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Abstract Modal transducers can be designed by optimizing
the polarity of the electrode which covers the piezoelectric
layers bonded to the host structure. This paper is intended
as a continuation of our previous work (Donoso and Bellido
Struct Multidisc Optim 38:347–356, 2009a) to make better
the performance of such piezoelectric devices by simulta-
neously optimizing the structure layout and the electrode
profile. As the host structure is not longer fixed, the typical
drawbacks in eigenproblem optimization such as spurious
modes, mode tracking and switching or repeated eigenval-
ues soon appear. Further, our model has the novel issue that
both cost and constraints explicitly depend on mode shapes.
Moreover, due to the physics of the problem, the appearance
of large gray areas is another pitfall to be solved. Our pro-
posed approach overcomes all these difficulties with success
and let obtain nearly 0-1 designs that improve the existing
optimal electrode profiles over a homogeneous plate.
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1 Introduction

The concept of piezoelectric modal transducers, i.e., those
which let isolate a particular mode of a structure from the
rest, dates back to Lee and Moon (1990). In that remarkable
work, the authors first derived theoretically expressions for
one-dimensional modal transducers, and then tested experi-
mentally the devices manufactured. What makes the former
possible it is precisely the orthogonality principle among
the mode shapes of beam-type structures. As the eigen-
modes are orthogonal to each other with respect to the
unit weight function, then modal transducers are found by
tailoring the surface electrode with areas of positive, neg-
ative or null polarity, according to the curvature of the
mode of interest. Besides, they also proved that patterns for
the pair modal sensor/actuator which measures/excites the
same mode shape coincided thanks to the reciprocity of the
piezoelectric effect.

Unfortunately, this approach cannot be extended to the 2d
case mainly due to the non-validity of the aforementioned
orthogonality principle for plate-type structures with arbi-
trary boundary conditions. However, even in the cases for it
can, an intermediate-values polarity distribution is required,
and this could be really difficult to achieve in practice, as
pointed out in Clark and Burke (1996). Many authors have
studied the underlined problem in detail to date and just
some of them are mentioned here. In Kim et al. (2001),
though the results obtained from genetic algorithms over
rough meshes are satisfactory, the implementation requires
extra interface circuits. Sun et al. (2002) proposed structures
composed of many small piezo patches of different and uni-
form thickness. Preumont et al. (2003) introduced a new
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porous distributed electrode concept. In Jian and Friswell
(2007), the shape of a sensor is optimized. More recently,
electrode-shaping techniques have been performed in Pul-
skamp et al. (2012) to detect modes only, but not to cancel
others. Also Zhang et al. (2014) reduce the sound radiation
in shells under harmonic excitations.

In accordance with the ideas described in Jian and
Friswell (2007) and using the topology optimization method
(Bendsøe and Sigmund 2003), we point up the tech-
nique described in Donoso and Bellido (2009a). In that
work, a systematic procedure to design piezoelectric modal
transducers for plates moving out-of-plane was developed.
Modal transducers were found as solutions of an opti-
mization problem, where the design variable (polarity) that
controls the electrode profile takes exclusively −1 or 1 val-
ues. As the polarity never takes on value 0, it means that
the host structure is covered throughout by an electrode in
the optimum, as we can see in Fig. 1 (notice that they are
really pure 0-1 designs). This approach was generalized to
the in-plane case (Donoso and Bellido 2009b) and to shells
(Donoso et al. 2010). Later, the investigation followed by
designing micro-transducers that were manufactured and
tested showing quite good performance in Sánchez-Rojas
et al. (2010).

(a) Electrode profile (b) Mode shape

(c) Electrode profile (d) Mode shape

Fig. 1 Electrodes profiles (a) and (c) to isolate the sixth mode (b) and
(d) for a plate fixed at its left edge when considering the first 20 out-of-
plane modes only, and the first 12 in-plane modes only, respectively.
Black and white areas mean regions with opposite polarity, and that is
the reason why it does not matter whether there are disconnected black
areas or not. Both simulations have been extracted from Donoso and
Bellido (2009a) and Donoso and Bellido (2009b), respectively

Motivated by many applications, particularly in micro-
electronics, it is interesting to investigate whether making
the layout of the host structure free as a design variable,
together with the electrode profile, it could improve the
performance of the designed transducers.

In the last decade, some authors have performed precisely
simultaneous design of both host structure and piezoelec-
tric layers by using topology optimization. Kögl and Silva
(2005) considered the optimization of the piezoelectric part
together with the polarization. Carbonari et al. (2007), and
Luo et al. (2010), among others, optimized simultaneously
the host structure and the piezoelectric distribution. Other
authors have gone further, on including as a third design
variable the spatial distribution of the control voltage in
the optimization problem, in some way connected with the
polarity of the piezoelectric layers (Kang et al. 2011, 2012).

In contrast to the works commented above regarding
simultaneous optimization, the problem studied in this paper
assumes that the piezoelectric material is surface bonded
to the structure wherever it is. Hence the design variables
are essentially two, the structure layout of the whole struc-
ture and the electrode profile (or polarity). Actually, that
approach has recently been explored successfully in Ruiz
et al. (2013) for designing in-plane piezoelectric sensors for
the static case.

In this paper, we just continue our previous investiga-
tion in modal filtering by using simultaneous optimization
in both the structure layout and the electrode polarity. We
would like to remark that the main novelty here is that
both objective function and constraints will depend on the
eigenmodes. As their shape and order will change dur-
ing the optimization process because of the host structure
is no longer fixed, they will appear the classical diffi-
culties involved when dealing with eigenfrequencies and
eigenmodes such as spurious modes, mode tracking and
switching or repeated eigenfrequencies.

