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Abstract The existing direct sensitivity analysis of optimal
structural vibration control based on Lyapunov’s secondmeth-
od is computationally expensive when applied to finite ele-
ment models with a large number of degree-of-freedom and
design variables. A new adjoint sensitivity analysis method is
proposed in this paper. Using the new method the sensitivity
of the performance index, a time integral of a quadratic func-
tion of state variables, with respect to all design variables is
calculated by solving two Lyapunov matrix equations. In con-
sideration of computational cost reduction, the new adjoint
method is further extended to the reduced order model by
Guyan method. This makes the method applicable to large
finite element models. Two numerical examples demonstrate
the accuracy and efficiency of the proposed method.

Keywords Adjoint sensitivity analysis . Lyapunov’s second
method . Passive vibration control

1 Introduction

Structural vibration control is an important consideration in
dynamic system design (Housner et al. 1997). Many passive
and active vibration control methods (Preumont 1997; Mead

and Meador 1998) have been proposed in past decades. The
most famous passive vibration control device is the damped
vibration absorber (DVA) (Korenev and Reznikov 1993). The
DVA design is usually performed in the frequency domain by
finding the DVA parameters to minimize a peak response in a
frequency range (Pennestrı 1998; Ozer and Royston 2005;
Asami et al. 2002).

In time domain, there is a classic problem formulation of
passive structural vibration control that deals with the dynam-
ic system disturbed by initial conditions. The objective is to
find design parameters of the damped vibration system that
minimize the performance index in the form of time integral of
the quadratic function of state variables (displacement and
velocities, e.g., see Eq. (5)). This performance index can be
evaluated by Lyapunov’s second method (Kalman and
Bertram 1960).

Based on the Lyapunov equation, the evaluation of perfor-
mance indices are simplified into matrix quadratic forms and
do not require the time domain integration. Parameter optimi-
zation problems with a quadratic performance index have
been solved by this method (Ogata and Yang 1970). Wang
et al. (1984) applied the Lyapunov equation to solve the tran-
sient response optimization problem of linear vibrating sys-
tems excited by initial conditions. In their work, the Lyapunov
equation was expanded to a set of linear equations and direct
sensitivity was carried out by use of the same system of linear
equations. The computational effectiveness of the method is
illustrated by applying it to the classical vibration absorber and
to a cantilever beam carrying an absorber at its midpoint. Du
(2008) applied the Lyapunov equation to obtain the optimum
configuration of dynamic vibration absorber (i.e., DVA) at-
tached to an undamped or damped primary structure. The
performance index includes two types of controls, i.e., veloc-
ity and displacement controls of the primary mass. With the
help of the Kronecker product and matrix column expansion,
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the closed-form solutions of optimum parameters for un-
damped primary structure are finally presented.

The Lyapunov equation is also used in other fields of opti-
mal design. Marano et al. (2007, 2010) apply the Lyapunov
equation to deal with the optimum design of vibration ab-
sorbers utilized to reduce undesirable vibrational effects which
are originated in linear structures by seismic excitations.
Rüdinger (2006) uses the Lyapunov equation to consider a
tuned mass damper with a nonlinear power law viscous damp-
er excited by white noise. The system is analyzed by statistical
linearization and stochastic simulation with the objective of
minimizing the standard deviation of the response.

In the above mentioned optimal design studies, a direct
sensitivity analysis method or finite difference method is used
to obtain the sensitivities. This practice works well for optimal
selection of a few parameters. However, some optimization
problems, such as gradient-based topology optimization, typ-
ically involve hundreds or thousands of design variables
(Bendsoe and Sigmund 2003). For this type of problem, direct
sensitivity analysis would be unacceptably slow. Thus, a more
efficient adjoint variable method (AVM) (Van Keulen et al.
2005; Jensen et al. 2014) is indispensable.

In this paper, we consider one case of passive control opti-
mization problem, that is, to minimize an integrated quadratic
performance measure for damped vibrating structures subject-
ed to initial conditions. The optimum location of damped
spring supports for vibration control is solved as a topology
optimization problem (Díaaz and Kikuchi 1992; Molter et al.
2013; Kang et al. 2009; Zhang and Kang 2013). The goal of
this paper is to present an adjoint sensitivity analysis method
considering the above mentioned objective function based on
Lyapunov’s second function. Furthermore, when applied to a
problem modeled by the finite element method (FEM) model
reduction is necessary to reduce the size of Lyapunov equa-
tions to further reduce the computing time. The general for-
mulation for both full and reduced order models will be de-
veloped. The sensitivity results from both the full model and
reduced model are validated by the results computed by finite
difference method. The accuracy and efficiency of the pro-
posed method are demonstrated by two examples of beams
and plate with damped spring supports. The results indicate
the potential of application of the proposed method to topol-
ogy optimization under the special time domain criterion.

2 Application of Lyapunov’s second method
to optimize transient response of mechanical systems

Consider a viscously damped linear vibration system
governed by the equation:

M€uþ C u
� þKu ¼ 0 ð1Þ

whereM (N×N) is the mass matrix, C (N×N) is the damping
matrix, K (N×N) is the stiffness matrix, and u (N×1) is dis-
placement vector. N is the structural degree of freedoms.

