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Abstract An essential issue in surrogate model-based reli-
ability analysis is the selection of training points. Approaches
such as efficient global reliability analysis (EGRA) and adap-
tive Kriging Monte Carlo simulation (AK-MCS) methods
have been developed to adaptively select training points that
are close to the limit state. Both the learning functions and
convergence criteria of selecting training points in EGRA
and AK-MCS are defined from the perspective of individual
responses at Monte Carlo samples. This causes two problems:
(1) some extra training points are selected after the reliability
estimate already satisfies the accuracy target; and (2) the se-
lected training points may not be the optimal ones for reliabil-
ity analysis. This paper proposes a Global Sensitivity Analysis
enhanced Surrogate (GSAS) modeling method for reliability
analysis. Both the convergence criterion and strategy of
selecting new training points are defined from the perspective
of reliability estimate instead of individual responses of
MCS samples. The new training points are identified
according to their contribution to the uncertainty in the
reliability estimate based on global sensitivity analysis.
The selection of new training points stops when the
accuracy of the reliability estimate reaches a specific
target. Five examples are used to assess the accuracy
and efficiency of the proposed method. The results
show that the efficiency and accuracy of the proposed
method are better than those of EGRA and AK-MCS.

Keywords Surrogatemodel .Reliability analysis . Sensitivity
analysis . Design of experiments

1 Introduction

Reliability analysis predicts the reliability of a product based
on available knowledge about the relationship between sys-
tem response, inputs, and variations in the inputs (Haldar and
Mahadevan 2000). In engineering applications, the relation-
ship between system response and inputs is often available
through computer simulation models, such as finite element
analysis (FEA) and computational fluid dynamics (CFD)
models. Since physics simulation models are computationally
intensive, a crucial issue in reliability analysis is how to pre-
dict reliability with fewer function evaluations, i.e., fewer runs
of the expensive physics simulations. Two classical and wide-
ly used methods are the First-Order Reliability Method
(FORM) and Second-Order Reliability Method (SORM)
(Haldar and Mahadevan 2000; Du and Hu 2012). These two
methods approximate the system performance function at a
single point called the Most-Probable Point (MPP). For re-
sponse functions with highly nonlinear behaviors or multi-
modal distribution properties, the accuracy of FORM and
SORM may not be acceptable. In this situation, Monte Carlo
sampling based on the surrogate model is a promising way
(Faravelli 1989; Simpson et al. 2001), where surrogate models
are inexpensive substitutes for the original expensive physics
simulation models.

During the past decades, various surrogate model-based
reliability analysis methods have been developed and may
be roughly classified into three groups. The first group con-
sists of methods based on the polynomial chaos expansion
(PCE) (Xiu and Karniadakis 2002; Xiu and Karniadakis
2003). For example, Paffrath and Wever proposed a shifted
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and windowed Hermite polynomial chaos method to enhance
the accuracy of small failure probability analysis (Paffrath and
Wever 2007). Blatman and Sudret developed an adaptive al-
gorithm to efficiently build a sparse polynomial chaos expan-
sion of a mechanical model with random inputs (Blatman and
Sudret 2010). To reduce the number of bivariate basis func-
tions in expansion, Hu and Youn integrated sparse polynomial
chaos expansion with dimension reduction techniques
(Vinh et al. 2011). The second group of methods relies
on Kriging or Gaussian process (GP) models. Examples
of Kriging-based methods include the Efficient Global
Reliability Analysis (EGRA) method proposed by
Bichon et al. (Bichon et al. 2008), the Adaptive Kriging
Monte Carlo simulation (AK-MCS) method developed
by Echard et al. (Echard et al. 2011), combined impor-
tance sampling and adaptive Kriging (Echard et al.
2013; Dubourg et al. 2013), and Kriging-based quasi-
optimal importance sampling (Dubourg and Sudret
2014). The third group is based on Support Vector Ma-
chines (SVM). In this group, samples are classified into
safe or failed using SVM. For instance, Basudhar and
Missoum applied SVM to construct explicit limit state
boundaries (Basudhar and Missoum 2008), and also to
identify disjoint failure domains and limit state bound-
aries for continuous response (Basudhar et al. 2008).
Bourinet et al. combined subset simulation and SVMs
to assess small failure probabilities (Bourinet et al.
2011). Along with the above three types of surrogate
model techniques, other types of surrogate models such
as quadratic response surfaces (Gomes and Awruch
2004) and neural networks (Gomes and Awruch 2004)
have also been studied in reliability analysis.

In this paper, we focus on the Kriging-based method. Since
being proposed in the area of geosciences (Stein 1999) in the
middle of the nineteenth century, Kriging models have been
intensively studied in many other fields during the past de-
cades. Reliability analysis using Kriging models has been in-
vestigated in (Echard et al. 2011, 2013; Dubourg et al. 2013;
Dubourg and Sudret 2014) as mentioned above. Amongst
these methods, EGRA and AK-MCS methods are two repre-
sentative approaches that dramatically improve the efficiency
of reliability analysis. These two methods implement a similar
procedure. An initial surrogate model is constructed first by
using Kriging with a few initial training points. Then new
training points are identified adaptively based on learning
functions. In the EGRA method, an Expected Feasibility
Function (EFF) is defined as the learning function. In the
AK-MCS method, a U function is defined. Both the EFF
and U functions are used to quantify how close the training
point is to the limit state. By addingmore training points in the
region of the limit state, the required number of training points
for reliability analysis is reduced. However, in these two
methods, it is observed that some unnecessary training points

(those points that bring no change to the results of reliability
analysis as shown in the numerical examples (the points la-
beled as red “+” in Figs. 8, 9, 16, and 17)) are identified close
to the limit state for two reasons. The first one is that the
convergence criterion of the learning function (i.e., EFF and
U) is defined from single system responses of individualMCS
samples but not from the aspect of reliability analysis accura-
cy. Even if the response of one single sample cannot satisfy
the requirement of learning function defined in AK-MCS and
EGRA, it does not mean that the reliability analysis accuracy
cannot satisfy the requirement. As indicated in Fig. 6, after
iteration 18, the reliability analysis result is already very close
to the true value, but EGRA keeps adding new training points.
The added new training points, however, almost bring no
change to the reliability analysis results. After removing those
unnecessary training points, it can be seen in Fig. 8 that the
limit state learned from EGRA almost does not change. Sim-
ilar phenomenon is observed for AK-MCS. The other reason
is the way of selecting new training points. In both AK-MCS
and EGRA, a new training point is selected independently
without considering its correlation with other training
points (points used to construct surrogate model) and
samples (candidate points from which the training point
is selected) around it. The selected training points with-
out considering this correlation may not be the optimal
ones. This phenomenon comes from the definition of
learning functions defined in EGRA and AK-MCS.
More detailed discussions about the limitation of AK-
MCS and EGRA are given in Sec. 3.1.1.

This paper proposes a Global Sensitivity Analysis
enhanced Surrogate (GSAS) model method for reliabili-
ty analysis. The method is based on two main ideas: (1)
Uncertainty quantification of the reliability estimate. The
uncertainty in the prediction of the Kriging model is
propagated through the failure indicator model to quan-
tify the uncertainty in the failure probability estimate.
(2) Selection of new training points by analyzing their
contributions to the uncertainty of the reliability esti-
mate. Correlation between samples from which new
training points are selected is considered during the un-
certainty contribution analysis of each sample point.
Based on these two ideas, training points are selected
such that they have the most significant impact on the
ultimate objective — estimation of reliability. Based on
these two ideas, unnecessary training points identified in
EGRA and AK-MCS are effectively eliminated. The ef-
ficiency of reliability analysis is therefore improved.

The paper is organized as follows. Section 2 provides
a brief review of the Kriging surrogate model method
and reliability analysis approaches based on adaptive
Kriging models. Section 3 introduces the proposed sur-
rogate model method based on global sensitivity analy-
sis. Section 4 summaries the main procedure and
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algorithms of the proposed method. Five examples are
used to demonstrate the effectiveness of the proposed
method in Section 5. Following that, conclusions re-
marks are given in Section 6.

2 Kriging-based reliability analysis

2.1 A brief review of Kriging models

In Kriging models, the performance function g(x) is assumed
to be a realization of a Gaussian process (GP), G(x), given by
(Rasmussen 2006)

G xð Þ ¼ f xð ÞTβþ ε xð Þ ð1Þ
where β=[β1, β2, ⋯, βp]

T is a vector of unknown coeffi-
cients, f(x)=[f1(x), f2(x), ⋯, fp(x)]

T is a vector of regression
functions, f(x)Tβ is the trend of prediction or mean of the GP,
and ε(x) is assumed to be a GPwith zero mean and covariance
Cov[ε(x(i)), ε(x(j))].

