshold front and |Si | is the
size of the ith solution set. fF (X) is the threshold (or ‘true’)
Pareto front, and fi(x) is the Pareto frontier during the ith

generation. The maximum value ê(i) can take is 1.0. Both
the eMOCO and traditional MOCO are run until the Pareto
front reaches a convergence value of 0.95.

The first term in this metric measures the amount of the
population below the threshold frontier, where the second
term measures the span of the current front relative to the
final one. By utilizing both these concepts a more complete
picture of convergence can be determined.

The Pareto front found using a traditional MOCO
(tMOCO) and the eMOCO can be seen in Fig. 5. A popula-
tion size of 200 was used for all runs.

Figure 5 shows that both algorithms converge to the same
Pareto front. This is expected as the problem is a relatively
straight-forward MDO example. However, it is important
to examine the speed at which both algorithms converge.
In order to compare the two algorithms 100 runs of each
were done and the average generations to convergence was
examined. These values can be seen in Table 1.

Table 1 Average generations to converge for the traditional
(tMOCO) and enhanced (eMOCO) MOCO over 100 samples

Algorithm Average Generations

tMOCO 148.9

eMOCO 109.1

Fig. 6 Generation 20 for the enhanced MOCO

In order to ensure the validity of the mean shift seen in
Table 1 Welch’s T-Test was performed and the null hypothe-
sis was rejected with a p-value of 0.00653, showing that the
two samples of test runs are statistically different. Table 1
shows that the enhanced MOCO is able to consistently solve
the test problem in less generations than the traditional one.
In fact, it shows that even on this simple example prob-
lem the enhanced MOCO is able to converge in 27 % less
generations than a traditional one over 100 sample runs.
This represents a substantial increase in speed; especially
for engineering problems where objective calculation can be
computationally expensive.

The eMOCO is able to converge to the final Pareto front
faster than the traditional MOCO due to its ability to avoid
clustering in easier to resolve areas of the front. This is
a result of the addition of goal-programming to the sub-
system problem. With goal programming, the disciplines
are also pushing resolve the Pareto front from a local per-
spective. This increases the quality of the return points at
the system level, allowing a more evenly spaces and bet-
ter resolved front to emerge. Figures 6 through 11 show
this improved front by contrasting the Pareto fronts for the
eMOCO and traditional MOCO at generations 20, 30, and
50 of the algorithm.

Figures 6 and through 11 highlight this by showing how
clustering is avoided by utilizing the goal-programming
approach. Figure 9 show that the traditional MOCO clusters
in areas of the Pareto front that are easier to resolve before
slowly spreading out to fill out the entire optimal front.
Conversely, Figures 6 through 8 show that the enhanced
MOCO is able to initially develop a Pareto front with much
less clustering. The reduction in clustering allows the new
algorithm to fill in the entire font faster while avoiding the
pitfalls of clustering in an evolutionary algorithm. Cluster-
ing reduction also allows portions of the Pareto front that



A goal-programming enhanced collaborative optimization approach to reducing lifecyle costs for naval vessels 1269

Fig. 7 Generation 30 for the enhanced MOCO

may be more difficult to resolve to be found earlier in the
algorithm. Previous results have shown that for the lifetime
naval cost algorithm, finding the full extent of the Pareto
front can be a challenge for the optimizer (Temple and Col-
lette 2015). Thus, when designers are seeking to visualize
the entire tradespace, the enhanced MOCO helps to ensure
that the full Pareto front is returned.

4 Naval design case study

In order to show the ability of the enhanced MOCO to
develop the trade-spaces between different facets of lifetime
cost a nominal DTMB-5145 is optimized for both resis-
tance and production. A simplified version of the structure
found in Ashe et al. (2009) and hull form found in Benedetti
et al. (2007) are used. This is the type of problem that the

Fig. 8 Generation 50 for the enhanced MOCO

Fig. 9 Generation 20 for the traditional MOCO

resistance-production trade-space represents; as these two
objectives are competing and coupled, however, the cou-
pling is small between the objectives themselves. It is also a
relationship representing the cost during two drastically dif-
ferent phases of the vessel’s life (production and operation);
this is difficult to understand intuitively, making it a good
test case for this framework.