On the other hand, it is worth mentioning that just few
papers dealing with eigenmodes optimization appear in
the literature. Next those are briefly discussed. In Hansen
(2005), a specific (single) mode shape of a fiber laser pack-
age is designed in order to minimize the elongation of the
fiber under dynamic excitation. In Maeda et al. (2006),
a multi-objective function is formulated in order to find
optimal configurations that simultaneously satisfy (simple)
eigenfrequency, eigenmode, and stiffness requirements at
certain points of a vibrating structure. A similar problem
is treated in Nakasone and Silva (2010). The novelty there
is to include the electromechanical coupling coefficient in
the objective function so that the energy conversion is max-
imized for a specific mode. In Tsai and Cheng (2013),
eigenmodes appear in the constraints only. One of the objec-
tives of that work is to determine the material distribution of
a structure that maximizes the fundamental frequency and at
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the same time synthesize the first two modes. However, the
list is more extensive when talking about eigenfrequencies
optimization. The readers are referred to Ma et al. (1994),
Dı́az and Kikuchi (1992), Jensen and Pedersen (2006) and
Du and Olhoff (2007), among many others.

Having all this in mind, we reconsider the problem of
designing piezoelectric modal transducers from a new per-
spective: find the design (both structure and electrode)
that maximizes the response of a specific mode shape
and suppress as much as possible the response of the
other selected mode shapes among a collection of J

modes. Notice that now we will focus on following a pre-
scribed mode shape rather than a mode number. Although
the method proposed is not restricted to the size of the
transducers, all designs have been obtained at the micro-
scale, thinking of the wide range for MEMS applica-
tions, like micro-grippers, surface probes or micro-optical
devices.

The layout of the paper is as follows. Section 2 is dedi-
cated to the description and formulation of the problem. In
Section 3 the discrete formulation is presented. Section 4
is devoted to the sensitivity analysis depending on whether
the eigenvalues are simple or double. In Section 5, our
numerical approach in a pseudocode way is explained. Sev-
eral numerical examples for different boundary conditions
are included in Section 6. Finally, some conclusions are
discussed in the last section.

2 Continuous formulation of the problem

We start considering, as our design domain, a Lx ×Ly rect-
angular plate of arbitrary boundary conditions (see Fig. 2).
The host structure is bonded to both the top and the bottom
surfaces with two piezoelectric layers of negligible stiffness
and mass compared to the plate.
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Fig. 2 Design domain

As explained in the introduction, given a set of J mode
shapes, the design problem consists in determining simulta-
neously the structure layout and the electrode profile so that
a specific eigenmode is isolated from the rest. Therefore,
two design variables χs and χp are used. χs is a character-
istic function that represents the structure layout such that
χs ∈ {0, 1} meaning void and structure (and piezo as well),
respectively. χp is another characteristic function that rep-
resents the polarity of the electrode, that is, χp ∈ {−1, 1},
negative or positive polarity, respectively. Actually, it will
be more convenient to work with 2χp − 1, being now χp ∈
{0, 1}. This will be used in the discrete problem.

Regarding the physics of the problem, and following Lee
and Moon (1990), on deforming the whole structure, an
electric signal is induced owing to the piezoelectric effect.
Assuming that the piezoelectric constants are the same in
both spatial directions, x, y, and piezo axes are coincident
with the geometric ones of the plate, the charge q collected
by the sensor can be expressed, up to a scaling factor, by

q(t) =
∫ Ly

0

∫ Lx

0
χp(x, y)

{(
∂u

∂x
+ ∂v

∂y

)

− (hs + hp)

2

(
∂2w

∂x2
+ ∂2w

∂y2

)}
dx dy, (1)

where (u, v, w) is the displacement vector, hs is the thick-
ness of the plate and hp is the one of the piezoelectric
layers.

Notice that the role of the electrode is here crucial
because only the area of the piezoelectric sensor covered by
an electrode will be electrically affected. That is the phys-
ical reason why we have not considered that χp = 0 (null
polarity) at the beginning, otherwise the charge of the device
would be lower. There is also a mathematical reason for that:
in Donoso and Bellido (2009a) it is shown that whenever the
host structure is fixed, the piezoelectric electrode will cover
the whole structure (either with positive or negative polarity,
i.e. χp = 1 or χp = −1) in the optimum.

By using modal expansion, the displacements u, v, w are
written as

u(x, y) = ∑∞
j=1 φj (x, y)ηj (t)

v(x, y) = ∑∞
j=1 ψj (x, y)ηj (t)

w(x, y) = ∑∞
j=1 ϕj (x, y)ηj (t)

(2)

where �j(x, y) = (φj (x, y), ψj (x, y), ϕj (x, y)) is the j -th
mode shape, and ηj (t) the j -th modal coordinate. Inserting
(2) in (1) we arrive at

q(t) =
∞∑

j=1

Fjηj (t), (3)
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that is, the response of the sensor can be rewritten in such
a way that the spatial terms appear separated from the
temporal ones, and therefore the coefficient

Fj = ∫ Ly

0

∫ Lx

0 χp(x, y)
{(

∂φj

∂x
+ ∂ψj

∂y

)

− (hs+hp)

2

(
∂2ϕj

∂x2 + ∂2ϕj

∂y2

)}
dx dy

(4)

depends on the j -th mode shape only.
It is important to remark that such coefficients depend

explicitly on χp and implicitly on χs through the eigenmode
equation that we denote hereafter by

A(χs, �j ) = 0. (5)

As we work with a plate-type model, the curvature is
null and then in-plane modes appear decoupled from out-
of-plane modes. That means that (4) will not be considered,
and shorter expressions will be used instead. In this way,
when considering in-plane modes only (both piezo layers
are in-phase polarized), then �j = (φj , ψj , 0) and

Fj =
∫ Ly

0

∫ Lx

0
χp(x, y)

(
∂φj

∂x
+ ∂ψj

∂y

)
dx dy. (6)

Oppositely, when considering out-of-plane modes only
(both piezo layers are out-of-phase polarized), then �j =
(0, 0, ϕj ) and

Fj =
∫ Ly

0

∫ Lx

0
χp(x, y)

(
∂2ϕj

∂x2
+ ∂2ϕj

∂y2

)
dx dy (7)

where the term −(hs + hp)/2, being a constant multiplica-
tive factor, is removed.

At this point and based on our assumptions, it is impor-
tant to notice that the piezoelectric properties are not needed
in the problem formulation and just appear as a scaling
factor that we will omit for the sake of simplicity.