Cov[ε(x(i)), ε(x(j))] is given by

Cov ε x ið Þ
� �

; ε x jð Þ
� �h i

¼ σ2
εR x ið Þ−x jð Þ; θ
� �

ð2Þ

in which σε
2 is the constant variance of the GP, θ is a

vector of unknown parameters, and R(⋅, ⋅) is the corre-
lation function. There are a variety of correlation func-
tions available. The most commonly used one is the
Gaussian correlation function given by (Rasmussen
2006; Kaymaz 2005; Xiong et al. 2007; Kbiob 1951;
Kleijnen 2009; Santner et al. 2003)

R x ið Þ−x jð Þ; θ
� �

¼ exp −
X
k¼1

nd

θk x ið Þ
k −x jð Þ

k

��� ���2
" #

ð3Þ

where nd is the dimension of design variables and xk
(i) is

the k-th element of x(i).
With k training points, [x(i), g(x(i))]i=1, 2, ⋯, k, the coeffi-

cients β is estimated by (Lophaven et al. 2002)

β ¼ FTR−1F
� �−1

FTR−1g ð4Þ

where R is a correlation matrix with elements, R(x(i)−x(j), θ),
i, j=1, 2, ⋯, k, F=[f(x(1))T, f(x(2))T, ⋯, f(x(k))T]T, and
g=[g(x(1)), g(x(2)), ⋯, g(x(k))]T.

For a new point x, the mean prediction (ĝ(x)) and mean
square error (MSE) (MSE(ĝ(x))) of the prediction of G(x) are
estimated using the best linear unbiased estimation (BLUE) as
follows (Lophaven et al. 2002):

ĝ xð Þ ¼ f xð ÞTβþ r xð ÞTR−1 g−Fβð Þ ð5Þ

MSE ĝ xð Þ
� �

¼ σ2
εf1−r xð ÞTR−1r xð Þ þ FTR−1r xð Þ− f xð Þ� �T

FTR−1F
� �−1

FTR−1r xð Þ− f xð Þ� �g
ð6Þ

where

r xð Þ ¼ R x−x 1ð Þ; θ
� �

; R x−x 2ð Þ; θ
� �

; ⋯; R x−x kð Þ; θ
� �h i

ð7Þ

and

σ2
ε ¼

g−Fβð ÞTR−1 g−Fβð Þ
k

ð8Þ

For the sake of illustration, in the following sections,
all the hyper-parameters of the GP model, which in-
clude β, the variance σε

2, and parameters θ of correla-
tion function, are denoted as Θ. Besides, we define a
new random variable Gp(x) as the prediction at point x condi-
tioned on current training points and Gp xð ÞeN ĝ xð Þð ; σ2

Gp
xð ÞÞ,

where N(⋅, ⋅) is normal distribution and σGp xð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffi
MSE

p

ĝ xð Þð Þ. The proposed method developed in this paper
is based on an available Kriging toolbox called DACE
(Lophaven et al. 2002). When the roughness parameters
θ are overestimated, the uncertainty of prediction may
be overestimated. As a result, the reliability analysis
methods will increase the number of training points in
the surrogate modeling.

2.2 Reliability analysis based on Kriging models

Once a Kriging model is built, the reliability estimation
can simply be based on Monte Carlo sampling (MCS)
with the Kriging model, since function evaluation of the
Kriging model is inexpensive. A common way is to
estimate the probability of failure based on mean pre-
dictions, ĝ(x), as follows:

p̂ f ≈
1

N

XN
i¼1

I ĝ x ið Þ
� �� �

ð9Þ

where N is the number of samples in MCS, and
I(ĝ(x(i)))=1, if μg(x

(i))≤0, otherwise I(ĝ(x(i)))=0.
The boundary ĝ(x)=0 is commonly used to classify

the samples into safe and failed samples. This implies
that the accuracy of the failure probability estimate p̂ f is

mainly affected by the limit state or boundary ĝ(x)=0.
By generating more training points near the limit state
or in the region of interest, accuracy and efficiency of
reliability analysis can be improved. Inspired by this
idea, a group of methods have been proposed, such as
EGRA (Bichon et al. 2008) and AK-MCS (Echard et al.
2011), which construct the Kriging model G(x) adap-
tively based on learning functions. In EGRA, the
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learning function is called the expected feasibility func-
tion (EFF) and is defined as

EFF xð Þ ¼ ĝ xð Þ−e
� �

2Φ
e−ĝ xð Þ
σGp xð Þ

 !
−Φ

eL−ĝ xð Þ
σGp xð Þ

 !
−Φ

eU−ĝ xð Þ
σGp xð Þ

 !" #

−σGp xð Þ 2ϕ
e−ĝ xð Þ
σGp xð Þ

 !"
−ϕ

eL−ĝ xð Þ
σGp xð Þ

 !
−ϕ

eU−ĝ xð Þ
σGp xð Þ

 !#

− Φ
eL−ĝ xð Þ
σGp xð Þ

 !
−Φ

eU−ĝ xð Þ
σGp xð Þ

 !" #

ð10Þ
in which eU=e+ε, eL=e−ε, e is the failure threshold, ε
is usually chose as ε ¼ 2σGp xð Þ, and Φ(⋅) and ϕ(⋅) are

the cumulative density function (CDF) and probability
density function (PDF) of a standard normal random
variable. The EFF quantifies how well the true value
(g(x)) of Gp(x) at x is expected to be at the limit state
(Bichon et al. 2008).

In AK-MCS, a U function is defined as the learning func-
tion as below

U xð Þ ¼
ĝ xð Þ
��� ���
σGp xð Þ ð11Þ

The U value computed from Eq. (11) is associated with the
probability (Φ(−U)) of making amistake on the sign of g(x) by
substituting g(x) with ĝ(x) (Echard et al. 2011). In AK-MCS,
the U value of each sample is computed using Eq. (11) and a

new training point is selected by argmin{U(x)}. The algo-
rithm stops when min{U(x)}>2.

3 GSAS method for reliability analysis

3.1 Basic principles of the GSAS method

In this section, we first investigate the drawbacks of EGRA and
AK-MCS. Based on that, we propose the basic idea of GSAS.

3.1.1 Limitation analysis of EGRA and AK-MCS

Recall that in surrogate model-based reliability analysis
methods, the probability of failure p̂ f is estimated based on

Monte Carlo sampling as

p̂ f ≈
XN
i¼1

I Gp x ið Þ
� �� �

=N ð12Þ

where x(i), i=1, 2, ⋯, N are sampling points from MCS.
In above equation, I(Gp(x

(i)))=1, if Gp(x
(i))≤0, otherwise,

I(Gp(x
(i)))=0. For a point x(i), from a Kriging surrogate model,

we haveGp xð ið ÞÞ eN ĝ xðð ið ÞÞ ; σ2
Gp

xð ið ÞÞÞ, where ĝ(x(i)) and
σ2
Gp

xð ið ÞÞ are obtained from Eqs. (5) and (6).

Due to the uncertainty in Gp(x
(i)), there is also un-

certainty in p̂ f . Based on Eq. (12), the variance of p̂ f is

computed by

Var p̂ f

� �
≈

1

N 2

XN
i¼1

Var I Gp x ið Þ
� �� �� �

þ
X
i≠ j

Cov I Gp x ið Þ
� �� �

; I Gp x jð Þ
� �� �� � !

ð13Þ

where Var(⋅) stands for variance and Cov(⋅, ⋅) is the
covariance.

The variance of p̂ f as indicated in Eq. (13) consists of two

parts: ∑
N

i¼1
Var Ið Gp xð�

ið ÞÞÞÞ and ∑
i≠ j

Cov Ið Gpðx
�

ið ÞÞÞ ; I

Gp xð�
jð ÞÞÞ. The first part comes from responses of individual

MCS samples while the second part comes from the mutual
effects between these individual responses. From Eq. (13), it is
found that the learning function defined in EGRA and AK-
MCS mainly focuses on reducing the individual variances in
the first part. There are therefore two limitations common to
both of them, which are explained as follows.

(1) The convergence criteria of AK-MCS and EGRA are
defined from the aspect of individual samples and not
from the aspect of reliability analysis. For instance, in

the AK-MCSmethod, even though theU values of some
samples are less than two, which do not satisfy the con-
vergence criterion, min{U(x)}>2, it does not mean that
the samples cannot meet the accuracy requirement of
reliability analysis. Also, as presented in Eq. (13), even
if the variance of some individual inputs Var(I(Gp(x

(i))))
cannot satisfy the requirement of AK-MCS or EGRA, it
does not imply that the uncertainty of p̂ f cannot

satisfy the requirement. From results presented in
the numerical examples, it can be seen that adding
more training points will not change the failure
probability estimate too much after certain itera-
tions (Figs. 6, 14, 19, 21).