Assume the system is excited by initial displacements or
velocities. The design problem is to find parameters in M, K
and C matrices to minimize a performance index in the form

J ¼
Z T

0
q u; u

�ð Þdt ð2Þ

where, q u; u
�ð Þ ¼ uTQuuþ u

� TQu
� u

�
is a quadratic function

of u and u
�
. Transient dynamic responses have to be

computed to evaluate the objective function. Direct or
adjoint methods can be applied to evaluate the response
sensitivity of the performance. Alternatively, if we re-
place the upper bound of integration to infinite, we can
use Lyapunov’s second method to evaluate the perfor-
mance without performing transient dynamic response
analysis.

To apply Lyapunov’s second method to this system, it is
necessary to rewrite Eq. (1) in the state space form

X
� ¼ AX ð3Þ

A ¼ O I
−M−1K −M−1C

� �
X ¼ u

u
�

� �
ð4Þ

The matrix A is (2N×2N). The vector X is (2N×1).
Structural design parameters such as mass density, damping
ratio and spring stiffness are contained in the matrix A. The
optimization problem is to choose these parameters to mini-
mize the performance measure J defined by

J ¼
Z ∞

0
XTQXdt ð5Þ

for a given initial excitation X (0). In Eq. (5), Q (2N×2
N) is a positive semi-definite symmetric weighting ma-
trix and t denotes time. According to Lyapunov theory
of stability, for an asymptotically stable system, there
exists a symmetric positive semi-definite matrix P (2
N×2N) satisfying

ATPþ PA ¼ −Q ð6Þ

Equation (6) is the well-known Lyapunov equation.
Note that the unknown matrix P consists of 2N×2N
entries and have N×(2N+1)/2 unknowns because of its
symmetry. Premultiply and postmultiply Eq. (6) by XT

and X respectively, we get

XTATPXþ XTPAX ¼ −XTQX ð7Þ
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With the help of (3), (7) can be further simplified as

X
� T
PXþ XTP X

� ¼ d

dt
XTPX
� � ¼ −XTQX ð8Þ

Accordingly, (5) can be expressed as

J ¼ −
Z ∞

0

d

dt
XTPX
� �

dt

¼ X 0ð ÞTPX 0ð Þ−X ∞ð ÞTPX ∞ð Þ ð9Þ

If the system is asymptotically stable, then, X(∞); Denote
the initial states as X (0) = {u0⋮v0} where u0 and v0 are the
initial displacement and velocity, respectively. Then (9) can be
further simplified as

J ¼ X 0ð ÞTPX 0ð Þ ð10Þ

That is to say, tominimize J in (5) is equivalent to minimize
X(0)TPX(0), where X(0) is the initial state vector and the
unknown symmetric matrix P can be obtained by solving
Eq. (6). Note that for the system to be asymptotically stable,
all the eigenvalues of the damped system must have negative
real part.

Application of the Lyapunov method for transient dy-
namic optimization of a mechanical system was origi-
nally presented by Wang et al. (1984). In that work,
Eq. (6) was expanded to a set of linear equations for
the elements in matrix P, the solutions are then used in
(10) to evaluate the objective function. Direct sensitivity
was also carried out by using the same system of linear
equations to get the sensitivity matrix.

3 Sensitivity analysis scheme

To apply gradient-based optimization method to solve the
above optimization problem, sensitivity (gradient) of the ob-
jective functions with respect to the design variables is need-
ed. Both direct and adjoint methods will be developed in the
following subsections.

3.1 Direct method

The direct analysis scheme to obtain the sensitivity of the
objective function in (10) with respect to the design variable
has been proposed by Wang et al. (1984) for the case X (0)
independent of design variables. In general, the sensitivity can
be expressed as

∂J
∂dk

¼ ∂X 0ð ÞT
∂dk

PX 0ð Þ þ X 0ð ÞT ∂P
∂dk

X 0ð Þ þ X 0ð ÞTP ∂X 0ð Þ
∂dk

ð11Þ

where dk is the kth design variable. For the case X (0) inde-
pendent of design variables, (11) can be further simplified as

∂J
∂dk

¼ X 0ð ÞT ∂P
∂dk

X 0ð Þ ð12Þ

By differentiation Eq. (6) with respect to a design variable
and rearrangement of the involved terms, we have

AT ∂P
∂dk

þ ∂P
∂dk

A ¼ −
∂AT

∂dk
Pþ P

∂A
∂dk

þ ∂Q
∂dk

� �
ð13Þ

In comparison of Eq. (6), it can be seen that the term ∂P
∂dk can

be obtained by solving the Lyapunov matrix Eq. (6) with a
different right hand matrix in Eq. (13). The direct method of
sensitivity analysis involves the solution of Eq. (13) for each
design variable.

