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Abstract In this work, reliability based design optimization
(RBDO) of two aeroelastic stability problems is addressed:
(i) divergence, which arises in static aeroelasticity, and (ii)
flutter, which arises in dynamic aeroelasticity. A set of
design variables is considered as random variables, and
the mean mass is minimized for a given set of constraints
— including the probability of failure by divergence or
flutter. The optimization process requires repeated evalu-
ation of reliability, which is a major contributor to the
total computational cost. To reduce this cost, a polynomial
chaos expansion (PCE)-based metamodel is created over a
grid in the parameter space. These precomputed PCEs are
then interpolated for reliability calculation at intermediate
points in the parameter space, as demanded by the opti-
mization algorithm. Two new modifications are made to
this method in this work. First, the Gauss quadrature rule is
used — instead of statistical simulation — to estimate the
chaos coefficients for higher computational speed. Second,
to increase this computational gain further, a non-uniform
grid is chosen instead of a uniform one, based on relative
importance of the design parameters. This relative impor-
tance is found from a global sensitivity analysis. This new
modified method is applied on a rectangular unswept can-
tilever wing model. For both optimization problems, it is
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observed that the proposed method yields accurate results
with a considerable computational cost reduction, when
compared to simulation based methods. The effect of grid
spacing is also explored to achieve the best computational
efficiency.

Keywords Optimization under uncertainty · Monte Carlo
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1 Introduction

Aeroelastic stability is an important concern in many
engineering applications such as cable-supported bridge
structures, tall chimneys, and aircrafts, to name a few
(Dowell et al. 2004). In a fluid-structure interaction (FSI)
problem, when the dynamic component of the structure is
involved, flutter may occur at a certain velocity — termed
as flutter speed. Whereas, when the dynamic component
of the structure is absent, divergence may occur. Both
of these instabilities may lead to a very large deforma-
tion, and thus to a structural failure. Thus, at the design
stage, appropriate steps are taken to avoid these insta-
bilities. However, predicting the critical flutter and diver-
gence speeds becomes difficult due to uncertainties aris-
ing from manufacturing variability, inadequate knowledge
about complex physics such as joints, variability in the
flow parameters, and variability in flutter derivatives (Pettit
2004; Beran et al. 2006; Kareem 2008; Cheng et al. 2003;
Seo and Caracoglia 2011). Thus, these uncertainties must
be considered during the design phase of such structures
(Choi et al. 2007). The probability of failure calculation
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considering these uncertainties is treated in the broad area of
reliability analysis (Ditlevsen and Madsen 1996; Matthies
et al. 1997; Okazawaa et al. 2002; Schenk and Schuëller
2005; Rackwitz 2001; Hu and Youn 2011b; Chowdhury
et al. 2009). Therefore, a search for an optimal design
leads to a reliability-based design optimization (RBDO) —
also referred to as reliability based optimization (Schuëller
and Jensen 2008; Stanford and Beran 2012; Allen and
Maute 2005; Valdebenito and Schuëller 2010; Wang et al.
2013; Paiva et al. 2014), as opposed to the deterministic
optimization (Librescu and Maalawi 2009).