(2) The new training point is selected independently without
considering its effects on other samples and reliability
analysis. The sample with the minimum U value is
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selected as the new training point in AK-MCS. This
sample, however, may not be the optimal one when it
is evaluated from the aspect of reliability analysis (as
indicated in Eq. (13)). The optimal point should be the
one which affects the reliability analysis result most
significantly.

Motivated by overcoming these two limitations,
a Global Sensitivity Analysis enhanced Surrogate
(GSAS) model method is developed in this work,
which further improves the efficiency of AK-MCS
and EGRA for reliability analysis.

3.1.2 Basic idea of GSAS

In surrogate model-based reliability analysis methods, a
widely used method is to directly use the mean predic-
tion ĝ(x(i)) to substitute for Gp(x

(i)) in Eq. (12). The
direct use of mean value will inevitably result in error
in the reliability estimate if the surrogate model is not
well trained.

The basic idea of the proposed GSAS method is
treating the probability of failure estimate (p̂ f ) in a

manner similar to the system output or response; and
the system inputs are the random system responses pre-
dicted from Kriging model (as indicated in Fig. 1). By
propagating the uncertainty in the inputs of Fig. 1
through Eq. (12), the uncertainty in the failure probabil-
ity estimate is quantified. Based on that, a new conver-
gence criterion is defined. In order to select a new
training point, GSA is used to quantify the contributions
of uncertainty in Gp(x

(i)), i=1, 2, ⋯, N on the uncer-
tainty of p̂ f . Since Gp(x

(i)), i=1, 2, ⋯, N are correlat-

ed, correlation between Gp(x
(i)), i=1, 2, ⋯, N is con-

sidered during the GSA. A new training point is select-
ed such that the reduction of uncertainty in p̂ f is the

most significant.

3.2 A new convergence criterion

In this section, we first present a conservative formula for the
error estimation of reliability prediction. We then dis-
cuss how to estimate the error based on the uncertainty
quantification of p̂ f .

3.2.1 Formula for error estimation of reliability prediction

In AK-MCS method, a U function is defined as in
Eq. (11). A large value of U indicates a low probability
of making an error on the sign of ĝ(x). The error of
reliability prediction based on the surrogate model,
therefore, mainly comes from those sampling points
with small values of U. For U(x)>3.1, the probability
of making a mistake in the sign of samples is less than
0.001. We therefore assume that the error in the reliabil-
ity estimate mainly comes from the group of samples
with U(x)≤3.1. This assumption holds since the value
of 3.1 is larger than the value of 2 used in AK-MCS
(Echard et al. 2011). Based on this assumption, we di-
vide the samples xMCS=[x(1), x(2), ⋯, x(N)] into two
groups xg1

MCS and xg2
MCS. The group-one samples (xg1

MCS)
correspond to those samples with U values larger than
3.1 and the group-two samples are the remaining sam-
ples in xMCS.

Based on the group-one and group-two samples, Eq. (12) is
rewritten as

p̂ f ¼
N f 1 þ N f 2

N
ð14Þ

where Nf1=∑I(Gp(xg1
MCS)) and Nf2=∑I(Gp(xg2

MCS)).
In surrogate model-based method, the mean predictions ĝ-

(xg1
MCS) and ĝ(xg2MCS) are usually used to substitute forGp(xg1

MCS)
and Gp(xg2

MCS); therefore the probability of failure estimate is
given by

p̂
0

f ¼
N̂ f 1 þ N̂ f 2

N
ð15Þ

where N̂ f 1 ¼ ∑I ĝ xMCS
g1

� �� �
and N̂ f 2 ¼ ∑I ĝ xMCS

g2

� �� �
.

Since we assume that the error or uncertainty of p̂ f comes

from the group-two samples, we can use ĝ(xg1MCS) to
approximate Gp(xg1

MCS) in Eq. (14). Based on that,
Eq. (14) is rewritten as

p̂ f ¼
N̂ f 1 þ N f 2

N
ð16Þ

Based on Eqs. (15) and (16), the percentage error of the
probability of failure estimate given in Eq. (15) is computed as

εr ¼
p̂ f −p̂

0

f

����
����

p̂ f

� 100% ¼
N̂ f 2−N f 2

��� ���
N̂ f 1 þ N f 2

� 100% ð17Þ

Equation (14) indicates that Nf2 is a random variable
bounded in the interval [0, N2], where N2 is the number of

Eq. (12) ˆ fp

(1)( )pG x
(2)( )pG x

( )( )N
pG x

Fig. 1 Probability of failure estimate as a system response
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samples in xg2
MCS. The maximum percentage error of failure

probability estimate given in Eq. (15) is obtained as

εmax
r ¼ max

N f 2∈ 0; N2½ �
f
N̂ f 2−N f 2

��� ���
N̂ f 1 þ N f 2

� 100%g ð18Þ

Based on the error estimation of reliability analysis,
we can stop the training of the surrogate model when
the percentage error of reliability estimate satisfies our
accuracy requirement.

3.2.2 Error estimation based on uncertainty quantification
of p̂ f

The above error estimation is easy to compute but may be too
conservative even if it is better than just using min{U(x)}>2
in AK-MCS. From Eq. (16), we have

p̂ f ¼
N f 1 þ N f 2

N
≈
N̂ f 1 þ

X
I Gp xMCS

g2

� �� �
N

ð19Þ

It implies that p̂ f is a system response with random inputs

of Gp xMCS ið Þ
g2

� �eN ĝ xMCS ið Þ
g2

� �
; σ2Gp

xMCS ið Þ
g2

� �� �
, i=1, 2, ⋯, N2,

where N2 is the number of samples in group-two samples
xg2
MCS (as indicated in Fig. 2).
The uncertainty in εr (Eq. (17)) can be quantified based on

the uncertainty quantification of p̂ f . Since the dimensionality

of Gp(xg2
MCS (i)), i=1, 2, ⋯, N2 may be high, analytically

solving Eq. (19) may be difficult. In this paper, sampling-
based method is used.

Gp(xg2
MCS (i)), i=1, 2, ⋯, N2 are N2 correlated normal

variables according to the property of Kriging model.
We therefore analyze the correlation between these ran-
dom variables first. Let the current training points be xs

and g(xs), for given hyper-parameters, Θ, the covariance
matrix of Gp(xg2

MCS) conditioned on the training points,
xs and g(xs), is given by

Σpjt ¼ Σpp−ΣptΣ
−1
tt Σ

T
pt ð20Þ

where Σpp, Σpt, and Σtt are the covariance matrixes

between Gp(xg2
MCS) and Gp xMCS

g2

� �
;Gp xMCS

g2

� �
and

Gp xsð Þ ;Gp xsð Þ and Gp(x
s), respectively.

∑pp; ∑pt andΣtt are estimated by inputting the elements

of the normalized xMCS
g2 ; xs and Θ into Eqs. (2) and (3).

Based on the covariance matrix ∑p/t, the correlation matrix
ρp|t of Gp(xg2

MCS) is obtained as

ρpjt ¼
1 ρ12 ⋯ ρ1N2

ρ21 1 ⋯ ρ2N2

⋮ ⋮ ⋱ ⋮
ρN21 ρN22 ⋯ 1

2
664

3
775
N2�N2

ð21Þ

where ρij is the correlation between Gp(xg2
MCS(i)) and Gp

(xg2
MCS(j)), i, j=1, 2, ⋯, N2, conditioned on current train-

ing points.

In order to generate samples for Gp xMCS
g2

� �
;Gp xMCS

g2

� �
are then represented as independent standard normal variables
ξ based on eigenvalue and eigenvector analyses of ρp|t as
below (Sudret and Der Kiureghian 2000).

Gp xMCS ið Þ
g2

� �
¼ ĝ xMCS ið Þ

g2

� �
þ σGp xMCS ið Þ

g2

� �X
j¼1

N 2 ξ jffiffiffiffiη j
p φT

j ρ: i ð22Þ

where ηi and φi
T are the eigenvalues and eigenvectors of ρp|t

and ρ: i ¼ ρi1; ρi2; ⋯; ρiN2

� �
T .

Based on Eq. (22), samples are generated for Gp(xg2
MCS).

Denoting the samples of Gp(xg2
MCS) as gN2�nr , we have

gN2�nr ¼
g 1; 1ð Þ g 1; 2ð Þ ⋯ g 1; nrð Þ
g 2; 1ð Þ g 2; 2ð Þ ⋯ g 2; nrð Þ

⋮ ⋮ ⋱ ⋮
g N2; 1ð Þ g N 2; 2ð Þ ⋯ g N2; nrð Þ

2
664

3
775
N2�nr

ð23Þ
where nr is the number of samples.