However, if an optimization problem has n design param-
eters, the direct sensitivity analysis scheme needs to solve n+1
Lyapunov matrix equations to obtain the sensitivities of all
design parameters. Note that each Lyapunov equation has
N×(2N+1)/2 unknowns. This sensitivity solution process will
be computational costly when the problems have large num-
ber of design parameters and large structural degree of free-
doms. Thus, a more efficient adjoint method is needed.

3.2 Adjoint method

In this section, we propose a sensitivity analysis scheme de-
rived from adjoint method. The new method just needs to
solve the Lyapunov function twice to obtain the sensitivities
with respect to all the design variables.

For ease of presentation of the new sensitivity analysis
scheme, we adopt Du’s approach (2008) of using Kronecker
product and column expansion to expand the Lyapunov equa-
tion as a system of linear equation. The column expansion of
matrixV is defined as a vector that stacks all columns of thisV
matrix. For example, for the 3×3 matrix V

V ¼
V 11 V 12 V 13

V 21 V 22 V 23

V 31 V 32 V 33

2
4

3
5 ð14Þ

the column expansion cs (V) of V is

V ¼ cs Vð Þ ¼ V 11 V 12 V 13 V 21 V 22 V 23 V 31 V 32 V 33½ �T

ð15Þ

Note that cs (V) is a 9×1 vector. If matrix V is symmetric,
there are just 6 independent variables in vector cs (V). The
operator cs (*) refers to the expansion operation. For an N-dof
system, using the Kronecker product, Eq. (6) can be written as

GP ¼ −Q ð16Þ
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where P ¼ cs Pð Þ ; Q ¼ cs Qð Þ and the matrix G can be
obtained from the matrix A by Kronecker product. That is

G ¼ AT⊗Eþ E⊗AT
� � ð17Þ

E (2 N×2N) is an identity matrix with the same size of A.
Now, by direct calculation, the objective function in (10) can
be written as

J ¼ S
T
P ð18Þ

where

S ¼ cs Sð Þ; S ¼ X 0ð ÞX 0ð ÞT ð19Þ

S also is a positive semi-definite symmetric matrix as ma-
trixQ. From (18), the second item of the right hand of (11) can
be expressed as

X 0ð ÞT ∂P
∂dk

X 0ð Þ ¼ S
T ∂P
∂dk

ð20Þ

where ∂P
∂dk ¼ cs ∂P

∂dk

� 	
. From Eq. (16), the term ∂P

∂dk can be

obtained by solving the following equation

∂G
∂dk

PþG
∂P
∂dk

þ ∂Q
∂dk

¼ 0 ð21Þ

So formally we get

∂P
∂dk

¼ −G−1 ∂G
∂dk

Pþ ∂Q
∂dk

 !
ð22Þ

Thus (20) can be expressed as

∂J
∂dk

¼ X 0ð ÞT ∂P
∂dk

X 0ð Þ ¼ −S
T
G−1 ∂G

∂dk
Pþ ∂Q

∂dk

 !
ð23Þ

The right hand of (23) can be rewritten as

∂J
∂dk

¼ X 0ð ÞT ∂P
∂dk

X 0ð Þ ¼ λ
T
D

k
ð24Þ

where

λ
T
¼ −S

T
G−1 ð25Þ

D
k
¼ ∂Q

∂dk
þ ∂G

∂dk
P

 !
ð26Þ

Note that λ andD
k
are the column expansion of matrices λ

and Dk, respectively, and λ can be computed from the follow-
ing equation

GTλ ¼ −S or AT⊗Eþ E⊗AT
� �T

cs λð Þ ¼ −cs Sð Þ ð27Þ

Equation (27) can be transformed to Lyapunov matrix equa-
tion form as

Aλþ λAT þ S ¼ 0 ð28Þ

It is interesting to note that λ is the adjoint vector for the
required sensitivity analysis. The adjoint matrix λ, can be obtain-

ed by solving Lyapunov matrix Eq. (28). Vector D
k
can be also

computed in matrix form as

Dk ¼ ∂Q
∂dk

þ ∂AT

∂dk
Pþ P

∂A
∂dk

; D
k
¼ cs Dk

� � ð29Þ

Note that expression (29) looks similar to Lyapunov equation,
but it is not an equation and does not need to be solved. Finally,
the sensitivity of the objective function with respect to the design
variable in (11) can be expressed as

∂J
∂dk

¼ ∂X 0ð ÞT
∂dk

PX 0ð Þ þ X 0ð ÞTP ∂X 0ð Þ
∂dk

þ
X2N
i¼1

X2N
j¼1

λi jD
k
i j

ð30Þ

For the caseX (0) independent of design variables, the (30)
can simplified as

∂J
∂dk

¼
X2N
i¼1

X2N
j¼1

λi jD
k
i j ð31Þ

In this paper, the solutions of Lyapunov equations are ob-
tained by Matlab solver function lyap (). The vectors

P; Q; S
� �

obtained by the expansion operation and matrices
(G) obtained by Kronecker product appear only in the math-
ematical derivation process. They are not used in numerical
implementation. Thus, we do not consider the symmetry of
matrices P and Q in mathematical derivation process.