The solution process of an RBDO method has two major
components: the optimization algorithm, and the reliabil-
ity computation. The reliability computation may appear
either in the objective function or in inequality constraints.
Selection of an optimization algorithm depends on the
convexity of the objective function; for convex objective
functions a gradient-based method can be used, whereas
non-convex functions require global optimization methods
such as genetic algorithm. On the other hand, selection
of a reliability method depends upon the desired accuracy
level and availability of computational power. Recent sur-
veys on RBDO can be found in Refs. Valdebenito and
Schuëller (2010) and Aoues and Chateauneuf (2010). The
solution strategies of RBDO problems are often classified
into three types of approaches, as (i) the usual double loop
approach, where the outer loop is for the optimization itera-
tions and the inner loop is for the reliability computation, (ii)
single loop approach (Kuschel and Rackwitz 1997; Liang
et al. 2007), and (iii) decoupling approach. While the dou-
ble loop approach is the most general approach, the other
two approaches were later developed to reduce the total
computational cost under certain mitigating assumptions on
the problem features — see Ref. Valdebenito and Schuëller
(2010) and the references therein for more details. In the
current work, the double-loop approach is used. A major
computational cost in solving an RBDO problem is incurred
from the requirement of repeated calculation of the relia-
bility. Even outside the purview of RBDO, a number of
methods have been proposed thus far on reducing the cost
of reliability calculations. Reliability calculation methods
can be broadly classified as simulation based — such as
Monte Carlo, importance sampling, subset simulation (Au
and Beck 2001), to name a few, and methods that do not
rely on statistical simulation — such as first order reliability
method (FORM), second order reliability method (SORM),
to name a few. Reviews of reliability computation methods
can be found in Rackwitz (2001) and Manohar and Gupta
(2005). The prime goal of these reliability calculation meth-
ods is to maximize the accuracy of the reliability estimate
with a minimal computational cost. The current work is
aimed at reducing the cost of repeated evaluation of relia-
bility, and thereby reducing the total cost of computation in

RBDO. To this end, a metamodel is used. Metamodels, also
termed as response surfaces or surrogate models, are com-
putationally inexpensive alternative models that mimic or
approximate the actual physical response — which requires
an expensive computation for evaluation. In general, a
metamodel is created to approximate the response over a
parameter range of interest. As the size of this parameter
range increases, improvement of the metamodel is required.
Thus, there is a trade-off between the cost of the meta-
model and the desired accuracy. The cost of the metamodel
includes both construction and execution costs. These meta-
models then substitute the actual expensive model in the
reliability computation phase, and thus help in reducing
the total cost at this phase. One widely used approach for
constructing metamodels is using polynomial expansions.
Often the spectral stochastic finite element (Ghanem and
Spanos 2003) method (SSFEM) is used to construct meta-
model. Accordingly, a random variable, vector, or process
is approximated using a set of orthogonal random poly-
nomials — termed as polynomial chaos expansion (PCE)
or generalized polynomial chaos expansion (gPCE) (Xiu
and Karniadakis 2003). This polynomial expansion is later
used instead of cumbersome numerical solvers such as finite
element. Examples of usage of PCE and gPCE in uncer-
tainty quantification (UQ) in aeroelastic systems are found
in Refs. Witteveen (2008), Xiu et al. (2012) and Oladyshkin
and Nowak (2012). A few examples of their usage in RBDO
are found in Refs. Kim et al. (2006), Wei et al. (2008);
Maute et al. (2009), Eldred and Burkardt (2009), Xiong
et al. (2011), Blatman and Sudret (2010), Hu and Youn
(2011a), Coelho et al. (2011), Wang et al. (2013), Ng and
Eldred (2012) and Zhang (2013).

On the other hand, computational fluid dynamics
(CFD) simulations are progressively becoming the norm
in the flow computation community, including the area of
aerospace engineering. This development is also encourag-
ing the computational aeroelasticity, or the fluid-structure
interaction community in general, to develop coupled
CFD-CSD (computational structural dynamics) solvers
(Geuzaine et al. 2003). However, all these solvers are com-
putationally expensive, and the cost of using such a solver
in an RBDO problem may become prohibitive. This high
cost automatically encourages development of metamodel
based techniques. Motivated by the recent progress of usage
of SSFEM in the area of aeroelasticity and associated opti-
mization — as discussed above — PCE-based metamodels
have been developed (Coelho et al. 2011; Ng and Eldred
2012). While in the existing literature — including the
papers cited here — the PCE is constructed or re-computed
in each optimization iteration, in Coelho et al. (2011)
a different approach is taken. There the PCE is constructed
only once at a set of uniformly-spaced grid points in the
design parameter space, and later interpolated during the
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optimization. The chaos coefficients are estimated using a
statistical simulation method such as Monte Carlo (MC) and
Latin hypercube sampling (LHS) (Choi et al. 2004). It is
observed that despite the additional cost of pre-computation
of PCEs, the cost saving made by this interpolation leads to
a faster RBDO.