Combining Eq. (23) with Eq. (19), samples of p̂ f are ob-

tained as

p̂ f ið Þ ¼
N̂ f 1 þ

X
j¼1

N 2

I g j; ið Þð Þ

N
; i ¼ 1; 2; ⋯; nr ð24Þ

Similar as Eq. (17), samples are obtained for εr as follows

εr ið Þ ¼

X
j¼1

N2

I g j; ið Þð Þ−N̂ f 2

N̂ f 1 þ
X
j¼1

N2

I g j; ið Þð Þ
; i ¼ 1; 2;⋯; nr ð25Þ

Once samples of εr(i) , i=1, 2, ⋯, nr, are available, the
error distribution of current reliability estimate is approximat-
ed. In this paper, the Kernel Smoothing function (Wand and
Jones 1994) with a bandwidth of 0.005 is employed to fit the

Eq. (19) ˆ fp
(1)

2( )MCS
p gG x

2( )
2( )MCS N

p gG x

1
ˆ

fN

Fig. 2 Failure probability estimate with random inputs of group two
samples
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distribution. Based on the fitted distribution, the maximum
error, εr

max is approximated as

εmax
r ¼ max F−1

εr
0:99ð Þ�� ��; F−1

εr
0:01ð Þ�� ��n o

ð26Þ

where F−1
εr

⋅ð Þ is the inverse CDF of εr.

The above approximation corresponds to a probability that
the actual estimation error of p̂ f is larger than εr

max is 0.02.

Since a conservative estimation of εr
max is given in Eq. (18), to

avoid the situation that the estimation given in Eq. (26) is
larger than that given in Eq. (18), we can rewrite Eq. (26) as

εmax
r ¼ min max F−1

εr
0:99ð Þ�� ��; F−1

εr
0:01ð Þ�� ��n o

; max
N f 2∈ 0; N2½ �

f
N̂ f 2−N f 2

��� ���
N̂ f 1 þ N f 2

g
8<
:

9=
;

ð27Þ

The percentage error of reliability estimates is checked
using Eq. (27) every time the surrogate model is updated.
When the requirement of accuracy is satisfied, the training
process stops. In the next sub-section, we will discuss how
to select new training points when the accuracy requirement
cannot be satisfied. In addition, when the number of samples
in group-two is very large, a sampling-based method to esti-
mate εr

max may be computationally expensive. A large number
(e.g., larger than 1×104) of group-two samples indicates high
uncertainty in p̂ f . In this situation, Eq. (18) is used directly to

estimate εr
max.

3.3 Selection of new training points based on GSA

3.3.1 Principle of selecting new training points

Equation (19) indicates that p̂ f is uncertain due to the uncer-

tainty in Gp(xg2
MCS). The uncertainty in p̂ f will decrease and

will approach its true value when more training points are
added. The optimal training points should reduce the uncer-
tainty in p̂ f in the most effective way.

In AK-MCS and EGRA, the sample which has the lowest
U value or highest EFF value is selected as the new training
point. When all sample responses (Gp(xg2

MCS)) predicted from
the surrogate model are completely independent, the point
with the lowest U value or the highest EFF value is also the
point that reduces the uncertainty of p̂ f most effectively (as

indicated in Eq. (13)). The reason for this is: p̂ f is a function of

the sign of responses and the U and EFF functions are com-
puted only based on the local mean and variance at each point.
In the Kriging surrogate model method, however, the sample
response (Gp(xg2

MCS)) are not completely independent. This
implies that, the training of one sample point may also affect
the signs of responses of other sample points around it. As
indicated in Fig. 3, for two candidate training points (Points A
and B) with the same or very close U or EFF values identified

from MCS samples, it is apparent that Point B has a higher
priority than Point A since it may reduce the uncertainty of p̂ f

more effectively.
Based on this observation, we propose to select new train-

ing points based on their contributions to the uncertainty of p̂ f .

There are several possible ways to analyze contributions of
uncertainty in Gp(xg2

MCS) to uncertainty of p̂ f , such as global

sensitivity analysis and analytically derive variance of p̂ f

based on Eq. (19). In this paper, the analysis of contributions
of sample points are achieved through global sensitivity anal-
ysis of Gp(xg2

MCS) with respect to p̂ f . Since Gp(xg2
MCS) are cor-

related random variables, GSA methods based on variance
decomposition (i.e., Sobol indices) are not applicable (Sobol’
2001; Sudret 2008). In the subsequent sections, GSA method
with correlated random variables used in this work is intro-
duced first. Following that, selection of new training points
based on GSA is discussed.

3.3.2 GSA with correlated random variables

Variance-based global sensitivity analysis of models with in-
dependent input variables has been intensively studied during
the past decades (Sobol’ 2001; Wagner 1995; Saltelli et al.
1999). In terms of GSA with correlated random variables, a
few studies have been reported. For example, Borgonovo pro-
posed a δ-sensitivity measure method (Borgonovo 2007). Li
and Rabitz developed an ANalysis of COVAriance
(ANCOVA) method for GSAwith independent and/or depen-
dent inputs (Li et al. 2010). Jacques, et.al. presented a GSA
method for models with model uncertainty and correlated in-
puts using the group sensitivity analysis method (Jacques et al.
2006). Sudret computed the GSA analytically by post-
processing the Polynomial Chaos Expansion (PCE) coeffi-
cients (Sudret 2008). Xu and Gertner extended the Fourier

Eq. (28) ˆ fpˆ ( ) ( ), ( )Other Can s
pg G gx x x

( )Can
pG x

1
ˆ

fN

Fig. 4 Illustrate of failure probability estimate in GSA
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0 

Limit state
Confidence 
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Fig. 3 Illustration of candidate new training points
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Amplitude Sensitivity Test (FAST) to models with correlated
parameters (Xu and Gertner 2007). Mara and Tarantola pro-
posed a set of variance-based sensitivity indices to perform
sensitivity analysis of models with dependent inputs (Mara
and Tarantola 2012).

In this paper, the extended FAST method developed by Xu
and Gertner (Xu and Gertner 2007) is employed to facilitate
the selection of new training points. The basic principle of
FAST is to assign each random variable with a characteristic
frequency through a periodic sampling function. The variance

Table 1 Overview of the GSAS method

Step Description

1 Generate initial training points xs.

2 Obtain g(xs) at training points xs and set xMCS=[ ]

3 Generate nout random samples xMCS
temp ¼ x½ 1ð Þ; x 2ð Þ; ⋯; x noutð Þ� for X using the MCS.

4 Update the sampling pool by adding xtemp
MCS to xMCS.

5 Construct surrogate model ŷ=G(x) with xs and g(xs), obtain hyper-parameters Θ of the Kriging model.

6 Compute ĝ(xMCS) using Eq. (5) and U(xMCS) using Eq. (11).

7 Classify xMCS into two groups according to their U values.

8 Compute N̂ f 1 and N̂ f 2 using Eq. (15).

9 Estimate the maximum potential error εr
max using Algorithm 1 (given in Table 2).

10 If εr
max<0.03, go to Step 13, otherwise, go to Step 11.

11 Identify a new training point xnew using Algorithm 2 (given in Table 3).

12 Add xnew and g(xnew) into training points xs and g(xs). Then, go to Step 5.

13
Compute p̂ f and evaluate the coefficient of variation (COV) COVp f

by COVpf
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−p̂ f

� �r
=p̂ f =ntotal, where ntotal

is the total number of samples in xMCS.

14 If COVp f
< 0:05, obtain p̂ f , otherwise, go to Step 2.

Step 1: Generate Initial training points sx

Step 2: Obtain 
responses ( )sg x  at 

sx  and set [ ]MCSx =

Step 3: Generate a 
sampling pool 
MCS
tempx  using MCS 

Step 4: Update 
sampling pool 

[ ; ]MCS MCS MCS
tempx x x=

Step 5: Construct 
surrogate model 

ˆ ( )y G x=

Step 6: Compute 
ˆ ( )MCSg x , ( )

p

MCS
G xσ , and 

( )MCSU x

Step 7: Classify MCSx  into two groups based on U values 

Step 8: Compute 

1
ˆ

fN  and 2
ˆ

fN

Step 10:
max 0.03?rε <

Step 14:
0.05?

fpCOV <

Step 13: Compute ˆ fp  and 
fpCOV

ˆ fp

Step 12: Update 
training points 

[ ; ]s s newx x x= ,

( ) [ ( ); ]s s newg g yx x=

Step 9: Compute the potential 
error using Algorithm 1 

Step 11: Obtain a 
new training point 

newx  using 
Algorithm 2 

Y

Y
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N

2
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1
ˆ
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ˆ
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Θ , ˆ ( )y G x=
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Fig. 5 Flowchart of the proposed
GSAS method
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contribution of a specific variable is then analyzed through a
Fourier transform (Xu and Gertner 2007; McRae et al. 1982).
FAST was originally developed for models with independent
variables. Xu and Gertner (Xu and Gertner 2007) extended it to
models with correlated variables, by reordering the samples
generated from FAST to capture the correlation between vari-
ables and then shifting the system outputs to compute the partial
variance of each variable. More details of the extended FAST
method are available in Ref. (Xu and Gertner 2007). However,
the proposed GSAS method is not limited to the extended
FAST; any other GSA method could also be employed.