The following steps are the solution procedure of using the
adjoint sensitivity analysis scheme to obtain the sensitivities
of multi design variables (the number of design variables is n):

1. Define the number of design variables n, the current design
variables d. Set the initial condition X (0) and the weighting
matrixQ. Obtain the structural stiffness matrixK, structural
mass matrixM, damping matrix C of the current design.

2. Construct the matrix A by (4) and solve a Lyapunov ma-
trix equation to obtain P by (6)

3. Construct the matrix S by (19) and solve a Lyapunov
matrix equation to obtain λ by (28)

4. For k=1,2,…n,
Obtain the sensitivity ofA,Q andX (0) with respect to

the kth design variable. And obtain Dk by (29)

Obtain the sensitivity of the objective function with respect
to the kth design variable by (30)
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No matter how many design parameters, the new sensitiv-
ity analysis scheme just needs to solve the Lyapunov equation
twice, ie. Equations (6) and (28). With the consideration of
high cost of solving the Lyapunov equation, the new adjoint
scheme is much more efficient than the direct method for
multi-design-parameters problems.

4 Application of the model reduction method (Guyan
method)

When the analysis model has a large numbers of DOFs, the
solution of Lyapunovmatrix equation is computationally cost-
ly, which will makes the computing time of optimization pro-
cess increase significantly. For example, for a 1,000-dof sys-
tem, the number of unknowns in P is 2,001,000. In other
words, although the adjoint method reduces the number of
Lyapunov matrix equations to be solved for sensitivity analy-
sis, the huge size of matrix in Lyapunov equation is still a
bottleneck for our method. Different model reduction meth-
od (Guyan 1965; Irons 1965; Wang et al. 2013) can be
used to address this bottleneck problem. For example,
Wang et al. (1984) used the assumed modes method to
reduce the beam model to 3-dof. We will use a classic
method, Guyan reduction, in this paper. The sensitivity
analysis scheme for the system with other reduction
methods will be similar with the scheme for the system
with Guyan reduction.

4.1 Guyan reduction method

By Guyan reduction method, the government dynamic equa-
tion of the reduced model considers only the master DOFs,
and thus the dimension of the equation is reduced to number
of the master DOFs. Let u (N×1) denote the displacement
vector of the model, um (M×1) the displacement vector of
the master DOFs and us ((N-M)×1) the displacement vector
of the slave DOFs. N is the number of the all DOFs, andM is
the number of master DOFs. In Guyan method, the structural
displacement vector u is partitioned as

u ¼ um
us

� �
ð32Þ

where the subscript s refers to slave DOFs, and the subscriptm
denotes master DOFs.

The relationship between these two vectors can be
expressed as us=−Kss

− 1Ksmum, consequently,

u ¼ Tum ð33Þ

T ¼ I
−K−1

ss Ksm

� �
ð34Þ

where, I is aM×M identity matrix,T is aN×M transformation
matrix.Kss andKsm are submatrices in the partitioned stiffness
matrix K.

Using the transformation matrix T, stiffness matrix Kre

(M×M), damping matrix Cre (M×M) and mass matrix Mre

(M×M) of the reduced model can be obtained by

Mre ¼ TTMT; Cre ¼ TTCT; Kre ¼ TTKT ð35Þ

The dynamic governing equation of the reduced model is

Mre€um þ Creu
�
m þKreUm ¼ 0 ð36Þ

4.2 Adjoint sensitivity analysis algorithm for the reduced
system with Guyan reduction

The relationship of the initial conditions of the full model and
the reduced model can be expressed as

u0 ¼ Ture;0; v0 ¼ Tvre;0 ð37Þ
where ure,0 and vre,0 are the initial displacement and velocity
of the reduced model, respectively. Notice that, ure,0 and vre,0
cannot be solved directly from (37) because T is not a square
matrix, is obtained by using the generalized inverse matrix
method as

ure;0 ¼ M−1
reT

TMu0; vre;0 ¼ M−1
reT

TMv0 ð38Þ

By using the transformation relation (33) the objective
function in (5) can be expressed as

J ¼
Z ∞

0
Xre

TQreXredt ð39Þ

where, Xre ¼ uref vreg. And Qre can be obtained by

Qre ¼ tTQt ð40Þ

Where, t ¼ T0⋮½ 0T�. 0 is a null matrix, which has same
dimension with the matrix T. The objective function of the
matrix product form (10) can be written as

J ¼ XT
re 0ð ÞPreXre 0ð Þ ð41Þ

Pre is obtained by solving the Lyapunov equation of the
reduced model, Are

TPre+PreAre=−Qre. The sensitivity of the
objective function is then given by

∂J
∂dk

¼ ∂Xre 0ð ÞT
∂dk

PreXre 0ð Þ þ Xre 0ð ÞT ∂Pre

∂dk
Xre 0ð Þ

þ Xre 0ð ÞTPre
∂Xre 0ð Þ
∂dk

ð42Þ

Adjoint methods of sensitivity analysis for equation 229



The detailed derivation of the sensitivity analysis
scheme of the reduced model and the involved approx-
imation is shown in the appendix. The solution process
of using the adjoint sensitivity analysis scheme with
Guyan reduction is summarized below:

1. Give the initial states X (0), weighting matrix Q,
obtain the stiffness matrix K, mass matrix M,
damping matrix C.

2. Obtain the T by (34)
3. ObtainMre, Cre, Kre, Qre, ure,0 and vre,0 by (35), (38) and

(40), respectively.
4. Obtain the matrix Are and solve a Lyapunov function to

obtain Pre by

AT
rePre þ PreAre þQre ¼ 0 ð43Þ

5. Obtain the matrix Sre and solve a Lyapunov function to
obtain λre by

Sre ¼ Xre 0ð ÞXre 0ð ÞT ð44Þ

Areλþ λAT
re þ Sre ¼ 0 ð45Þ

6. For k=1, 2, 3,…, n,

Obtain the sensitivities ofT,Are andQrewith respect to kth
design parameter. And Obtain Dk by

Dk ¼ ∂Qre

∂dk
þ ∂AT

re

∂dk
Pre þ Pre

∂Are

∂dk
ð46Þ

Obtain the sensitivity of Xre,0 by

∂Xre;0

∂dk
¼ ∂ure;0

∂dk
∂vre;0
∂dk

� �T
ð47Þ

where

∂ure;0
∂dk

¼ M−1
reT

TM
∂T
∂dk

ure;0−M−1
reT

TM
∂u0
∂dk

ð48Þ

∂vre;0
∂dk

¼ M−1
reT

TM
∂T
∂dk

vre;0−M−1
reT

TM
∂v0
∂dk

ð49Þ

Obtain the derivative of the objective function with respect
to kth design parameter by

∂J
∂dk

¼ ∂Xre 0ð ÞT
∂dk

PreXre 0ð Þ þ
X2M
i¼1

X2M
j¼1

λi jD
k
i j

þ Xre 0ð ÞTPre
∂Xre 0ð ÞT

∂dk
ð50Þ

4.3 Direct sensitivity analysis algorithm for system
with guyan reduction

The solution process of direct method for reduced mod-
el is similar to the adjoint method for reduced model.
The difference is that the second term of (42) is solved
by direct method. Thus, the direct method for reduced
model needs to solve n+1 Lyapunov equations, where n
is the number of design parameters.

Through Guyan reduction, the computing time of the
solution of Lyapunov matrix equation can be greatly re-
duced. If the performance index J involves a small num-
ber of structural nodal responses, the scale of the reduced
model can be decreased significantly by Guyan reduction.
However, the best selection scheme of master DOFs is not
easy to decide, especially for complex structures.

5 Numerical examples

Two examples are presented in this section. The first
example is used to demonstrate the accuracy and effi-
ciency of the proposed methods. The optimal support
location is solved as a topology optimization problem
in the second example.

To distinguish the methods used in the following para-
graphs, the direct method and adjoint method presented in
Section 3 are called direct variable method for full model
(DVMF) and adjoint variable method for full model
(AVMF), respectively. Similarly, the direct method and
adjoint method mentioned in section 4 are called direct
variable method for reduced model (DVMR) and adjoint
variable method for reduced model (AVMR), respectively.

5.1 Example 1

In this example, we consider a clamped-free beam
(3 m×0.02 m×0.02 m) attached with several identical
damped springs (along Y direction). The beam material
is linear elastic with the elastic modulus 2.1×1011 Pa
and mass density 7850Kg/m3. The spring stiffness ks
is to be determined (N/m), and the damping coefficient
is 103 N·s/m. Figure 1 shows the beam model used in
this example. Specially, the beam is uniformly meshed
into 50 2-node beam elements. Each node has 2 DOFs
(lateral displacement and rotation about Z-axis). Five
equally spaced damped spring supports are considered.
The initial displacements and velocities of all nodes are
zero and 10 m/s respectively. The stiffness k of each
spring is chosen as the design variable. Thus, there
are 5 design variables.
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5.1.1 Comparison of adjoint method and direct method
for the full model

Firstly, we compare the sensitivity results from three methods,
central difference method, AVMF and DVMF to validate the
proposed AVMF. In this paper, all the results of the central
difference method are computed using the full model.

The objective function is

J ¼
XR
i¼1

Z ∞

0
y2i dt ð51Þ

where yi is the Y-direction displacement of the ith node of the
beam, R is the total number of the free nodes of the beam.

The sensitivity results of the objective function with respect
to k of each spring at k=1.0×105 N/m from central difference
method, AVMF and DVMF are shown in Fig. 2 and are rep-
resented by the crosses, squares and rounds, respectively. The
results show that the AVMF and DVMF obtain identical re-
sults with the central difference method. The step size study
found that 100 N/m step size for ks=1.0×10

5 N/m was the
best.

Next, we compare the CPU time of the solution process of
one Lyapunov equation for the models with different numbers
of DOFs, which corresponds to different mesh density. The
CPU time results are summarized in Fig. 3. In this paper, all
the CPU time results shown in tables are the average values of

CPU time of 10 repeated analyses. The computer used in this
paper is i7-3770 3.4GHz, Windows 7.