In our model we are interested in mode shapes rather than
frequencies in the spectrum. For that reason we are not num-
bering modes according to the position in the spectrum of
the corresponding frequencies. As it is very well known, this
may be unpractical when working with this kind of prob-
lems due to mode switching (Ma et al. 1994). Indeed, what
we do is, for a given design structure χs , and among the
modes for this structure, to select the closest to a prescribed
mode shape of the homogeneous square plate. Of course the
term closest needs to be made precise and concrete. We will
do this in the next section when dealing with the discrete
problem.

Once the physics of the problem is clear, we can state the
optimization problem to be studied. We start by selecting
J mode shapes, and for the sake of simplicity we number
these eigenmodes and their corresponding eigenfrequencies
increasingly from 1 to J , dropping the rest in (2) (i.e., we
truncate the sum (2) at j = J ). Then the design problem

aims to find a modal sensor that filters the k-th mode (i.e.
the coefficient Fk is maximized) among the set of J modes.
This is mathematically formulated as:

max
χs,χp

: Fk(χp, �k(χs)) (8)

subject to

A(χs, �j ) = 0
|Fj (χp, �j (χs))| ≤ α, j = 1, · · · , J, j �= k

χs ∈ {0, 1}
χp ∈ {−1, 1}

(9)

In principle, the parameter α will be a small tolerance, but
of unknown value. As a bad choice of α could imply a lack
of solutions for the problem, we have opted here for using
a bound-type formulation to reformulate the optimization
problem. This basically implies to consider α now as an
extra non-negative variable, rather than an input parameter.
In this way, we maximize Fk − α so that the response to
the k-th mode is maximized whereas α is decreased, mini-
mizing then the response of the rest of modes. Taking this
into account and dropping the design variables in the coef-
ficients for the sake of clarity, the new (bound) formulation
is the following:

max
χs,χp,α

: Fk − α (10)

subject to

A(χs, �j ) = 0
|Fj | ≤ α, j = 1, · · · , J, j �= k

χs ∈ {0, 1}
χp ∈ {−1, 1}
α ≥ 0

(11)

The variable α in our problem takes a very small value in all
examples, as we will see below. Notice that this variable is
introduced to suppress as much as possible the amplitudes
of the rest of the modes. Of course, in case it could take
bigger values, a very good idea would be normalize it as the
rest of design variables.

It is also important to note the absence of a volume con-
straint. This constraint in not necessary mathematically for
the problem to be non trivial, and further it does not add
anything meaningful in the model from a physical point of
view.

3 Discrete formulation of the problem

At this time we proceed in the usual way. First of all, we
replace the designs variables χs, χp, taking values on {0, 1},
by their continuous versions, ρs , ρp, taking values on [0, 1].
Then the design domain in discretized in Ne finite elements
with two variable densities as design variables per each, that
is, ρe

s the structural density and ρe
p the polarity density. Now,
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once the design variables have been relaxed, we include in
the model a penalization according to the SIMP methodol-
ogy (Bendsøe and Sigmund 1999). However, the way that
ρe

s appears in the stiffness term is a delicate issue when
working in eigenproblems optimization. Often a straightfor-
ward use of the SIMP method to penalize it leads to the
appearance of the so-called localized or spurious modes.
The point is that the stiffness term basically depends on the
power p of the element density (ρe

s )
p (typically p = 3),

and the mass term is just linearly dependent on the element
density ρe

s . As ρe
s tends to zero, the ratio of the stiffness

and the mass goes towards zero too, which means that very
low eigenfrequencies may appear in low densities regions,
spoiling the frequency analysis. To eliminate these artificial
modes, the use of tailored interpolation functions for both
stiffness and mass terms are required.

The first idea to overcome this problem was proposed in
Pedersen (2000). It consists first, in linearizing the stiffness
part for low densities (below a threshold value) and sec-
ond, not taking into account the nodes surrounded by these
elements, when computing the eigenvectors. Other options
are the approach of Tcherniak (2002), which consists in set-
ting the mass term to 0 in these low density regions, or the
RAMP interpolation (Stolpe and Svanberg 2001) which has
a non-zero gradient for null density values. This is precisely
the approach used here to alleviate problems concerning
spurious modes. In such a case, the term Esχs wherever
appears in (5) is replaced by the interpolation function

E(ρe
s ) = Emin + ρe

s

1 + q(1 − ρe
s )

Es, 0 ≤ ρe
s ≤ 1 (12)

where Emin is a very small Young’s modulus assigned to
void regions in order to prevent the stiffness matrix from
becoming singular, Es is the Young’s modulus of the host
structure, and q is a penalization factor. Recall that Esχs

is the coefficient regarding the stiffness of the plate in the
eigenproblem system (5).

On the other hand, the term msχs concerning the mass
density in (5) is replaced by the linear interpolation function

m(ρe
s ) = msρ

e
s , 0 ≤ ρe

s ≤ 1 (13)

where ms is the material density.
Concerning the polarity density, no penalization is

needed for it, that is, the polarization term (2χp − 1) is just
substituted for

(2ρe
p − 1), 0 ≤ ρe

p ≤ 1. (14)

This is consequence of having checked that no significant
effects appear in the final solutions when penalizing this
design variable in our previous work (Ruiz et al. 2013). It is
worth mentioning here the self-penalization effect of piezo-
electric materials pointed out in Wein et al. (2011). Further
as we mentioned above, this is a mathematical fact: for any

given structure χs , the optimal electrode profile is a classical
one χp ∈ {0, 1} (Donoso and Bellido 2009a).

Another drawback of this problem is the appearance of
large gray areas, and this is precisely due to the physics of
the problem. Because of this, the use of a mesh-independent
filter in conjunction with a projection method is not helpful
here (Guest et al. 2004; Sigmund 2007). What really hap-
pens is that strain in these low density areas is larger than in
the rest of the design, increasing the cost and being favored
during the optimization process. We found a heuristic way
to overcome this problem in our previous work (Ruiz et al.
2013): using an interpolation function R(ρe

s ), premultiply-
ing the coefficients, that penalizes in a progressive way the
occurrence of gray areas. The mathematical expression for
such an interpolation scheme was given by

R(ρe
s ) =

⎧⎪⎨
⎪⎩

ζ
η
ρe

s ρe
s ∈ [0, η]

(1−ζ )ρe
s +ζ−η

1−η
ρe

s ∈ [η, 1]
(15)

where η and ζ are tuning parameters.
We have observed that the lack of differentiability in R

has had a negative effect in the numerical results of this
work, causing a certain (minor) lost symmetry in some of
them. That is the reason why we have used a smoothed
version of it,

R(ρe
s ) = e−γ (1−ρe

s ) − (1 − ρe
s )e

−γ (16)

where γ is an adjusting parameter. This expression clearly
reminds us the erode operator introduced by Sigmund
(2007) to control feature sizes in void regions. Now the use
of the density filtering (Bruns and Tortorelli 2001; Bourdin
2001) together with the penalization function (16) appear-
ing in the cost only as a premultiplying factor, solves the
symmetry problems aforementioned.