4.1 Resistance calculation

The resistance experienced by a ship’s hull, RT , can be con-
sidered the sum of a wave component, RW , and a frictional
component, RF . The frictional component is often esti-
mated using one of many frictional lines, that are a function
of the length-based Reynolds number. The wave resistance
is more difficult to analyze and is often estimated using
either a simple regression or high fidelity CFD programs.

Fig. 10 Generation 30 for the traditional MOCO
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Fig. 11 Generation 50 for the traditional MOCO

In this work resistance is calculated using a combination of
thin ship theory and the ITTC-57 friction line.

Thin ship theory, using Michell’s integral, is an effec-
tive way to estimate the hull’s wave resistance. Other work,
Maki et al. (2008), Tuck (1989), and Tuck and Lazauskas
(2008), has shown that the estimate is acceptable to under-
stand the basic trends in resistance; which is the accuracy
needed for the early-stage optimization work being done
here. It can also do this relatively fast, allowing the opti-
mization framework to avoid the costly use of higher fidelity
estimates such as CFD. Thin ship theory uses Eq. 19 to
calculate the wave resistance at speed U .

Rw = πρU2
∫ π

2

−π
2

|A(θ)| cos3(θ)dθ (19)

In this equation ρ is the density of salt water, θ is the
heading angle of waves in the vessel’s wake, and |A(θ)| is
known as the ’complex wave amplitude function. This can
be calculated using Eq. 20.

|A(θ)| = 2

π
ν sec3(θ)

∫∫
cp

∂η

∂x
eν sec2(θ)(z+ix cos(θ))dzdx

(20)

This is an integral along the centerplane of the vessel
based on the derivative of the slope of the hull in the lon-
gitudinal coordinate, ∂η

∂x
, and a given wave heading angle.

The variable ν is calculated based on the forward speed
of the vessel and the acceleration due to gravity, g, using
Eq. 21. This value is the theoretical critical wave number of
the ship’s wake in infinitely deep water.

ν = g

U2
(21)

By integrating just over the ship’s centerplane the theory
assumes a long, thin vessel. While this is an approximation

for most naval vessels, it is sufficiently accurate to under-
stand trends in the naval design space during the early stages
of a ship’s design.

The total resistance can be considered a sum of the wave
resistance and frictional resistance. In order to estimate the
frictional resistance the ITTC friction line, calculated as a
function of Reynolds number as seen in Eq. 22, is used. This
frictional line was developed in the 1957 international tow-
ing tank conference and is widely used by naval architects as
an estimate for the frictional resistance a ship experiences.

CF,IT T C−57 = 0.075

(log10(Rn − 2))2
(22)

Equation 22 calculates the coefficient of friction which can
be used to determine the frictional resistance using Eq. 23.

Rf = 1

2
CF,IT T C−57ρSW (23)

Where SW is the wetted surface area of the vessel.
Using these equations to estimate the wave and frictional

resistance a value for total resistance at the vessel’s design
speed can be calculated.

4.2 Production cost

The production cost is estimates using costing equations
from Rahman and Caldwell (1995) where the estimated cost
to produce a structure, CP , is calculated using Eq. 24.

CP =
n∑

i=1

9∑
j=1

Cji
(24)

In Eq. 24 Cji
is the cost of the jth construction com-

ponent for the ith panel in the structure. The nine different
components of construction that are used are as follows:

C1 = cost of materials for hull plates

C2 = cost of materials for longitudinal stiffeners

C3 = cost of materials for longitudinal frames

C4 = cost of welding for longitudinal stiffeners

C5 = cost of welding for transverse frames

C6 = cost of intersections between longitudinal

stiffeners and transverse frames

C7 = cost of preparation of brackets and joints

C8 = cost of electricity and electrodes

C9 = fabrication cost of longitudinal

stiffeners and transverse frames

C1, C2, and C3 are computed from the total weight of
each material present in the structure, multiplied by a cost
per pound for the material. C4 and C5 are calculated based
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on the total meters of welding required to fabricate the struc-
ture, and a cost per meter of weld. C6 and C7 scale with
the total number of intersections between stiffeners run-
ning orthogonally, such intersections require careful fit-up
and bracketing. A fixed cost per intersection is assumed.
C8 and C9 address welding consumables and additional
costs if custom profiles are used in place of standard steel
mill stock. As many of these variables vary over time, ship-
yard location and shipyard automation level, approximate
values for western shipyards in the late 2000’s were used.
The resulting costs were then normalized by a reference
design, and the final Pareto fronts presented as a percentage
of the reference design cost. Further details and complete
equations for the calculation of each of these components
can be found in the original paper introducing the method
(Rahman and Caldwell 1995).