The Fig. 3 shows that the CPU time of the solution process
of Lyapunov equation increases rapidly when increasing the
number of DOFs. Thus, if a problem has a larger numbers of
DOFs, the solution process of Lyapunov equation will make
the sensitivity analysis process unacceptably slow. For the
1000 DOFs case, the CPU time is 54.12 s and the memory
space for solver lyap () is about 0.239 GB. If the problem can
be transformed to a reduced space which has 1000 or less
DOFs, most PCs have enough memory to perform the sensi-
tivity analysis.

Now, we compare the CPU time of direct method (DVMF)
and adjoint method (AVMF). First, we compare CPU time of
DVMF and AVMF of the models with different numbers of
DOFs. Other conditions are the same as previous ones. The
CPU time results of the two methods are summarized in
Table 1. TA is the CPU time of the sensitivity analysis process
of AVMF, and TD is the CPU time of the sensitivity analysis
process of DVMF. As there are 5 design variables, the DVMF
needs to solve 6 Lyapunov equations, and the AVMF needs to
solve 2 Lyapunov equations. Thus, for the same model, the
total CPU time of solution process of Lyapunov equations of
AVMF is 33 % of DVMF.

The results show that total CPU time of the sensitivity
analysis process of AVMF is less than DVMF, especially

Table 1 CPU time of two methods vs. number of DOFs in the model

Number of DOFs CPU time (s) TA/TD

TA (AVMF) TD (DVMF)

100 0.091 0.232 39.34 %

600 22.095 61.802 35.75 %

Number of DOFs

CP
U 

�m
e 

(s
)

Fig. 3 CPU time of solution process of Lyapunov equation vs. number of
DOFs

Se
ns

it
iv

it
y

Spring’s number

Adjoint method

Direct method

Difference method+

Fig. 2 Sensitivity results of the stiffness k of each spring from three
methods

3m

0.6m

Y

X

54321

Fig. 1 The beam model with 5 damped springs
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when the problem has large number of DOFs. When increas-
ing the number of DOFs, the ratio TA/TD tends to be 33 %,
which shows that the total CPU time of solution process of
Lyapunov equations is the major part of sensitivity analysis
process for the model with large number of DOFs.

Next, we consider the effect of different numbers of design
variables. We use several models with different numbers (5,
10, 20 and 50) of damped springs, the spring stiffness (ks=
1.0×105 N/m) of which are design variables to compare CPU
time of DVMF and AVMF under different numbers of design
variables. The distribution of Ns damped springs is shown in
Fig. 4. Set beam element size to be 0.01 m (the number of
DOFs of the analysis model is 600), and other conditions stay
the same as previous ones.

The results of computing time of different methods are
summarized in Fig. 5. The results show that total CPU time
of the sensitivity analysis process of AVMF is much less than
DVMF in all the cases, especially when the problem has large
number of design variables. Thus, for a problem with large
numbers of DOFs and design parameters, the AVMF is strong-
ly recommended.

5.1.2 Comparison of adjoint method and direct method
for reduced model

In this section, we apply both the adjoint method (AVMR) and
the direct method for reduced model (DVMR). The same
beam example with damped spring supports mentioned above
is used. The model used has 300 elements (600 dofs) with 50

damped spring supports. Other conditions are same as previ-
ous ones. To construct the reduced model, the Y-direction
freedoms of the translational dof of 10 nodes are chosen as
the master DOFs to reduce the number of DOFs of the anal-
ysis model by Guyan method. The locations of the nodes are
0.3 m, 0.6 m, 0.9 m, 1.2 m, 1.5 m, 1.8 m, 2.1 m, 2.4 m, 2.7 m
and 3.0 m, respectively (from the left hand side of the beam).

First, we compare the sensitivity results from AVMR,
DVMR and central difference method (use full model) to ver-
ify AVMR and DVMR. Thus, there are just 10 DOFs in the
reduced model.

The sensitivity results of the objective function with respect
to ks of each spring at ks=1.0×10

5 N/m computed by three
methods (i.e., central difference method, AVMR and DVMR)
are shown in Fig. 6, and are represented by crosses, squares
and circles, respectively. The central difference method is
solved through full model, and AVMR and DVMR are solved
using the reduced model. The results show that AVMR and
DVMR give almost identical results with the central differ-
ence method.

The CPU time of sensitivity analysis of AVMF and DVMF
using full model (600 DOFs) and AVMR and DVMR using
reduced model (10 DOFs) is summarized in Table 2.

The results show that the CPU time decreases significantly
by using the reduced model. The computing time reduces
about 88.96 % and 99.18 %, respectively comparing with
AVMF and DVMF.