With all this is mind, the discrete expression for the j -th
coefficient via FEM would be

Fj = YT �j (17)

where

Y = R(ρs)(2ρp − 1)B. (18)

B is the usual FE strain-displacement matrix that will adopt
an expression or another one depending on each case (in-
plane or out-of-plane). In this study, we have considered
plane rectangular bilinear elements (8 degrees of freedom
per element) for the in-plane case, and rectangular Kirch-
hoff plate elements (12 degrees of freedom per element) for
the out-plane case. In the former, elemental matrix Be is 3
by 8, and in the latter, is 3 by 12. Finally, both global stiff-
ness and mass matrices can be obtained by assembling all
elemental contributions, which are expressed as

Ke =
∫

V e

(Be)T E Be dV, e = 1, 2, · · · , Ne (19)



720 D. Ruiz et al.

Me =
∫

V e

(Ne)T m Ne dV, e = 1, 2, · · · , Ne (20)

where V e denotes the volume of an element, E is the mate-
rial property matrix, N is the shape function matrix, and m

is the mass density. Again, the expressions of these global
matrices depend on the case study. The reader is referred to
a reference book on FEM such as Cook et al. (1989) to see
how they can be obtained.

�j is the j -th global eigenvector obtained from the
equations

(K − μjM)�j = 0, j = 1, · · · , J (21)

and

�T
j M�j = 1, j = 1, · · · , J (22)

where μj is the j -th eigenvalue, namely, the square of the
j -th eigenfrequency. K and M are the global stiffness and
mass matrices, respectively. Both of them are symmetric and
positive definite, so that all eigenvalues of our problem, μj ,
are real and positive.

We start by choosing J desired mode shapes of the homo-
geneous square plate, that we number increasingly from 1
to J , �1, . . . , �J . Among those, we would like to isolate
one, say the k-th, from the rest as explained in the previ-
ous section. To make sure that we follow those mode shapes
during the optimization process we make use of the modal
assurance criterion, MAC (Kim and Kim 2000; Tsai and
Cheng 2013). MAC uses the following correlation criterion
for vectors: the quantity

MAC(�,�) =
(
�T �

)2

(
�T �

) (
�T �

) (23)

is clearly between 0 and 1, and MAC(�, �) = 1 if and only
if � = ±�. Thus, given a design ρs , and once we have
computed the modes of the structure given by {�l}Ll=1 (with
L > J , large enough), we select �j , j = 1 · · · , J as the
solution of the discrete optimization problem

max
1≤l≤L

: MAC(�j , �l). (24)

The eigenvectors corresponding to the L lowest eigen-
values are computed by using the subspace iteration method
(Bathe and Wilson 1976). As usual, they are orthonormal-
ized with respect to the mass matrix. There is an issue with
the fact that the eigenvectors are unitary (unit norm) with
respect to the mass matrix, since it depends on the design,
and furthermore the coefficients Fj depends linearly on
the length of the eigenvectors. Due to this, comparison of
cost and constraints one iteration to the next in which the
design has changed, and so the mass matrix, may cause
convergence troubles of the numerical algorithm. We have
fixed this issue by forcing eigenvectors to have unit norm,
simply dividing each one by its norm, so that all eigen-
vectors belong to the unit sphere. Then, by doing this to

the set of eigenvectors obtained by the subspace iteration
method, we have a set of unitary (with respect to the iden-
tity matrix) eigenvectors, but orthogonal with respect to the
mass matrix. From a mathematical viewpoint, we have con-
tinuous and bounded cost and constraints, and so existence
of solution for the discrete problem is guaranteed. Another
advantage on using this normalization is that, in case of
interest, the sensitivity analysis of the MAC, if introduced
as a constraint in the problem, for mode tracking (Kim and
Kim 2000), is performed much easier and shorter than using
the normalization with respect to the mass matrix (Tsai
and Cheng 2013). With this normalization, MAC(�,�) =
(�T �)2 for �T � = �T � = 1, and thus derivatives are
simpler to compute.

The discrete problem written in the usual topology opti-
mization format would be

max
ρs ,ρp,α

: Fk − α (25)

subject to

(K − μjM)�j = 0, j = 1, · · · , J

�T
j M�l = 0, j, l = 1, · · · , J, j �= l

�T
j �j = 1, j = 1, · · · , J

|Fj | ≤ α, j = 1, · · · , J, j �= k

ρs ∈ [0, 1]
ρp ∈ [0, 1]
α ≥ 0

(26)

Working with a set of eigenmodes orthogonal and unitary
with respect to the mass matrix is also perfectly possible,
and it can be carried out exactly with the same approach
we introduce here (only having into account this fact for
the sensitivity analysis). However, we have contrasted that,
working with unitary eigenmodes with respect to the iden-
tity matrix, our numerical algorithm works better. Further to
that, our model is a way, maybe not the only possible one, of
designing filters that isolate a single eigenmode from others,
and to this end our approach works out, as it can be checked
in the examples shown in Section 5.

4 Sensitivity analysis

In this section, we are concerned with the computation of
derivatives of the coefficients Fj with respect to design vari-
ables. These derivatives will be necessary for the numerical
method that we are going to implement to simulate the prob-
lem. For a given element of the discretization e, we have
to compute the derivative of Fj with respect to ρe

s and ρe
p.