3.3.3 Selection of new training points based on GSA

As discussed in Sec. 3.3.1, the system response is p̂ f and

inputs are Gp(xg2
MCS(i)), i=1, 2, ⋯, N2, in GSA. For some

problems, N2 will be very large, which results in a very
high-dimensional GSA problem. GSA with high-
dimensional correlated random variables is computationally

expensive. In order to reduce the dimensionality of the prob-
lem, we further divide the group-two samples xg2

MCS into two
groups, namely candidates of new training points (xCan) and the
other set (xOther) of samples in xg2

MCS. The first ncan samples with
the lowest U values in xg2

MCS are selected as xCan since samples
with low U values have high probabilities of having wrong
signs or high probability of being the new training point. For
the other set of samples in xg2

MCS (i.e., xOther), we use ĝ(xOther)|-
Gp(x

Can), g(xs) (i.e., mean predictions, ĝ(xOther), at xOther con-
ditioned on realizations of Gp(x

Can) and current training points
g(xs)) instead of ĝ(xOther) to substitute Gp(x

Other) in GSA. The
purpose of doing so is to preserve the correlation between re-
sponses of samples, xCan and xOther, and to account for effects
of realizations of Gp(x

Can) on ĝ(xOther).
After the above partition, for given realizations of

Gp xCan
� �

; p̂ f Gp xCan
� �� �

is computed as

p̂ f Gp xCan
� �� � ¼ N̂ f 1 þ

X
I ĝ xOther
� ����Gp xCan

� �
; g xsð Þ

� �
þ
X

I Gp xCan
� �� �

N

ð28Þ

Figure 4 illustrates inputs and output of the failure proba-
bility estimate in GSA.

For given realizations of Gp(x
Can) and values of g xsð Þ ;

ĝ xOther
� ���Gp xCan

� �
; g xsð Þ is computed based on the condi-

tional probability and current Kriging model as follows

ĝ xOther
� ����Gp xCan

� �
; g xsð Þ ¼ f xOther

� �T
βþ rnew xOther

� �T
R−1

new gtemp−Fnewβð Þ

ð29Þ
where gtemp=[Gp(x

Can); g(xs)],β are from the hyper-
parameters Θ; f xð Þ T are the trend functions as discussed

Table 3 Main procedures of algorithm 2

Step Description

1 Select the first ncan samples of xg2
MCS with the lowest U(xg2

MCS) values as xCan and denote the other samples of xg2
MCS as xOther

(a) Generate samples for GSA

2 Generate nF independent samples for Gp(x
Can) based on the characteristic frequencies ω1�ncan obtained from FAST (McRae et al. 1982)

and denote the generated samples as gF.

3 Compute Σc|t using Eq. (30) and obtain ρc|t based on Σc|t.

4 Generate nF correlated samples based on the eigenvalue and eigenvector analyses of ρc|t. Denote the generated samples as wnF�ncan .

5 Sort wnF�ncan in ascending order and reorder gF so that the reordered gF has the same rank correlation as wnF�ncan . Denote the reordered g
F

as gF .

(b) Obtain system responses at sampling points

6 Compute the mean value predictions ĝ(xOther)|Gp(x
Can), g(xs) at xOther using Eq. (29).

7 Obtain samples of p̂ f ið Þ ; i ¼ 1; 2;⋯; nF based on Eq. (28).

(c) Selection of the new training point based on GSA

8 Perform the global variance analysis for xCan and obtain V 1�ncan using extended FAST

9 Identify the index with the maximum variance by imax ¼ argmax V 1�ncanð Þ
10 Obtain xnew

Table 2 Main procedures of algorithm 1

Step Description

1 Let N2 be the number of samples in xg2
MCS. If N2=0, break, End.

2 Compute the conditional Σp|t and ρp|t using Eqs. (20) and (21).

3 Generate nr samples gN2�nr for correlated random variables
Gp(xg2

MCS) using Eq. (22) based on eigenvalue and eigenvector
analyses of ρp|t.

4 Obtain εr(i),i=1,2,⋯,nr using Eq. (25).

5 Compute εr
max using Eq. (27).
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in Sec. 2.1, rnew(x
Other) are obtained by inputting

xOther; xtemp ¼ xCan; xs½ � and Θ into Eq. (3), Rnew is the
correlation matrix between xtemp and xtemp, which is obtained
by inputting xtemp andΘ into Eq. (3), and Fnew are obtained by
inputting xtemp into f(x)T. The main purpose of using Eq. (29)
is to investigate how the uncertainty in Gp(x

Can) may result in
the variability of mean predictions of ĝ(xOther). In the above
equation, the hyper-parameters Θ need to be recalculated for
each realization of Gp(x

Can). Repeatedly recalculating Θ,
however, may increase the computational burden significant-
ly. In this paper, we directly use current hyper-parameters
instead of recalculating them repeatedly. This works well as
indicated in the numerical examples. Recalculating the hyper-
parameters for each realization of Gp(x

Can) may further im-
prove the accuracy of the proposed method, and needs to be
investigated in future work. Note that all samples points x and
responses g(x) may need to be normalized depending on the
Kriging algorithms used in above computations.

Equation (28) implies that the response is p̂ f Gp xCanð Þ� �
and inputs are random variablesGp(x

Can) for GSA. Following
the procedure of the extended FAST method (Xu and Gertner
2007), the main steps of GSA for p̂ f Gp xCanð Þ� �

are summa-

rized as below.

(1) Generate nF independent samples g
F forGp(x

Can) based on
the characteristic frequenciesω1�ncan obtained fromFAST.

(2) Obtain the conditional covariance matrix of Gp(x
Can) as

follows

Σcjt ¼ Σcc−ΣctΣ
−1
tt Σ

T
ct ð30Þ

where ∑ct; ∑tt and ∑cc stand for covariance matrixes
between Gp(x

Can) and Gp xsð Þ ;Gp xsð Þ and Gp(x
s), and

Gp(x
Can) and Gp(x

Can). The correlation matrix, ρc|t, of
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Gp(x
Can) is then obtained from Σc|t. nF correlated sam-

ples wn F�ncan with mean of zero and standard deviation
of one are generated based on the eigenvalue and eigen-
vector analysis of ρc|t.

(3) Samples of wn F�ncan are then sorted in ascending order.
According to the indices of sorted wn F�ncan ; gF are

reordered so that the reordered gF has the same rank
correlation as wn F�ncan . Here, we denote the reordered

samples of gF as gF . gF is a nF×nCan sampling matrix.
Each row of the matrix is a realization of ĝ(xCan).

(4) With samples (i.e., gF ) of Gp(x
Can), the corresponding

samples of response p̂ f ið Þ ; i ¼ 1; 2; ⋯; nF are ob-
tained using Eq. (28).

Based on samples of p̂ f ið Þ ; i ¼ 1; 2; ⋯; nF par-
tial variances, V j; j ¼ 1; 2; ⋯; ncan of each vari-
able in ĝ(xCan) are obtained using the extended FAST
method.

Then, the new training point is identified by finding the
sample point that corresponds to the maximum variance:

imax ¼ argmax Vð Þ ð31Þ
The new training point xnew is thus selected as x-

Can(imax, :). After the new training point is identified,
the surrogate model is updated and percentage error is
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Table 4 Results of Example 1

Method NOF
p̂ f

ε (%) Additional Time (Seconds)

MCS 2×107 0.0313 N/A N/A

GSAS 19 0.0317 1.29 1669

EGRA 36 0.0313 0.01 6

AK-MCS 31 0.0312 0.31 4
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Fig. 9 Initial and added training points of the AK-MCSmethod (red “+”
denotes unnecessary training point) (a) With unnecessary training points
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verified. This process continues until the accuracy re-
quirement is satisfied.

4 Algorithms for implementation

In this section, algorithms to implement the proposed GSAS
method are first summarized. Following that, further develop-
ment of GSAS by incorporating GSAS with importance sam-
pling (IS) is discussed.