4.3 Optimization

The two objective functions shown here are prime examples
of design spaces whose nature differ significantly. Vari-
ous researchers have used fast gradient-based optimizers
to reduce drag as calculated by Michell’s integral suc-
cessfully and efficiently. However, the production cost is
non-smooth due to the nature of the ship’s structure. This
makes it well suited for an evolutionary based optimizer
such as the genetic algorithm. Therefore; developing trade-
spaces between these two objectives lends itself well to the
enhanced MOCO presented in this work.

The optimization will take advantage of a transforma-
tion method developed in Temple and Collette (2012) to
alter the shape of the vessel. The transformation method
defines a spline across the centerplane of the vessel dictated
by control points T̂l1 , ..., T̂ln . This splines sets distances to
move stations defined in the table of offsets longitudinally
fore and aft. The scantlings are defined using a structural
discretization based on stiffened panels within various func-
tional locations of the hull. This optimization method is
developed and presented in Temple and Collette (2013a).

This leads to the following multi-disciplinary problem
being developed.

SystemLevel :
minimize: f (x) = (RL(x), CP (x))

with respect to: x̂H = T̂l1, ...T̂lN

x̂S = (tp, tw, tf , hw, bf )i for i = 1 to nf

subject to:
N∑

i=1

||xHi
− ˆxHi

||22 +
5∑

j=2

nf∑
i=1

||xSji
−

ˆxSji
||22 = 0 (25)

HydroDiscipline :
minimize: F(x) = [d+

HJ
, d+

Hf
]

with respect to: Tl1 , ..., TlN

subject to: |Tnew − T | ≤ 2
N∑

i=1

||x1i
− ˆx1i

||22 + d+
HJ

+ d−
HJ

= 0

RT (xH ) + d+
Hf

− d−
Hf

= 0 (26)

StructureDiscipline :
minimize: F(x) = [d+

SJ
, d+

Sf
]

with respect to: (tp, tw, tf , hw, bf )i for i = 1 to nf

subject to: WS − 1.5WSI
≥ 0

SMV
− SMVI

≤ 0

Ucsp − UcspI
≤ 0 ∀ p

SMp − SMpI
≤ 0 ∀ p

d(xi, xj ) < 0.06 ∀ j, i

5∑
j=2

nf∑
i=1

||x2ji
− ˆx2ji

||22 + . . .

. . . d+
SJ

+ d−
SJ

= 0

CP (xS) + d+
Sf

− d−
Sf

= 0 (27)

In this formulation the system level optimizer is mini-
mizing production steelwork cost and the resistance at the
vessel’s design speed while ensuring that interdisciplinary
feasibility is maintained. To transform the shape of the hull
the method developed in Temple and Collette (2012) is
used. This method defines a transformation vector across
the centerplane of the vessel defined by the set of N con-
trol points, Tl = {Tl1 , ..., TlN }. This transformation vector
is used to represent a function, fT (x), gives the optimizer
a distance to perturb stations of the vessel’s hull. A sta-
tion of a ship’s hull is a cross sectional slice taken in the
transverse direction at a given point on its longitudinal axis.
Thus, the optimizer will take cross sectional slices through
the ship’s hull at given points along its centerline axis and
move those stations by the distance dictated by fT (x). The
movement of these stations will create a transformed hull
form. The optimizer can change the control points that dic-
tate the shape of fT (x) and, through this, control the shape
of the transformed vessel.