Derivative with respect to ρe
p is trivial since this variable

only appears in the coefficients Fj , not in the eigenprob-
lem equations, and it does linearly. Then we focus here on
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the computation of the derivative with respect to ρe
s . From

now on, prime stands for derivatives with respect to mate-
rial densities ( )′ = ∂( )

∂ρe
s
. That said, we have to compute the

derivative of the j -th coefficient,

F ′
j = (YT �j )

′ = (YT )′�j + YT �′
j (27)

which in turn leads to calculate the derivative of the associ-
ated eigenvector �′

j . Recall that Y is not a constant vector
and rather it depends on ρe

s and ρe
p. Indeed

Y′ = R′(ρs)(2ρp − 1)B (28)

It is very well-known that in order to compute derivatives of
eigenvectors, multiplicity of the corresponding eigenvalues
is crucial, and so we will distinguish two cases according to
whether this eigenvalue is simple or multiple.

Recall that, according to the formulation of problem (25),
we have J modes �1, . . . , �J which are M-orthogonal

�T
j M�l = 0, j, l = 1, · · · , J, j �= l, (29)

and unitary with respect to the identity matrix

�T
j �j = 1, j = 1, · · · , J. (30)

4.1 Simple eigenfrequencies

Whenever the eigenvalue μj is simple, the derivative of its
eigenvector, �′

j , with respect to an element material density
is the solution of the problem{

(K − μjM)�′
j = −(K′ − μjM′)�j + μ′

jM�j

�T
j �′

j = 0
(31)

where

μ′
j = �T

j (K′ − μjM′)�j

�T
j M�j

(32)

The system (31) is obtained just differentiating (21) and
(22). Equation (32) is found multiplying (31) by �T

j and
making use of the top equation in (31). Equation (31) is a
linear system of N unknowns and N + 1 equations. Matrix
(K − μjM) is singular as it has a redundant row that has to
be substituted by last line in (31) in order to compute �′

j .
The best choice to solve this system seems to be Nelson’s
method (see Lee et al. 1996 and the references therein). The
drawback of Nelson’s method is that it is quite expensive,
since for computing �′

j we have to solve system (31), and at
the end do the same for each design variable ρe

s . That is, we
have to repeat this process N times for a given eigenvector.
Looking at our problem carefully, we need not to compute
the eigenvector derivative, �′

j , but the coefficient derivative
F ′

j . Tcherniak (2002), in a similar problem, noticed this and
found a cheaper way of computing F ′

j without computing
the eigenvector derivative. We adopt his approach in the fol-
lowing calculation, being a bit more tedious since vector Y
is not constant in our case.

Using the adjoint method instead, we consider the aug-
mented function

c = YT �j − PT
j (K − μjM)�j − λj (�

T
j �j − 1) (33)

where Pj and λj are the vector and scalar Lagrange multi-
pliers associated to the j -th mode. Indeed, c = YT �j .

Differentiating and rearranging terms, we arrive at

c′ = (YT )′�j − PT
j (K′ − μjM′)�j

+
(
YT − PT

j (K − μjM) − 2λj�
T
j

)
�′

j

+μ′
jP

T
j M�j . (34)

Now, choosing the pair (Pj , λj ), if possible, such that

YT − PT
j (K − μjM) − 2λj�

T
j = 0

PT
j M�j = 0

(35)

we arrive at

c′ = (YT )′�j − PT
j (K′ − μjM′)�j (36)

Multiplying (35) by �j , then we find 2λj = Fj , so that the
adjoint state Pj satisfies the adjoint problem

(K − μjM)Pj = Y − Fj�j

�T
j MPj = 0.

(37)

Now we have to justify that this last system admits a solu-
tion Pj , and therefore there exits a pair (Pj , λj ) satisfying
(35).

As (31), again (37) is a system of N unknowns and N +1
equations, and last equation is used to replace one of the
redundant equations of the first row of the system, and this
justifies existence of solution for this system. For solving
it we use Nelson’s method, that we describe here for the
convenience of the reader. The advantage now is that the
aforementioned technique is applied just once -rather than
N times- for a given eigenvector, since the independent term
in system (37) does not depend on the design variable.

Nelson’s method proceeds in the following way. The
complete solution Pj in (37) can be expressed in terms of a
particular solution Qj and a homogeneous solution γ�j

Pj = Qj + γ�j . (38)

The particular solution is found by identifying the com-
ponent of �j with the largest absolute value and constrain-
ing this component (say the i-th) in Pj to zero. That is to
say, Qj is the solution of the linear system

GjQj = fj , (39)

where Gj is the regular matrix obtained from (K − μjM)

by zeroing out the i-th row and column and setting the i-th
diagonal element to 1, and fj is the column vector Y−Fj�j

by zeroing out the i-th element. The unknown coefficient γ
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can be obtained by substituting the expression (38) into the
last equation of (37), finding

γ = −QT
j M�j

�T
j M�j

. (40)

4.2 Repeated eigenfrequencies

Multiple eigenvalues may appear in different ways. The
most obvious one is due to certain symmetry in the bound-
ary conditions, like in a simply-supported plate. However,
a simple eigenvalue could become multiple during the opti-
mization process without any apparent reason. Another
situation that could origin repeated eigenvalues is whenever
mode switching happens and then two eigenvalues cross in
the spectrum diagram. In this case, at least during a few iter-
ations, two eigenvalues can be considered as identical until
they definitely separate into simple ones again or not.

In our situation, multiple eigenvalues issue happens in
most of the examples, as we will see below, so we need
to compute derivative of eigenvectors in such cases. Nel-
son’s method is exclusive for simple eigenvalues, since it
assumes that rank(K−μjM) = N − 1, and it only happens
when μj is simple. This is not the only difficulty in com-
puting derivatives of eigenvectors corresponding to multiple
eigenvalues. The main one is that there are infinitely many
M-orthogonal basis associated to a multiple eigenvalue, and
only for one of those, we can compute the derivative of
the eigenvectors forming that basis! The point is that when
we perturb a design variable the eigenvalue splits into m

(being m the eigenvalue multiplicity) distinct eigenvalues,
as pointed out in Dailey (1989). In order that eigenvector
derivatives exist, the eigenvector basis has to be adjacent
to the m distinct eigenvectors that appear when we perturb
such design variable. If we do not restrict ourselves to that
adjacent basis, eigenvectors of any other basis are discontin-
uous with respect to the design variable, and consequently
non-differentiable.