Table 2 The CPU time of the four methods

AVMR DVMR AVMF DVMF

CPU time (s) 3.953 4.037 35.808 492.306
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5.2 Example 2

Topology optimization problems always have large numbers
of design parameters. We construct a topology optimization
problem to test the new sensitivity analysis methods. In this
example, we consider a 1 m×1 m×0.01 m plate attached with
several identical damped springs (ks=10

6 N/m, cs=100 N·s/
m). One edge of the plate is clamped and other three edges are
free. The material of the plate is linear elastic with elastic
modulus 2.1×1011 Pa, Poisson ratio 0.3, and mass density
7850Kg/m3. The initial velocity of Z direction of all
the free nodes of plate is 10 m/s. The design problem
is to decide the optimized location of H damped springs
to minimize a criterion defined below. This problem is
formulated as a topology optimization problem. By in-
troducing an artificial density variable to describe the
spatial distribution of the damped springs and using
interpolation model of SIMP to obtain 0–1 design.
Specifically, an identical potential damped spring (along
Z direction) is placed between every free nodes and the
ground.

Set a virtual density ρi∈[ρmin, 1] to every spring as the
design variable. We introduce an artificial relation between
density (ρi) and the parameters of the damped springs.

Ki ¼ ρliK0; Ci ¼ ρliC0 ð52Þ
where l is the penalty parameter. In this example, l is chosen as
1.2. The analysis model is shown in Fig. 5, where the nodes
are the potential locations of the damped springs as shown in
Fig. 7a. The purple lines are the dumped springs and the blue
square elements are the 4-node square plate elements (shell63
in Ansys). Each node of the element has 3 DOFs, uz, θx and θy.
The element size of the plate is 0.1 m (there are 110 free
nodes). The analysis model has 330 DOFs and 110 design
parameters. The topology optimization problem can be
expressed as

min J ¼
X110
i¼1

Z ∞

0
z2i dt

const:
XM
i¼1

ρi ¼ H

0 < ρmin≤ ρi≤ 1

ð53Þ

where H specifies the material volume available for the
damped springs. Here we assume each spring, if any, uses
material volume 1, H will be the number of damped springs
in the final optimum design. zi is the Z-direction displacement
of the ith node of the plate. The objective function concerns
the Z-direction displacements of all the 110 free nodes.

The results show that AVMF and DVMF give results close
to the finite difference method, no more than 0.05 % differ-
ence for Δρ=0.01.

Next, we apply Guyan reduction method to the analysis
model and apply AVMR and DVMR to obtain the sensitivity
results. We use three schemes of master DOFs to obtain the
reduced model. The three selection schemes are shown in
Fig. 8, where uz of the nodes covered by white squares are
the master DOFs.

The sensitivity results of 5 design parameters from AVMR
(the results from DVMR are almost same with those from
AVMR) of the four reduced-order models are summarized in
Table 3 and compared with the results from finite difference
method using full model. Jmdoel 1

′ , Jmdoel 2
′ and Jmdoel 3

′ are the
sensitivity results obtained by AVMR using model 1, 2 and 3,
respectively. The results show that the sensitivities obtained
by model 3 are almost identical with the results from finite
difference method using full model, and the accuracy of the
results obtained by the other three models is relatively lower
comparing with the former. Thus, in this example, the scheme
3 of master DOFs is the most reasonable choice to obtain the
reduced model.

The CPU time of solving processes of different methods is
summarized in Table 4. The computing time of AVMR is
shortest, and DVMF is most time consuming. This example
shows that when the reduced model still contains 100 or more
DOFs, the adjoint method for reduced model remains the best
choice to obtain the sensitivities considering the time cost.

Finally, we use the four sensitivity analysis schemes to
solve the topology optimization described in (63). H is set to

Table 4 CPU time of sensitivity analysis of all the four methods

AVMR DVMR AVMF DVMF

CPU time (s) 3.520 10.009 10.575 181.130

Table 3 The sensitivities of 5 design parameters from different models

k JFDM
′ Jmdoel 1

′ Emodel1 Jmdoel 2
′ Emodel2 Jmdoel 3

′ Emodel3

20 2.141×10−7 0.687×10−7 67.91 % 2.030×10−7 5.18 % 2.138×10−7 0.14 %

40 1.827×10−7 1.878×10−7 2.79 % 1.826×10−7 0.05 % 1.828×10−7 0.05 %

60 6.154×10−7 5.559×10−7 9.67 % 6.179×10−7 0.41 % 6.153×10−7 0.02 %

80 6.962×10−7 4.917×10−7 29.37 % 7.076×10−7 1.64 % 6.969×10−7 0.10 %

100 5.295×10−7 4.698×10−7 11.27 % 5.369×10−7 1.40 % 5.312×10−7 0.32 %
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2. Figure 9 shows that optimization using different sensitivity
analysis methods have almost identical iteration history and
obtain same optimized design. The CPU time of solving pro-
cesses of topology optimization problem using different sen-
sitivity analysis methods is summarized in Table 5. The CPU
time of optimization process using AVMR is far less than the
CPU time of other three optimization processes.

6 Conclusion

In this paper, we propose a new sensitivity analysis scheme of
Lyapunov’s method. The new method is derived by using
adjoint variable method, where one just needs to solve
Lyapunov equation twice to obtain the sensitivities of all de-
sign parameters. To further reduce the computational burden
of solving the Lyapunov equation we use Guyan reduction
method to reduce the number of DOFs of the analysis model.