The hydrodynamic discipline problem is minimizing the
difference between its design variables and the correspond-
ing system level variables as a primary goal and the resis-
tance as a secondary one. As the ship’s hull is transformed
the displacement remains constant and, thus, the draft is
altered. This discipline constraint ensures that the draft does
not change more than 2 meters.
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The ship’s structure is controlled by altering the scant-
lings of the stiffened panels that comprise it. The structure is
initially decomposed into ‘functional locations’ that repre-
sent regions of the structure that have similar stress regions
based on their location in the ship. These locations are then
broken down into individual panels composed of a plate and
number of stiffeners. The optimizer can control the thick-
ness of the plate, tp, the thickness of the stiffener web,
tw, and the thickness of the stiffener flange, tf . It can also
control the height and breadth of the flange, hw and bw.
These scantlings can be altered for each panel within each
of the nf functional locations defined for the ship’s struc-
ture. Since each functional location witnesses similar stress
ranges, all the panels within a given location are identical
for the purpose of this work.

The constraints satisfied here are that the weight does not
increase more than 50 % and that the section modulus of the
entire structure is not reduced. Additionally for each stiff-
ened panel, the ultimate compressive strength of panel and
its section modulus in bending must also not be reduced.
This discipline also ensures that the the components of the
different panels do not come within 6mm of each other. The
section modulus of the entire vessel and the correspond-
ing panel ultimate compressive strength, UCS, are used
together as an estimate of the global strength of the vessel.
The UCS of each panel is calculated based on a regres-
sion of physical panel collapse tests developed by Paik and
Duran (2004). This approach uses non-dimensional elas-
tic column and plate slenderness ratios as has been shown
suitable for marine-type panels.

The hydrodynamic discipline uses an SQP (sequential
quadratic programming) optimizer included in the Python-
based optimization suite pyOpt (Perez et al. 2012) This
algorithm is a gradient based optimizer that is effective
at minimizing functions that are C1 continuous with well
defined minima. The structural discipline uses the LEGA
described in Section 2.2. This algorithm has been specif-
ically designed for sub-problems such as this that are not
continuous and may be multi-modal in objective space with
weak minima. It is also designed to minimize computation
time by only requiring one run for an entire population.

To demonstrate the ability of the enhanced MOCO to
develop these Pareto fronts in the naval design space a
nominal DTMB5145 naval combatant is used as the ini-
tial design. The hull form can be found in Benedetti et al.
(2007) and a bodyplan is shown in Fig. 12. A nominal mid-
ship structure used is taken from Ashe et al. (2009) and can
see in Fig. 13. For this example the transformation vector,
Tl will be controlled by 5 points and the structure is broken
down into 7 functional locations. This means there are 40
design variables at the system level. This type of problem
can be time consuming to solve, even when using a simpli-
fied version such as presented here. Due to this the eMOCO

Fig. 12 Bodyplan for nominal naval combatant

has been designed to allow for parallelization across multi-
ple cores in Python. While formal computational timing of
multiple replicate runs was not made, this example shown
here represented close to 1500 hours of CPU time across
200 cores.

In order to test the ability of the eMOCO to find life-
time cost trade-offs in the naval design space it will be
used, along with a traditional optimization method to find
a Pareto-front between steelwork production cost and resis-
tance. The lower resistance will lead to less operational
costs, and historically has been the driver behind most naval
design optimization. However, by considering multiple cost
aspects the designer can focus on reducing total ownership
costs from both a structural and hydrodynamic perspective.
This is similar in complexity to the problem presented in

Fig. 13 Internal structure for nominal combatant
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Fig. 14 Pareto front for nominal naval combatant

Temple and Collette (2015), albeit with a structural produc-
tion metric. In the aforementioned work a traditional opti-
mization algorithm was unable to find the complete Pareto
front, and specifically struggled to resolve the resistance
portion.

4.4 Results

The Pareto front found using both the enhanced MOCO and
an NSGA-II can be seen in Fig. 14. In order to produce
the results the system level optimizer evolved 200 individu-
als over 200 generations. This was sufficient time for each
Pareto-front to converge to a point where it was no longer
advancing through objective space.

In this figure both objectives are normalized by their
respective values for the initial hull. As can be seen both
optimizers are able to produce fronts with design solutions
that dominate the original design with respect to both objec-
tive functions. However, the results here show a similar
trend as the author’s previous work - namely, that traditional
optimization routines cannot resolve the full front.