We would like to remark that, as it happened for the case
of simple eigenvalues, for computing eigenvector deriva-
tives we do not need to compute eigenvalues derivatives
first, and indeed with the method that we are using we
do it all at once. Rather, for eigenfrequency optimization
problems, there are more direct methods to compute the
eigenvalue derivatives straightforward without computing
eigenvector derivatives (see for instance Seyranian et al.
1994).

In order to compute eigenvector derivatives in this case
we find that the method developed in Dailey (1989) is the
most convenient one for our purposes, and we will follow
it. For the sake of simplicity we assume we have an eigen-
value of multiplicity two. In fact, in our examples whenever
multiple eigenfrequencies occurs they are double, and we

denote μ1 = μ2 this double eigenvalue, and �1, �2 a
M-orthogonal, unitary basis of eigenvectors for μ1. For con-
venience we collect this two eigenvectors together stored by
columns in the matrix � = (�1, �2).

The first step is to compute the new (adjacent) eigenvec-
tors for which the derivatives can be calculated. They are
found from the initial selection of eigenvectors � as

Z = ��, (41)

where the columns of Z are the new eigenvectors and � is
a orthonormal matrix (�T � = I), to be computed. Indeed
Z does not depend on the initial election of eigenvectors
�. It is elementary to check that the columns of Z are M-
orthogonal and unitary. That is to say, ZT M Z is a diagonal
matrix but not the identity matrix, since the same happens
to matrix �T M�. Obviously, Z satisfies the eigenvalue
equation

KZ = MZ�, (42)

where � is the eigenvalue matrix,

� =
(

μ1 0
0 μ2

)
. (43)

Derivating (42), and rearranging terms we have that

(K − μ1M)Z′ = (μ1M′ − K′)Z + MZ�′. (44)

Now multiplying this expression by �T we arrive at

D� = ��′, (45)

that is, a small eigenproblem whose dimension is equal to
the multiplicity of the repeated eigenvalue, dimension two
in our case, where

D = �T (K′ − μ1M′)�
�T M�

(46)

and �′ is the diagonal matrix of the eigenvalue derivatives,
that is,

�′ =
(

μ′
1 0

0 μ′
2

)
. (47)

Obviously dividing by a matrix means multiplying by its
inverse. Notice that, although we do not need eigenvalues
derivatives those are computed at the same time that �. A
word must be said now on eigenvalues derivatives for mul-
tiple eigenfrequencies. In the case we are dealing with of
a double eigenvalue, even μ1 = μ2 and there are indeed
only one eigenvalue, but we have two values for their deriva-
tives as a result of the double multiplicity. For the double
eigenvalue μ1, the subgradient, i.e. the set of slopes of any
tangent rect to the graph of μ1, is a closed interval (Clarke
1990), and the extreme points of such an interval are just μ′

1
and μ′

2.
The second step is to compute the derivatives of the

eigenvectors Z′. In this case rank(K − μ1M) = N − 2
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and Nelson’s method does not work, and then we use Dai-
ley’s method that proceeds in the following way. Z′ can be
expressed as

Z′ = V + ZC. (48)

V is the solution of the linear system

GV = f, (49)

where G is the (singular) matrix (K− μ1M) by zeroing out
the two rows containing the largest elements, and setting
both diagonal elements to 1. f is the column vector MZ�′ −
(K′ − μ1M′)Z by zeroing out the same rows. Finally, C is a
matrix built as

C =
(

q11/2 r12/(μ
′
2 − μ′

1)

r21/(μ
′
1 − μ′

2) q22/2

)
(50)

where

[qij ] = Q = −VT Z − ZT V (51)

and

[rij ] = R = ZT (K′−μ1M′)V
ZT MZ

−ZT (M′Z+MV)�′− 1
2Z

T (K′′−μ1M′′)Z
ZT MZ

(52)

For more details in this calculation for computing Z′ we
refer the interested readers to Dailey (1989). A remark is
required at this point. As pointed out in Friswell (1996),
Dailey’s methods breaks down when μ′

1 = μ′
2, and in that

paper, a method was introduced for computing eigenvector
derivatives in such a case. If μ′

1 = μ′
2, then the subgradient

of μ1 is a singleton, and that means that μ1 is differen-
tiable (Clarke 1990), what can only happens if the equality
μ1 = μ2 occurs independently on the chosen variable. This
does not happen in our case, not even if we consider sym-
metric boundary conditions, and thus Dailey’s method is
enough for our purposes.

We have not yet finished. Since in our problem we follow
mode shapes, we cannot replace � by Z in the problem for-
mulation. We need an expression for �′, in order to update
design variables in our numerical algorithm. As pointed out
by Friswell (1996), eigenvectors of multiple eigenvalues are
not differentiable (not even continuous), and there is only
one basis of eigenvectors for which we can compute the
eigenvector derivatives, namely Z. For computing �′, we
proceed heuristically in the following way. First we notice
that for our fixed design variable ρe

s , the matrix � is constant
and

� = Z�T , (53)

and therefore we can compute �′ as

�′ = Z′�T . (54)

With this procedure we can construct a matrix contain-
ing the derivatives of a given mode shape with respect to
design variables, understanding that it is not its gradient

with respect to design variables, but the partial derivatives
matrix due to lack of differentiability in general.

5 Numerical approach

In this section, we sketch the numerical algorithm imple-
mented in order to simulate our optimization problem. The
optimizer used is the method of moving asymptotes, MMA,
(Svanberg 1987). As we will see in the numerical exam-
ples shown in the next section, our method works out even
for the multiple eigenvalues case, using the computation of
sensibilities as explained above, without the need of a more
sophisticated optimization algorithm based on non-smooth
analysis.