The main contribution of the current work lies in improv-
ing the computational speed of this PCE metamodel by
introducing following two modifications. (i) The Gauss
quadrature is used to estimate the chaos coefficients, instead
of a statistical simulation, to reduce the number of execu-
tions of the true model. Here, the true model corresponds
to the full-scale aeroelasticity solver. (ii) Based on a global
sensitivity analysis in the design parameter space using
Sobol’ indices, a non-uniform grid is used for constructing
the metamodel. This step led to even fewer executions of the
true model. A gradient based optimization method is used
(Arora 2006; Rao 2008).

This paper is organized as follows. The RBDO problem
and the proposed metamodel are presented in Section 2.
They are put in the context of aeroelastic stability prob-
lems in Section 3. Numerical studies are presented in
Section 4. Finally, concluding remarks are made in
Section 5.

2 Reliability based design optimization:
the proposed method

Consider the probability space (Ω,F, P ) with Ω denoting
the sample space with elements θ , F denoting a correspond-
ing σ -algebra, and P denoting the probability measure.
In this space, let a set of random variables {ηi(θ)}i=p

i=1 —
expressed here as a p-dimensional vector η — characterize
the underlying uncertainty in the problem. That is, all the
random parameters in the design optimization problem are
functions of this vector η. Examples of such random param-
eters are geometric dimensions of the structure, stiffness and
mass properties, wind field parameters such as velocity, and
the angle of attack. Among these random parameters, let the
(uncertain) design parameters be expressed as a d dimen-
sional vector x(η) whose components xi(η) are independent
random variables. Let another d dimensional vector μx

denote the mean of x(η). The RBDO problem considered
here is of the form

Minimize
μx

f (x)

Subjected to

gi(x) � 0, i = 1, 2, 3, ..., k1

hj (x) = 0, j = 1, 2, 3, ..., k2 (1)

where f (x) ∈ R denotes the objective function, and
gi(x)-s and hj (x)-s denote the inequality and equality

constraints, respectively. For brevity, the argument η is
suppressed from x(η). Often, a bound on the parameters
such as μmin ≤ μx ≤ μmax is also used. Although the
design parameters are random, the optimization parameters
μx , the objective function, and the constraints are finally
expressed as deterministic quantities. In the current case
f (x) is the mean mass. One inequality constraint is the
probability of failure — denoted here as Pf — should not
exceed a tolerance value Ptol , that is, Pf ≤ Ptol . Details
of these expressions will be given later in the context of
numerical studies.

The optimization problem stated in Eq. 1 is solved here
in a double-loop approach. The outer loop corresponds to
the conventional deterministic optimization loop. The inner
loop corresponds to the probability of failure computation.
In this work, a gradient based method is used for the opti-
mization loop, without any loss of generality. Since the
objective function is the mean mass, a statistical simulation
is not required for its computation. However, one inequality
constraint requires computation of the probability of failure
Pf , which is an expensive calculation. Note that this prob-
ability calculation needs to be performed multiple times in
an optimization problem. Therefore a significant amount of
computational resource is spent in this step.

In this work, a PCE-based metamodel (Coelho et al.
2011) is used to reduce this cost. However, two modifi-
cations are proposed to this metamodel to accelerate the
computation. This metamodel and the modifications are
described next.