4.1 Implementation procedure

The overall numerical procedure is depicted in Fig. 5.
Table 1 gives the overall procedure of the GSAS

method. Following that, Tables 2 and 3 present algo-
rithms for the error estimation of reliability estimate
(Algorithm 1) and selection of a new training point
based on GSA (Algorithm 2), respectively.

4.2 GSAS based on importance sampling (GSAS-IS)

The GSAS method is based on MCS. It can be further
improved by incorporating importance sampling (IS).
The main procedure of the resulting method GSAS-IS
is the same as that of original GSAS. The following
changes need to be made to GSAS when it is combined
with IS.

(1) The most probable point (MPP) needs to be identified
first. After the MPP point is obtained, in Step 3 of
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Table 1, the sample points are generated from IS instead
of MCS.

(2) Due to the IS, the equation for p̂ f given in Eq. (12) is
modified as

p̂ f ≈
X
i¼1

NIS

I Gp x ið Þ
� �� �

w x ið Þ
� �

=NIS ð32Þ

where NIS is the number of samples in IS and w(x(i)) is
the weight of sample x(i) given by

w x ið Þ
� �

¼ f x ið Þ
� �

=h x ið Þ
� �

ð33Þ

in which f(x(i)) and h(x(i)) are the original joint
PDF and the instrumental probability density func-
tion, respectively.

In Step 9 of Table 1, the way of computing N̂ f 1

and N̂ f 2 (Eq. (15)) is modified as

N̂ f 1 ¼
X

I ĝ xMCS
g1

� �� �
w xMCS

g1

� �
ð34Þ

N̂ f 2 ¼
X

I ĝ xMCS
g2

� �� �
w xMCS

g2

� �
ð35Þ

Similarly, the way of computing the error of reliability
analysis (Eqs. (16) and (25)) is modified by adding the
weights of samples into the equations.
(3) In Step 1 of Table 3, the method of selecting the

candidate samples is different for GSAS and
GSAS-IS. In GSAS, the ncan samples of xg2

MCS with
the lowest U(xg2

MCS) values are selected as xCan. In
GSAS-IS, the ncan samples of xg2

MCS with the larg-
est VarI(xg2

MCS) are selected as xCan, where VarI
(xg2

MCS) is the variance of indicator function at sam-
ple xg2

MCS.
If ĝ(xg2MCS)>0, we have

Pr I Gp xMCS
g2

� �� �
w xMCS

g2

� �
¼ 0

n o
¼ Φ ĝ xMCS

g2

� ���� ���=σGp xMCS
g2ð Þ

� �
¼ Φ U xMCS

g2

� �� �
Pr I Gp xMCS

g2

� �� �
w xMCS

g2

� �
¼ w xMCS

g2

� �n o
¼ Φ −U xMCS

g2

� �� �
8<
: ð36Þ

VarI(xg2
MCS) is then computed by

VarI xMCS
g2

� �
¼ Var I Gp xMCS

g2

� �� �
w xMCS

g2

� �n o
¼ E I2 Gp xMCS

g2

� �� �
w2 xMCS

g2

� �� �
−E I Gp xMCS

g2

� �� �
w xMCS

g2

� �� �
E I Gp xMCS

g2

� �� �
w xMCS

g2

� �� � ð37Þ

After simplification, we have

VarI xMCS
g2

� �
¼ Φ −U xMCS

g2

� �� �
Φ U xMCS

g2

� �� �
w2 xMCS

g2

� �
ð38Þ

Same expression is obtained for the case ĝ(xg2MCS)<0.
(4) In Step 13 of Table 1, the coefficient of variation of p̂ f is

computed in GSAS-IS as

COVp f
¼ 1

NIS−1
1

NIS

X
i¼1

NIS

I Gp x ið Þ
� �� �

w2 x ið Þ
� �� �

−p̂
2

f

 !

ð39Þ

Note that the function evaluations used to find the MPP
points are also used to construct the surrogate model. The
way of finding the MPP can be FORM-based method or
metamodel-based method.

5 Numerical examples

In this section, five numerical examples, which have been
employed in other studies to verify the effectiveness of surro-
gate model-based reliability analysis methods, are used to
demonstrate the effectiveness of the proposed GSAS method.
In each example, the GSAS method is compared with EGRA
and AK-MCS methods and other methods if results are avail-
able. The result ofMonte Carlo simulation (MCS) with a large
sample size is used as a benchmark for accuracy comparison.
The percentage error of eachmethod is analyzed. The percent-
age error ε (%) is defined as

ε %ð Þ ¼
p̂ f − pMCS

f

��� ���
pMCS
f

� 100% ð40Þ

where p̂ f stands for the estimation of a method (i.e., GSAS,

EGRA, AK-MCS, or others) and pf
MCS is the estimation

of MCS.
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The parameters of GSAS, EGRA, and AK-MCS methods
are the same for all the five examples. A squared exponential
correlation function is used. The initial training points are also
the same for GSAS, EGRA, and AK-MCS. The Hammersley
sampling approach is employed to generate initial training
points in the standard normal space in the interval [−4, 4].
The training points are then transformed from the standard
normal space to original space to get the initial training points.
The parameters of the GSAS method are ncan=1×10

4 (popu-
lation size of MCS, step 3 of Table 1), n=5×104 (step 3 of
Table 2), ncan=40 (step 1 of Table 3), and nF=2.5×10

4+1
(step 2 of Table 3, number of samples for GSA in extended
FAST). These parameters remain consistent for all numerical
examples.

5.1 Example 1: A multimodal function

Amultimodal function used in (Bichon et al. 2008) is taken as
our first example. The limit state function is given by

g Xð Þ ¼
1:5þ X 1ð Þ2 þ 4

� �
2:5þ X 2ð Þ−1ð Þ

20
−sin

5 1:5þ X 1ð Þ
2

−2 ð41Þ

where X1 and X2 are two independent standard normal
variables.

The probability of failure of Eq. (41) is analyzed using the
GSAS, EGRA, and AK-MCS methods. The initial Kriging
model is constructed using seven initial training points. The
Kriging model is then updated in GSAS, EGRA, and AK-
MCS when new training points are added. Figure 6 shows
p̂ f obtained from different methods with respect to the number

of added new training points. It illustrates that EGRA and AK-
MCS keep adding new training points after p̂ f can satisfy the

accuracy requirement while the proposed GSASmethod stops
adding training points when the estimation of p̂ f is accurate.

Figures 7 and 9 depict the true limit state, the limit state from
the surrogate model, the initial training points, and the added
training points of the GSAS, EGRA, and AK-MCS methods.
It illustrates that the GSAS method effectively reduces the
number of training points used in the EGRA and AK-MCS
methods. In Figs. 8a and 9a, we label some added training
points which may not be necessary from the reliability analy-
sis perspective since they will not result in any change in the
estimation of p̂ f (as indicated in Fig. 6). These points are

labeled as red “+” in Figs. 8a and 9a. In Figs. 8b and 9b, we
plot the limit states obtained from EGRA and AK-MCS after
removing the unnecessary training points. The plots indicate
that removing the unnecessary training points almost bring no
change to the shape of the limit state. Note that the training
points from GSAS, AK-MCS, and EGRA are different due to
the differences in the learning functions and the way of
selecting new training points. The unnecessary training points

in Figs. 8 and 9 are therefore also different for AK-
MCS and EGRA.

Table 4 gives the result comparison between the GSAS,
EGRA, and AK-MCS methods (Bichon et al. 2008). The re-
sult of the EGRA method is also available in (Bichon et al.
2008). The results provided in Table 4 include the number of
function evaluation (NOF) of the limit state function, the es-
timated probability of failure (p̂ f ), percentage error (ε (%)) of

each method, and the computational time required in addition
to the number of function evaluations. The computational
times were based on a Dell computer with Intel (R) Core
(TM) i7-2600 CPU and 8 GB system memory that we used.
Figure 10 gives the convergence history of p̂ f with respect to

the number of samples in MCS.
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Fig. 16 Initial and added training points of the EGRA method (a) With
unnecessary training points (red “+” denotes unnecessary training point),
(b) Without unnecessary training points
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The results in Table 4 imply that the GSAS method
requires much less NOF than the EGRA and AK-MCS
methods to achieve the acceptable accuracy level
shown in Fig. 5 (i.e., error<3 %). Further analysis
showed that GSAS method needs only 24 training
points to get a more accurate result (pf=0.03125 and
error=0.16 %) than AK-MCS, which produced an error
of 0.31 % with 31 training points. The EGRA result is
very accurate for this particular problem; however, the
accuracy of GSAS is better than EGRA in the subse-
quent examples. Besides, the GSAS method improved
the additional computational time as indicated in
Table 4, which is common to other advanced sampling
approaches. This increase is acceptable comparing to

expensive computer simulation models. Some steps of
the proposed method (i.e., GSA in algorithm 2) can be
further parallelized and optimized to reduce the addi-
tional computational time.