The optimization algorithm flow is written as follows:

1. Choose J modal shapes of the homogeneous square
plate with same boundary conditions than the one of our
problem

{�j }Jj=1 (55)

They will be our reference in the first iteration step.
2. Initialize the design variable ρ = (ρs, ρp), and the

iteration step to i = 1.
3. Compute L mode shapes (L > J , large enough) for the

plate to be optimized

{�(i)
l }Ll=1 (56)

4. By means of MAC, identify the J closest modes to the
ones of reference, among the set of previously com-
puted L modes. Relabel the sequence again from 1 to J

{�(i)
j }Jj=1 (57)

5. Check the multiplicity of the eigenvalues. In order to do
this, we check whether the averaged distance between
two consecutive eigenvalues is greater or not than a cer-

tain tolerance,
∥∥∥μj+1−μj

μj

∥∥∥ ≤ τ . In our examples we

choose τ = 5 × 10−2 for such a tolerance, and it is
updated dividing its value by 1.5 each 10 iterations,
until it reaches the minimal value of 10−5. For the j -th
eigenvalue we have two options:

– it is simple: then compute the coefficient F
(i)
j and

its derivative (F
(i)
j )′ by using Nelson’s method.

– it is multiple: we assume the j -th eigenvalue mul-
tiplicity to be two (that is what happens when
multiple eigenvalue occurs in all examples we have
simulated) and for simplicity in the exposition that
it coincides with the (j +1)-th eigenvalue. Then we
proceed in the following way:

(a) given a M-orthogonal basis of eigenvectors
(for instance, the one given by the subspace
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iteration method), {�(i)
j , �

(i)
j+1}, we find a

new basis of eigenvectors, {�̃(i)

j , �̃
(i)

j+1}, that
follows the previous mode shapes as

(�̃
(i)

j , �̃
(i)

j+1) = (�
(i)
j , �

(i)
j+1)H, (58)

with H a orthogonal matrix solution of the
finite dimensional optimization problem

max{
H : HHT =I

} : ‖(�(i−1)
j , �

(i−1)
j+1 )M(i)(�̃

(i)

j , �̃
(i)

j+1)‖.

(59)

(b) Normalized �̃
(i)

j , �̃
(i)

j+1 as

�
(i)
j = 1

‖�̃(i)

j ‖
�̃

(i)

j , �
(i)
j+1 = 1

‖�̃(i)

j+1‖
�̃

(i)

j+1

(60)

(c) Compute the coefficients F
(i)
j and F

(i)
j+1 using

these eigenvectors.
(d) Calculate, according to Section 4.2, the new

eigenvectors Z(i) = �(i)� being

�(i) = (�
(i)
j , �

(i)
j+1) (61)

and � the solution of the (small) eigenproblem
in (45).

(e) Get their derivatives (Z(i))′ by using Dailey’s
method.

(f) Find the required derivatives as

(�(i))′ = (Z(i))′�T . (62)

(g) Compute the derivative of the coefficients
(F

(i)
j )′ and (F

(i)
j+1)

′.

6. Update design variables by using MMA.
7. Until convergence, go back to step 3, taking {�(i)

j }Jj=1
as the new references.

The flowchart of computations for the approach proposed
is detailed in Fig. 3.

6 Numerical examples

Next we illustrate our approach with several examples cor-
responding to different boundary conditions. Common to all
of them is the design domain, a square plate, and the number
of modes to be considered, that is, J = 4, for both in-plane
and out-of-plane cases. Due to possible mode switching we
have to compute more than 4 modes since it might happen
that any of the modes from the 5-th on could switch to the
forth, for instance. In all examples that we show here we
compute the first 8 modes, and that is enough. Then, accord-
ing to the previous notation we fix L = 8. The mesh used is
50 by 50, which means Ne = 2500 elements. From now on,

Define BCs and
choose J modes

Initialize designs
variables

Compute
reference

Solve
eigenproblem

Evaluate Fj

Compute Fj' Evaluate Fj

Compute Z' Compute Φ'

Compute Fj'

Density
filter

Check
multiplicity

Solve MAC
problem

Normalize
eigenvectors Φ

Compute adjacent
eigenvectors Z

Update design
variables with MMA

Plot the new
designs
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s
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Convergence
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Single Double

Fig. 3 Flowchart

wherever appears the expression “j -th mode shape” really
means “mode shape similar to the initial j -th mode shape”.
We say that because when tracking a specific mode, it is
more than likely to change its order in the spectrum due to
mode switching.

6.1 Example 1: plate clamped at its left and right edges

The first example considered is a plate clamped at its left
and right edges (see Fig. 4), first moving in-plane.

We are interested in finding the design that follows the
second mode shape of the homogeneous square plate and
cancels as much as possible the first, the third and the

?
Ω

Fig. 4 Design domain with boundary conditions for both in-plane and
out-of-plane cases of Example 1
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Fig. 5 Structure layout (left) and electrode profile (right) that isolate
the second mode shape when considering the first 4 modes in-plane

fourth. These are our initial references. Both structure lay-
out and electrode profile are showed in Fig. 5. White color
indicates void and black color means structure covered by
electrode with opposite polarities (red and blue). Actually
the electrode profile (or the polarity) contains all informa-
tion needed to understand the results. Hence, hereafter this
will be the figure to be shown instead of both.

Figure 6, compares the optimized polarity when using
simultaneous optimization and the one when considering
single optimization (only the electrode profile is optimized
over a homogeneous square plate). As the host structure is
not optimized in the latter case, white areas do not appear.
As expected, the former design is better and this is expressed
through coefficients normalized with respect to the coeffi-
cient corresponding to the second mode shape under single
optimization, which takes the unit value. For this partic-
ular example the percentage gain (defined as the ratio of
the normalized coefficient maximized under simultaneous
optimization to the one under single optimization minus 1,
and then altogether multiply by 100) is almost 20 %. Judg-
ing from the bar graph, we can observe that the influence
of the rest of the modes is canceled at all, which means

Single optimization
Simultaneous optimization

Mode number
1 2 3 4

0

1

1. 2

Fig. 6 Comparison between the electrode profile obtained under
simultaneous optimization versus the one got under single optimiza-
tion (electrode-only)

0 100 200 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Iteration number

F 2

Fig. 7 Iteration history of coefficient F2 in Example 1

that α is really close to zero. The convergence curve of the
coefficient F2 is showed in Fig. 7.

In this example, we can see how the second mode shape
interchanges its position first with the third mode shape and
later with the fourth one during the optimization process.
This is represented with small circles in both Figs. 8 and
9. That means that our fourth mode shape optimized is the
most similar to the second mode shape of the homogeneous
square plate, as illustrated in Fig. 11. This fact can also be
corroborated just checking that the MAC between the fourth
mode shape and the reference, which changes during the
optimization but initially is the second mode shape of the
homogeneous square plate, is really close to 1.