2.1 Polynomial chaos expansion

A square-integrable random variable, random vector, or
random process can be expressed in a mean-square conver-
gent series using random orthogonal polynomial bases —
known as PCE for Hermite bases, and gPCE for other bases.
For Hermite bases, the basic random variables should be
Gaussian. Therefore, if the random vector η is not Gaus-
sian, it needs to be transformed to another q-dimensional
random vector ξ with elements {ξi}i=q

i=1 as independent stan-
dard normal variables. Denote the joint probability density
function (PDF) of ξ as p(ξ), and define the expectation
operator E{·} as

E{·} =
∫
Rq

·p(ξ)dξ . (2)

Then, a square integrable random variable u(ξ) is expressed
in PCE as Ghanem and Spanos (2003)

u(ξ) =
∞∑
i=0

uiψi(ξ) , ui ∈ R , (3)
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here ui are referred to as chaos coefficients, ψi are the
Hermite polynomials in the set ξ , holding the properties

ψ0 ≡ 1 , E{ψi} = 0 for i > 0 , (4)

E{ψiψj } = δijE{ψ2
i } , (5)

with δij denoting the Kronecker delta function. The PCE
requires a truncation for computational purpose, as

u(ξ) ≈ û(ξ) =
r−1∑
i=0

uiψi(ξ) , ui ∈ R , (6)

where the value of r depends upon q, and the degree or
order of polynomial expansion, denoted by d. The number
of terms in the truncated expansion is

r =
(

q + d

d

)
= (q + d)!

q!d! . (7)

2.2 The PCE metamodel and proposed modifications

For the optimization problem, there is a constraint gi(x) in
terms of divergence or flutter velocity. These velocities are
nonlinear functions of the design parameter vector x. This
nonlinearity of the mapping leads to two assertions: (I) The
PCE needs to be at least of order two. (II) The probability
distribution of the divergence or flutter velocity, and thus the
corresponding chaos coefficients, will vary with a variation
in the mean value μx of the design parameter. Following
assertion (II), when the PCE is used for approximating the
flutter or divergence velocity, the chaos coefficients need to
be recomputed for any fresh value of μx sought by the opti-
mization during the iterations. To this end, in Coelho et al.
(2011), first a uniform grid on the optimization parameter
space μx was chosen. Then, the chaos coefficients on these
grid points were estimated using statistical simulation, by
evaluating

ui = E{u(ξ)ψi(ξ)}
E{ψ2

i (ξ)} =
∑j=N

j=1 u(ξ j )ψi(ξ j )∑j=N

j=1 ψ2
i (ξ j )

(8)

for i = 0, 1, · · · r − 1, where ξ j denotes the j th realization
of the random vector ξ and N denotes the sample size. ξ j -s
are generated by a readily available random number gener-
ator (Manohar and Gupta 2005; Valdebenito and Schuëller
2010).

These u(i)-s are stored. Subsequently, the chaos coef-
ficients at any intermediate point μx are estimated by
interpolating the stored u(i)-s. The interpolation can be done
by various methods, such as using spline functions. The
Pf at this point is estimated directly from the resulting PC
expansion.

Finally, these coefficients were interpolated on-the-fly
during the optimization loop. Thus the computational saving
is achieved by avoiding multiple runs of the expensive FSI
solver at these intermediate points. This process is graphi-
cally depicted in Fig. 1. This figure shows a set of 16 grid
points on a two-dimensional parameter space μx ∈ R