5.1.1 Parameter study

In the proposed method, there are some parameters that may
affect the accuracy and efficiency of the proposed method,
such as the number of candidate samples (ncan), the threshold
for the error of failure probability estimate (εr

max), and the
coefficient of variation (COVp f

). We also performed

parameter study for the proposed method in this exam-
ple. Figures 11 and 13 give the comparison of the
number of function evaluations (NOF) and percentage
error of failure probability estimate under different
values of nCan; εmax

r and COVp f
, respectively. The

results show that increasing the value of ncan can re-
duce the number of function evaluations and improve
the accuracy of overall failure probability estimate. In-
creasing the value of εr

max will improve the efficiency
and sacrificing the accuracy (as indicated in Fig. 12).
Increasing the value of COVp f

has the same effect as

εr
max (as indicated in Fig. 13). Recommended values for
these parameters are given at the beginning of Sec. 5.
The recommended values remain the same for all the
five examples in this paper.

c1

c2

m

z(t)

F(t)

Fig. 18 A non-linear oscillator

Table 5 Results of Example 2

Method NOF
p̂ f

ε (%) Additional Time
(Seconds)

MCS 2×107 4.46×10−3 N/A N/A

GSAS 36 4.51×10−3 1.12 2013

EGRA 68 4.54×10−3 1.79 50

AK-MCS 65 4.56×10−3 2.24 35

IS + Spline (Echard et al.
2011; Schueremans and
Van Gemert 2005)

428 4.5×10−3 N/A N/A

IS + Neural Network
(Echard et al. 2011;
Schueremans and Van
Gemert 2005)

52 5.7×10−3 26.7 N/A
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Fig. 17 Initial and added training points of the AK-MCS method (a)
With unnecessary training points (red “+” denotes unnecessary training
point), (b) Without unnecessary training points
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5.1.2 Discussion

It is observed that some of the training points (accumu-
lated over the iterations) are clustered together in the
GSAS, EGRA, and AK-MCS methods. Some of the
clustered training points may be unnecessary, i.e., the
clustered training points will not significantly change
the shape of the limit state surrogate. There are mainly
two reasons that the GSAS method does not remove all
the clustered training points. First, the region with the
clustered training points (as indicated in Fig. 7) is close
to the origin, which implies that the signs of samples in
that region will affect the reliability analysis result more
significantly than those of samples in other regions. In
order to guarantee the accuracy of reliability analysis,
the limit state in that region needs to be well-trained.
From the true limit state in the clustered region, it can
be seen that the nonlinearity of the true limit state in
the clustered region is high, which also requires more
training points to get an accurate learning of the true
limit state. Second, in all the methods (AK-MCS,
EGRA, and GSAS), the training points are selected
adaptively. In the first several iterations, the surrogate
model is not well-trained and there is large uncertainty
in the prediction. Since the clustered training points are
close to the limit state and in the high probability den-
sity region, they are selected in the first several itera-
tions. Even if these selected clustered training points
seem to be unnecessary in the last iteration, they are

still “necessary” training points for the iterations when
they are selected. For instance, the clustered training
points in Fig. 7 are selected in iterations 1 to 5. These
clustered training points may appear to be unnecessary
when they are assessed from the point of view of the
final iteration (iteration 12). But they are necessary and
useful in iterations 1 to 5 (when the surrogate model is
not well-trained) when they are selected. This implies
that when the initial quality of the surrogate model is
quite poor, EGRA, GSAS, and AK-MCS may face the
issue of clustered- training points. One possible way of
avoiding clustering is to require a minimum distance
between the new and old training points. This improve-
ment may be considered in future work.

5.2 Example 2: Series system with four branches

A series system with four limit state functions as given in
Eq. (42) is employed as the second example. This example
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Fig. 20 p̂ f vs number of added new training points in GSAS
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Fig. 19 p̂ f vs number of added new training points

Table 7 Results of Example 3

Method NOF
p̂ f

ε (%) Additional Time
(Seconds)

MCS 2×107 0.0286 N/A N/A

GSAS 44 0.0286 0.06 1647

EGRA 80 0.0284 0.75 11

AK-MCS 83 0.0284 0.68 17

IS + Spline 67 0.0270 5.65 N/A

IS + Neural Network 68 0.0310 8.33 N/A

Table 6 Random Variables of Example 3

Variable Distribution Mean Standard deviation

m Normal 1 0.05

c1 Normal 1 0.1

c2 Normal 0.1 0.01

r Normal 0.5 0.05

F Normal 1 0.2

t1 Normal 1 0.2
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is taken from (Echard et al. 2011; Schueremans and Van
Gemert 2005).

g Xð Þ ¼ min

3þ 0:1 X 1−X 2ð Þ2 � X 1 þ X 2ð Þffiffiffi
2

p

X 1−X 2ð Þ þ 6ffiffiffi
2

p

X 2−X 1ð Þ þ 6ffiffiffi
2

p

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð42Þ

where X1 and X2 are independent standard normal variables.
Similar to Example 1, the probability of failure is first an-

alyzed using the GSAS, EGRA, and AK-MCS methods. The
results are then compared with the other surrogate model
methods available in the literature. Twelve initial training
points are generated for the GSAS, EGRA, and AK-MCS
methods. Based on the initial Kriging model, new training
points are added. Figure 14 gives the value of p̂ f with respect

to the number of added new training points. Figures 15 and 17
show the true limit state, the limit-state from surrogate model,
the initial training points, and the added training points used in
the GSAS, EGRA, and AK-MCS, respectively. It is seen that
the EGRA and AK-MCS methods added many more training
points than the GSAS method. Some of these added training
points are not necessary from the aspect of reliability analysis.
Most of the unnecessary training points are successfully elim-
inated in the GSASmethod. Similar to Example one, we label
the unnecessary training points using red “+” in Figs. 16 and
17. In Figs. 16 and 17, we also show the limit state obtained
from EGRA and AK-MCS after removing the unnecessary
training points. Table 5 gives the results comparison of Exam-
ple 2. The GSAS method is compared with the EGRA meth-
od, the AK-MCS method, the importance sampling+spline
method (IS+Spline), and the importance sampling+Neural

Network (IS+Neural Network). The results of IS+Spline
and IS+Neural Network are taken from (Echard et al. 2011;
Schueremans and Van Gemert 2005).

The results show that the GSAS, EGRA, and AK-MCS
methods can estimate the probability of failure very accurately
and GSAS has a smaller percentage error than both EGRA
and AK-MCS. The GSASmethod is muchmore efficient than
the EGRA and AK-MCS method. In addition, the GSAS
method is also much more efficient than the IS+Spline meth-
od and IS+Neural Network method.

Further analysis showed that EGRA and AK-MCS need 99
and 78 training points respectively to get the same accuracy as
GSAS.

5.3 Example 3: Nonlinear undamped
one-degree-of-freedom system

As shown in Fig. 18, a nonlinear undamped one-degree-of-
freedom system is taken from (Echard et al. 2011;

Table 8 Random Variables of Example 4

Variable Distribution Parameter 1 Parameter 2

q (N/m) Weibull 20000 500

l (m) Lognormal 12.5 0.125

As (m
2) Lognormal 9.82×10−4 6×10−5

Ac (m
2
) Lognormal 0.04 0.0035

Es (Pa) Lognormal 1×1011 1×109

Es (Pa) Lognormal 2×1010 1×109

- For Weibull distribution, parameters 1 and 2 are the scale and shape
parameters of Weibull distribution. For Lognormal distribution, parame-
ters 1 and 2 are the mean (mu) and standard deviation (sigma),
respectively
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Fig. 21 A roof truss structure
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Schueremans and Van Gemert 2005; Rajashekhar and
Ellingwood 1993; Gayton et al. 2003) as the third example.
The limit state function of the non-linear oscillator is given in
Eq. (43). Table 6 gives the distributions and parameters of the
six random variables in the limit state function.

g Xð Þ ¼ 3r −
2F

mω2
0

sin
ω0t1
2

� �����
���� ð43Þ

where X=[m, c1, c2, r, F, t1] and ω0 ¼
ffiffiffiffiffiffiffiffiffi
c1þc2
m

q
.