Even for this highly simplified test case for the enhanced
MOCO the MOGA is only able to resolve the production
end of the Pareto front, showing no solutions along the resis-
tance side of the front. This is in line with the results found
in Temple and Collette (2015). Meanwhile, the eMOCO is
able to resolve solutions in both respective regions. The abil-
ity of the eMOCO to ensure that clustering does not reduce
the integrity of the Pareto front shown in Figs. 6 through
11 is evident here as well. The NSGA-II has clustered in
a small, and relatively insignificant, portion of the Pareto
front, while the eMOCO is able to fully resolve the small
‘knee’ region. This gives the designer a better understanding
of the design space and ensures that the information gar-
nered from the Pareto-front is truly aiding them in reducing

Fig. 15 Hull form for vessel with highest resistance

lifetime ownership costs. Given that the purpose of this type
of optimization is to understand trends in the design space,
capturing that space is critical. When only small portions of
it are resolved it valuable information can be missed. For
instance: the ends of the Pareto front (the portions missed by
traditional optimization) are examined in Figs. 15 through
17.

From Fig. 15 it can be seen that in the structure that is
cheapest to produce structure the bulbous bow of the origi-
nal vessel is simplified. Along the Pareto front - as the knee

Fig. 16 Structure for vessel with highest resistance
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Fig. 17 Hull form for vessel with highest production cost

is approached - the bulbous bow becomes wider and the
stern shallower - reducing the overall resistance. This can be
seen in Figs. 17 and 18 where the resistance is minimized.
Along the edges of the Pareto front between these points and
the ’knee’ the evolution of these trends can be seen,. It is this
information that it is critical to the engineer - as understand-
ing the trends in both the hydrodynamic and structural space
and, specifically, how they influence each other is vital to

Fig. 18 Structure for vessel with highest production cost

reducing the overall ownership costs. These differences in
the converged Pareto-front are due to the eMOCO’s goal-
programming implemenation that allow the discipline-level
optimizer to locally reduce their objective functions in areas
of the design space that are problematic for the system-
level. There are regions of the objective space with large flat
areas or weak minima that are difficult to move a popula-
tion through when the larger, multi-disciplinary problem is
being considered. By allowing the discipline level optimiz-
ers, that are focused on a problem that is smaller in scope, to
nudge the population through these areas, the system-level
is able to converge to a better final Pareto-front. This shows
that the enhancements developed for the eMOCO allow it
to overcome the specific difficulties of the early-stage naval
design problem.

As more information about the vessel becomes known
and the design phase is completed only small portions of this
front, for example the area in the ‘knee’, will be important.
Future work could look at further accelerating the optimiza-
tion process by focusing in on this region and not resolving
the entire front. In the current work, the entire front is sig-
nificant as it indicates both topology of the trade space - a
very narrow knee region, and the penalty that would be paid
by optimizing for one objective in isolation. Additionally,
the front is better resolved than the MOGA front as noted,
which shows the increased power of the proposed algorithm.
The proposed enhanced collaborative optimization frame-
work is able to resolve these Pareto-fronts and reveal this
information.

5 Conclusion

The impact of lifetime ownership cost is becoming increas-
ingly important to the operators and owners of large naval
vessels. The cost to maintain a vessel and keep her opera-
tional is becoming a limiting factor in its possible service
life. This makes it desirable to design new vessels with the
aim to reduce these costs to ensure they can continue to
operator as they need to. To do this it is important to under-
stand the trade-offs between different categories of lifetime
cost and, especially, the impact of the interactions between
them on design. Unfortunately traditional multi-objective
optimization routines are not capable of reliably resolving
these trade-offs.

To address this the author’s have proposed a multi-
objective collaborative optimization framework with two
enhancements to facilitate solving this unique problem: a
goal-programming optimization at the discipline level and
a new type of single objective genetic algorithm to more
effectively search the structural sub-space. The eMOCO
has been verified on simple multi-objective and multi-
disciplinary test problems and been shown to be capable
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of solving them. It also been shown to be able to resolve
the trade-space for a simple naval design example. In even
this simplified example the traditional optimizer is unable
to resolve this front, showing the need for this type of
algorithm to solve this problem.

When exploring more complex implementations of this
problem, especially if maintenance cost was included, the
traditional optimizer would stumble further and the benefit
of an enhanced MOCO would become greater. Using this
framework to explore and understand the trade-offs between
production, maintenance, and operation costs could reveal
trends in the design space that could aid designers in find-
ing vessels whose total lifetime costs were minimized, and
whose service lives were robust to changes in the latter years
of operation.
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