When eigenvalues coalesce in a certain iteration they
become double, and this has to be taken into account to
compute the derivatives correctly. But even more, mode

Mode switching

Iteration number
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,  
 ω

j

Fig. 8 Iteration histories of the first L = 8 eigenfrequencies dur-
ing the optimization process when isolating the second mode shape in
Example 1
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Fig. 9 Mode switching effect when isolating the second mode shape
in Example 1

switching could also occurred for higher modes as it is.
Fortunately, it does not affect to the final results, as we
are worried about the first four modes only. However this
clearly justifies why more than four modes (for this exam-
ple) should be considered from the very beginning.

Figure 10 shows the rest of electrode profiles correspond-
ing to isolating the first, the third and fourth mode shape,

(a) (b)

(c) (d)

Fig. 10 Electrode profiles that isolate the first mode shape (a), the
second (b), the third (c) and the fourth (d) when considering the first 4
modes in-plane in the Example 1

(a) (b)

(c) (d)

(e) (f )

(g) (h)

Fig. 11 Left the first (a), the second (c), the third (e) and the fourth (g)
in-plane mode shapes for a homogeneous square plate clamped at its
left and right edges; right the fourth in-plane mode shapes optimized
closest to the previous ones
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(a) (b)

(c) (d)

Fig. 12 Electrode profiles that isolate the first mode shape (a), the
second (b), the third (c) and the fourth (d) when considering the first 4
modes out-of-plane in the Example 1

respectively. It is noticed that the void region is in general
small, and it will be empty in some examples, as we will
see later. Finally, we illustrate in Fig. 11 the correspondence
between our four mode shapes optimized and the first four
mode shapes of the homogenous square plate.

The same analysis can be done whether the plate is mov-
ing now out-of-plane. Electrode profiles for such situations
are depicted in Fig. 12.

6.2 Example 2: plate clamped at its left edge

Now the plate is clamped at its left edge only (see Fig. 13).

?
Ω

Fig. 13 Design domain with boundary conditions for both in-plane
and out-of-plane cases of Example 2

(a) (b)

(c) (d)

Fig. 14 Electrode profiles that isolate the first mode shape (a), the
second (b), the third (c) and the fourth (d) when considering the first 4
modes in-plane in the Example 2

In Figs. 14 and 15 are showed the electrode profiles
for these new boundary conditions, corresponding to the
in-plane and out-of-plane cases, respectively. Again, the
multiple eigenvalues issue is present in most of the exam-
ples. For the sake of brevity, we have not included more
figures, such as the ones concerning eigenfrequencies his-
tories or bar graphics relating to the gain obtained in each
case. We just note that the void region in Figs. 14b and in
15a is empty and then the gain is null. However the gain in
the electrode in Fig. 14a is more than 100 %, in contrast to
the two previous examples.

6.3 Example 3: plate clamped at all four edges

A plate clamped at all four edges is chosen as the final
example (see Fig. 16).

Owing to these boundary conditions, it is well-known
that, for instance, the first eigenvalue for a homogeneous
square plate moving in-plane is double. In this case we have
taken as references the mode shapes with horizontal and ver-
tical nodal lines for the first and the second mode shapes,
respectively. Even though the eigenvalues of the designs
subject to the optimization process are repeated at the begin-
ning, they become simple after a few iterations because
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(c) (d)

(a) (b)

Fig. 15 Electrode profiles that isolate the first mode shape (a), the
second (b), the third (c) and the fourth (d) when considering the first 4
modes out-of-plane in the Example 2

of the appearance of small void regions. Electrode profiles
make perfect sense at the end of the optimization process,
as we have finished with optimized designs (Fig. 17a and
b) whose nodal lines have the same orientation than the
the ones of the references. As expected, the optimized elec-
trode for the second mode is the same as the one for the
first mode but rotated 90◦. In both cases the gain obtained
is around 10 %. It is also observed in this case that when
maximizing either the third or the fourth mode shape, the
eigenfrequencies corresponding to the first two modes are
always double.

?
Ω

Fig. 16 Design domain with boundary conditions for both in-plane
and out-of-plane cases of Example 3

(a) (b)

(c) (d)

Fig. 17 Electrode profiles that isolate the first mode shape (a), the
second (b), the third (c) and the fourth (d) when considering the first 4
modes in-plane in the Example 3

(c) (d)

(a) (b)

Fig. 18 Electrode profiles that isolate the first mode shape (a), the
second (b), the third (c) and the fourth (d) when considering the first 4
modes out-of-plane in the Example 3
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When the plate is now moving out-of-plane, the first
couple of repeated eigenvalues is the one formed by the sec-
ond and the third modes. Electrode profiles are showed in
Fig. 18 for this case. In a similar way to the in-plane case,
now the eigenfrequencies corresponding to the second and
the third modes are double all the time, whenever isolating
either the first or the fourth mode shape.

7 Conclusions

In Donoso and Bellido (2009a) a method for designing
piezoelectric modal sensors/actuators was introduced. The
idea was to optimize the polarization profile of the piezo-
electric bonded to a fixed host structure (typically a rect-
angular plate). In order to get better transducers, in this
paper we deepen in our previous approach by proposing a
model in which we optimize simultaneously the host struc-
ture and the polarization profile of the piezoelectric. In this
model both cost and constraints depend explicitly on mode
shapes, and we would like to remark that this is a nov-
elty in topology optimization problems. Typical problems
appearing in eigenproblems optimization also show up here:
spurious modes, mode switching, mode shapes tracking,
multiple eigenvalues and sensitivities in this case. Eigen-
mode sensitivity in the multiple eigenvalue case is an issue
here since eigenmodes are not differentiable in general. We
have overcome this problem by defining a matrix of par-
tial derivatives with respect to design variables as shown
in Section 4.2, and our numerical results have shown this
to be enough when using standard optimizers like MMA.
Further, the physics of this problem generates optimized
designs with large gray areas, and this has been fixed by
using a suitable interpolation penalizing intermediate val-
ues. Finally, we honestly believe that the examples shown
in the last section are clear and striking enough to convince
the reader that our approach works out.
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