The associated adjoint sensitivity scheme of the reduced mod-
el is also developed. For problems with large number of
DOFs, the time cost of the sensitivity analysis is reduced sig-
nificantly by using the reduced model together with the ad-
joint sensitivity analysis. Two numerical examples demon-
strate the accuracy and efficiency of the proposed method.
The proposed method can be used to perform topology opti-
mization using time domain criterion. The research results will
be reported in a future paper.

Acknowledgment This work is supported by National Natural Science
Foundation of China (91216201 and 11372062).

Appendix A Adjoint sensitivity analysis
for the reduced model by Guyan reduction

The derivative of objective function with respect to design
parameters can be expressed as (42)

where, ∂Xre 0ð Þ
∂dk ¼ ∂uTre;0

∂dk

∂vTre;0
∂dk

� �
T . From the (37), we get that

∂u0
∂dk

¼ ∂T
∂dk

ure;0 þ T
∂ure;0
∂dk

;
∂v0
∂dk

¼ ∂T
∂dk

vre;0 þ T
∂vre;0
∂dk

ð54Þ

Table 5 CPU time of optimization processes using different sensitivity
analysis methods

AVMR DVMR AVMF DVMF

CPU time (s) 226.004 603.303 636.852 10886.824
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Fig. 9 Iteration histories of the
objective function of optimization
process using four sensitivity
analysis methods: a DVMF; b
AVMF; c DVMR; d AVMR
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T cannot be inverted directly, so premultiply both sides of
the equation by matrix TTM. Then, we get

TTM
∂u0
∂dk

¼ TTM
∂T
∂dk

ure;0 þ TTMT
∂ure;0
∂dk

ð55Þ

TTM
∂v0
∂dk

¼ TTM
∂T
∂dk

vre;0 þ TTMT
∂vre;0
∂dk

ð56Þ

Then

∂ure;0
∂dk

¼ M−1
reT

TM
∂T
∂dk

ure;0−M−1
reT

TM
∂u0
∂dk

ð57Þ

∂vre;0
∂dk

¼ M−1
reT

TM
∂T
∂dk

vre;0−M−1
reT

TM
∂v0
∂dk

ð58Þ

In (42), the item XT
re 0ð Þ ∂Pre

∂dk Xre 0ð Þ can be obtained by

adjoint method mentioned in section 3.2.

XT
re 0ð Þ ∂Pre

∂dk
Xre 0ð Þ ¼

X2M
i¼1

X2M
j¼1

λre
i j D

re;k
i j ð59Þ

where M is number of DOFs in reduced model,

Dre;k ¼ ∂AT
re

∂dk Pre þ Pre
∂Are
∂dk þ ∂Qre

∂dk . Letting

Sre ¼ Xre 0ð ÞXre 0ð ÞT ð60Þ

λre can be obtained by solving one Lyapunov matrix
equation

Areλ
re þ λreAT

re þ Zre ¼ 0 ð61Þ
∂Are
∂dk can be expressed as

∂Are

∂dk
¼

O O

−
∂M−1

re

∂dk
Kre−M−1

re

∂Kre

∂dk
−
∂M−1

re

∂dk
Cre−M−1

re

∂Cre

∂dk

" #

ð62Þ
where

∂Kre

∂dk
¼ ∂ TTKT

� �
∂dk

¼ ∂TT

∂dk
KTþ TT ∂K

∂dk
Tþ TTK

∂T
∂dk

ð63Þ

∂Cre

∂dk
¼ ∂ TTCT

� �
∂dk

¼ ∂TT

∂dk
CTþ TT ∂C

∂dk
Tþ TTC

∂T
∂dk

ð64Þ

∂M−1
re

∂dk can be obtained by

∂M−1
re

∂dk
¼ −M−1

re

∂Mre

∂dk
M−1

re ð65Þ

where

∂Mre

∂dk
¼ ∂ TTMT

� �
∂dk

¼ ∂TT

∂dk
MTþ TT ∂M

∂dk
T

þ TTM
∂T
∂dk

ð66Þ

The matrix ∂Qre
∂dk can be expressed as

∂Qre

∂dk
¼ ∂tTQt

∂dk
¼ ∂tT

∂dk
Qtþ tT

∂Q
∂dk

tþ tTQ
∂t
∂dk

ð67Þ

∂t
∂dk

¼
∂T
∂dk

O

O
∂T
∂dk

2
64

3
75 ð68Þ

And now, it remains to derive the solution of ∂T
∂dk in terms of

sensitivities of stiffness matrix. From (34), ∂T
∂dk can be

expressed as

∂T
∂dk

¼
O

−
∂K−1

ss

∂dk
Ksm−K−1

ss

∂Ksm

∂dk

( )
ð69Þ

where

∂K−1
ss

∂dk
¼ −K−1

ss

∂Kss

∂dk
K−1

ss ð70Þ

Note that ∂Kss
∂dk and

∂Ksm
∂dk are part of ∂K∂dk . For the case the design

variable is dumping coefficient of the dumped spring, ∂Kss
∂dk and

∂Ksm
∂dk is zero, the computational cost can be further reduced.
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