2, here
u(i) denotes the set of chaos coefficients evaluated at the ith

grid-point.
We propose two modifications to this method. The first

modification is on the evaluation of the chaos coefficients.
While the statistical simulation has the advantage of being
dimension independent, for low-dimensional space (i.e. low
q) the Gauss quadrature is economical. Accordingly, again
(8) is used. However, now the numerator is evaluated using
Gauss quadrature and the denominator is obtained from a
table lookup (Ghanem and Spanos 2003). Quadrature points
for integration can be found in Abramowitz and Stegun
(1984). For higher dimensions, sparse grids or Smolyak
cubature can be used (Ng and Eldred 2012), instead of
the tensor product structure. Note that both simulation
and Gauss quadrature methods are “non-intrusive”, that
is, the (expensive) flow-structure interaction solver (or the
numerical code to compute the critical velocity) is called
repeatedly. The second change is to use a non-uniform
grid. To achieve it, first the Sobol’ indices (Sobol’ 2001)
are estimated for evaluating sensitivities. These indices
naturally gave a rank ordering of the design variables.
Then, while constructing the grid, most important vari-
ables are divided into finer divisions while the remaining
variables are divided coarsely. This selection of a grid
with different resolutions along different random variables
would lead to reduce the total number of grid points,
and thereby, would lead to fewer executions of the true
model.

The proposed modified method can be summarized as
follows. First, find the Sobol’ indices, and rank-order the
design variables accordingly. Then, following the relative
importance, discretize the space of design variables into
a non-homogeneous grid. Then, estimate all chaos coef-
ficients at each grid point using Gauss quadrature, and
store them. Then, start the optimization algorithm, and in
each iteration, interpolate the chaos coefficients to esti-
mate the probability of failure Pf . The final outcome of
the entire optimization process is the set of design points
μx and the corresponding objective function such as mass.
The entire optimization method is presented in a flowchart
in Fig. 2.

The proposed modified method, although presented here
for aeroelastic stability problems, is applicable to some
other mechanics problems as well, since the characteris-
tics of the aeroelastic problems are not used anywhere.
The corresponding mechanics solver can directly be used to
estimate the chaos coefficients at the grid points.
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Fig. 1 Interpolation over the grid on the optimization parameter space

3 Optimization problems in aeroelastic stability

For demonstrating and testing the proposed method, a rect-
angular wing with uniform chord width but varying thick-
ness is considered, as shown in Fig. 3. In this figure, the
total semi-span of the wing is composed of two zones with
lengths b1 and b2, and thicknesses h1 and h2, respectively.
The uniform chord of the wing is denoted by c. This model

Fig. 2 Flowchart of the RBDO using the proposed metamodel

Fig. 3 The rectangular wing model

and other such simplified models are often used to demon-
strate or test computational tools (Librescu and Maalawi
2009; Stanford and Beran 2012).

3.1 Divergence

The solution strategy adopted to obtain the divergence
velocity of the rectangular wing model is outlined here, fur-
ther details can be found in Ref. Librescu and Maalawi
(2009). Divergence is mainly associated with the torsional
instability of the wing cross section. To study the divergence
phenomenon, the flow is assumed to be steady and incom-
pressible, and the fluid load is modeled using the aerody-
namic strip theory. The governing differential equation of
torsion is expressed as Bisplinghoff et al. (2013)

d

dy

(
GJ

dαe

dy

)
+ T (y) = 0 (9)

where GJ denotes the torsional stiffness, αe denotes the
elastic twist, and T (y) denotes the torque due to the wind
load about the axis y. Using the zero displacement and zero
slope boundary conditions, and other usual simplifications,
the following nonlinear equation is obtained

tan

⎛
⎜⎝V̂

b̂1√
ĥ1

⎞
⎟⎠ tan

⎛
⎜⎝V̂

b̂2√
ĥ2

⎞
⎟⎠ =

√
Ĵ1

Ĵ2
, (10)

where, V̂ is the unknown, ĥ1 and ĥ2 are normalized thick-
nesses, b̂1 and b̂2 are normalized lengths of each zone, and
Ĵ1 and Ĵ2 are normalized torsional constants of each zone,
respectively. The normalization is done with respect to a
set of baseline parameters. The lowest possible root of (10)
gives the divergence velocity of the wing model.
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3.2 Flutter

In the flutter calculation, the dynamic effect is included. The
equation of motion of a multi-degree of freedom vibrating
aeroelastic system can be written as

Mq̈ + Cq̇ + Kq = F(q̇, q, t) , (11)

where M denotes the inertia matrix, C denotes the damp-
ing matrix, K denotes the stiffness matrix, q denotes the
displacement vector, and F(q̇, q, t) denotes the excitation.
The dots over q represent derivatives with respect to time.
A widely-used two-degrees-of freedom (2DOF) model of
an airfoil cross section with heaving (h) and pitching (α)
degrees of freedom is shown in Fig. 4, and is used in this
study.