Similar to Example 2, the GSAS method is compared
with the EGRA, AK-MCS, IS+Spline, and IS+Neural
Network method. The results of IS+Spline and IS+Neu-
ral Network are taken from (Echard et al. 2011;
Schueremans and Van Gemert 2005). Table 7 presents
the results comparison of these methods. Similar conclu-
sions can be obtained as that from Examples 1 and 2.
The GSAS method is more efficient than the EGRA,
AK-MCS, IS+Spline, and IS+Neural Network methods.
Figure 19 gives the value of p̂ f with respect to the

number of added new training points for different
methods. It shows that GSAS stops adding new training
points effectively when the estimate is close to the true
value while other methods keep adding new training
points. This is due to the fact that the convergence

criterion in GSAS is defined directly from the reliability
estimate perspective while those of AK-MCS and
EGRA are defined from the variance of single sample
perspective. In order to investigate the fluctuation of the
GSAS estimate beyond reaching the stopping criterion,
we continue to add more training points in GSAS.
Figure 20 gives the value of p̂ f with respect to the

number of added new training points. It indicates that
the estimate does not fluctuate too much after the stop-
ping criterion is reached (within the 1.5 % error bounds
of the true value).

5.4 Example 4: Roof truss

A roof truss structure given in Fig. 21 is used as the fourth
example. This example is modified from (Zhao et al. 2014;
Song et al. 2009). In the truss structure, the top chords and
compression bars are made of steel reinforced concrete and
the bottom chords and tension bars are made of steel. A failure
event is defined as the vertical deflection of the roof top being
larger than 0.03 m. The limit state function is given in
Eq. (44). Table 8 presents the distributions and parameters of

Table 10 Random Variables in Example 5

Variable Distribution Mean Standard deviation

kp Lognormal 1 0.2

ks Lognormal 0.01 2×10−3

mp Lognormal 1.5 0.15

ms Lognormal 0.01 1×10−3

ξp Lognormal 0.05 0.02

ξs Lognormal 0.02 0.01

Fs Lognormal 15 1.5

S0 Lognormal 100 10
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Fig. 23 p̂ f vs number of added new training points in GSAS
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Fig. 22 p̂ f vs number of added new training points

Table 9 Results of Example 4

Method NOF
p̂ f

ε (%) Additional Time (Seconds)

MCS 5×106 2.027×10−3 N/A N/A

GSAS 56 2.025×10−3 0.11 436

EGRA 81 2.020×10−3 0.35 80

AK-MCS 87 2.025×10−3 0.11 162
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the six random variables in the limit state function. The orig-
inal distributions of random variables were assumed to be
normal in (Zhao et al. 2014; Song et al. 2009). In this paper,
the distributions are modified to be non-normal to examine the
effectiveness of GSAS in solving problems with non-normal
inputs.

g Xð Þ ¼ 0:03−
ql2

2

3:81

ACEC
þ 1:13

ASES


 �
ð44Þ

where X=[q, l, AS, AC, ES, EC].
The probability of failure is estimated using GSAS, EGRA,

and AK-MCS. Table 9 shows the results comparison between
different methods. Figure 22 gives the value of p̂ f with respect

to the number of added new training points for different
methods. It indicates that the GSAS method is more efficient
than the EGRA and AK-MCS methods. The accuracy of
GSAS is the same as AK-MCS and better than EGRA for this
problem. Similar to Example 3, Fig. 23 gives the value of p̂ f

with respect to the number of added new training points from
GSAS by continue adding new training points after stopping
criterion is satisfied.

5.5 Example 5: Two-degree-of-freedom
primary/secondary damped oscillator

A two-degree-of-freedom primary/secondary damped oscilla-
tor example originally proposed by Der Kiureghian
(Kiureghian and Stefano 1991) is used as the fifth example.
This example has also been studied by Dubourg et al.
(Dubourg et al. 2013) and Bourinet et al. (Bourinet et al.
2011). There are eight independent random variables in this
example. The limit state function is given by

g Xð Þ ¼ Fs−3ks
πS0
4ξsω3

s

ξaξs
ξpξs 4ξ2a þ θ2

� �þ γξ2a

ξpω
3
p þ ξsω

3
s

� �
ωp

4ξaω4
a

2
4

3
5

0
@

1
A

1=2

ð45Þ

where X ¼ kp; ks; mp; ms; ξp; ξs; Fs; S0
� �

;ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kp=mp

q
;ωs

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ks=ms

p
;ωa ¼ ωp þ ωs

� �
=2; ξa ¼ ξp þ ξs

� �
=2; γ ¼ ms=

mp and θ=(ωp−ωs)/ωa.
Table 10 gives the distributions and parameters of the eight

random variables.
The results of the GSAS method are compared with the

EGRA, AK-MCS method, the Meta-IS method (Dubourg
et al. 2013), and the Support Vector Machine + Subset simu-
lation (SVM+Subset) method (Bourinet et al. 2011). The re-
sults comparison is given in Table 11. Figure 24 gives the
value of p̂ f with respect to the number of added new training

points for different methods. The results illustrate that the
GSAS method is more efficient and accurate than the EGRA
and AK-MCS methods. The computational time required by
GSAS in addition to the NOF is less than that required by
EGRA and higher than its counterpart needed by AK-MCS.
The NOF of the GSASmethod is higher than that of the Meta-
IS method. One possible reason for this phenomenon is that
the training points are selected from the MCS sampling pool
in the GSAS method whereas the training points of Meta-IS
method are selected from the sampling pool of importance
sampling. Combining the proposed method with importance
sampling (IS) approach will further improve the efficiency of
the proposed method. The integration of GSAS with IS how-
ever will change the equations given in Sec. 3 and algorithms
presented in Sec. 4. The main steps of the combination of
GSAS and IS have been briefly discussed in Sec.4.2. Since

Table 11 Results of Example 5

Method NOF
p̂ f

ε (%) Additional Time
(Seconds)

MCS 2×107 4.77×10−3 N/A N/A

GSAS 867 4.81×10−3 0.84 84401

EGRA 1694 5.10×10−3 6.92 111057

AK-MCS 1106 4.83×10−3 1.26 25413

Meta-IS 664 4.80×10−3 0.63 N/A

SVM + Subset 1719 4.78×10−3 0.21 N/A
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Fig. 24 p̂ f vs number of added new training points

Table 12 Comparison of GSAS-IS and Meta-IS

Method NOF
p̂ f

ε (%)

MCS 5×106 4.77×10−3 N/A

GSAS-IS 546 4.83×10−3 1.25

Meta-IS 664 4.80×10−3 0.63
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it belongs to another kind of method, here, we only give the
results of GSAS-IS. Table 12 shows the comparison of GSAS-
IS with Meta-IS. The results given in Table 12 are based on
FORM-based IS. The NOF of GSAS-IS includes both the
NOFs required by FORM and GSAS. Combining Meta-IS
with GSAS may further improve the efficiency. Integration
of GSAS with Meta-IS is another direction that may be pur-
sued in future research.

6 Conclusion

Monte Carlo sampling based on a surrogate model is a widely
used approach of reliability analysis when the physics model
evaluation is expensive. Adaptive Kriging-based methods
have been studied in recent years to select training points for
the surrogate model, by focusing on the region of interest
using learning functions. In previous methods, the stopping
criterion and learning function are defined from the aspect of
individual training points. The effects of training points on the
overall accuracy of reliability estimate are not considered. As
a result, some un-important sampling points, which haveweak
contributions to the failure probability estimate, are selected as
training points.

A Global Sensitivity Analysis enhanced Surrogate (GSAS)
modeling method is developed in this work to improve the
efficiency of adaptive Kriging, by considering a new stopping
criterion and a new way of selecting new training points. The
main idea is to treat the probability of failure estimated from
the surrogate model similar to system response and prediction
variance as the random input in GSA. The sampling pool,
from which the training points are selected, is first divided
into two groups. The error distribution of current failure prob-
ability estimate is then analyzed by propagating the uncertain-
ty of prediction through a failure indicator function. The train-
ing points are selected to reduce the uncertainty in the failure
probability estimate in the most effective way.

An overall implementation framework and two algorithms
are provided for implementation of the proposed GSASmeth-
od. Five numerical examples, which include two mathemati-
cal examples and three engineering-related examples, demon-
strate that the GSAS method can effectively improve the effi-
ciency of surrogate model-based reliability analysis. Another
way of improving the efficiency of surrogate modeling might
be to maximize distance of the candidate point with the train-
ing points, which is a popular strategy used in SVM-based
reliability analysis methods (Basudhar and Missoum 2008).
This method, however, has not yet been integrated with the
learning functions widely used in Kriging-based reliability
analysis methods. Integration of the distance criterion with
the learning functions needs to be studied in future work.
The developed method presented in this paper increases the
computational overhead required by the algorithm selecting

the training points (even though it reduces the number of
training points), which is common to all kinds of advanced
sampling approaches. Optimizing the computer implementa-
tion of the proposed method needs to be investigated in future
work. As indicated in the results of Example 5, the computa-
tional efficiency of the proposed method can be further im-
proved by integrating the proposed method with importance
sampling. This is another direction that needs to be investigat-
ed to improve the effectiveness of the developed method.
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