The 2DOF model is subjected to motion dependent
forces that are expressed using the flutter derivatives H ∗

1,
H ∗

2, H ∗
3, A∗

1, A∗
2, and A∗

3. Flutter derivatives are functions
of the reduced frequency k, which itself is dependent on the
natural frequency and the characteristic length of the cross
section. The motion dependent forces on the 2DOF model
are given as Scanlan and Tomko (1971)

L = ρairV
2∞

2
(c)

(
kH ∗

1
ḣ

V∞
+ kH ∗

2
cα̇

2V∞
+ k2H ∗

3 α

)
,

(12)

M = ρairV
2∞

4
(c2)

(
kA∗

1
ḣ

V∞
+ kA∗

2
cα̇

2V∞
+ k2A∗

3α

)
,

(13)

Fig. 4 Spring mounted airfoil cross section with lift force and tor-
sional moment

where ρair denotes the density of air, V∞ denotes the
freestream velocity, and c denotes the chord of the airfoil.
All motion dependent forces on the right hand side of (11)
are transferred to the left hand side to combine them with
the corresponding terms. This step yields the equation

Mq̈ + [ρairV∞D + C]q̇ + [ρairV
2∞E + K]q = 0 , (14)

where the matrices D and E are formed by rearranging the
terms from (12) and (13). D is referred to as the aerody-
namic damping and E is referred to as the aerodynamic
stiffness. These matrices are functions of the freestream
velocity V∞, the reduced frequency k, and the flutter deriva-
tives H ∗

i , A∗
i , i = 1, 2, 3. Typical forms of the above

mentioned matrices are given next. The inertia matrix M is
expressed as

M =
[

mh 0
0 Iα

]
,

the structural stiffness matrix K is expressed as

K =
[

Kh 0
0 Kα

]
,

the aerodynamic damping matrix D is expressed as

D =
[

kH ∗
1 c/2 kH ∗

2 c2/4
kA∗

1c
2/4 kA∗

2c
3/8

]
,

and the aerodynamic stiffness matrix E is expressed as

E =
[

0 k2H ∗
3 c/2

0 k2A∗
3c

2/4

]
.

Here mh, Iα , Kh and Kα represent mass, mass moment of
inertia, flexural and torsional stiffness, respectively. Upon
moving to a state-space form, (14) leads to a complex eigen-
value problem. The coefficient of the imaginary term of the
solution of this complex eigenvalue problem represents the
damping ratio. The airflow velocity at which the damping
ratio becomes negative is the flutter velocity of the aeroe-
lastic system. A typical damping trend for flutter speed
calculation is shown in Fig. 5.

3.3 The optimization problem

The RBDO problem for safety against divergence and flut-
ter is formulated next. In both aeroelastic stability problems,
the semi-span of wing, b, and the thickness of the cross
section h are considered as random design parameters. For
the wing model with two zones, it implies that b1, h1, b2,

and h2 are random. However, constraints on the total length
of the wing and the thickness ratio are imposed. The objec-
tive function is the mean mass, and the inequality constraints
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Fig. 5 Typical damping trend for flutter speed calculation

are in terms of the exceedance probabilities of the diver-
gence and flutter velocities, respectively. The optimization
problem is stated as

Minimize
(μh1μb1+μh2μb2 )

(μh1 , μb1 , μh2 , μb2)

Subjected to

Pf � Ptol,

μhlower
≤ μhi

≤ μhupper , i = 1, 2

μblower
≤ μbi

≤ μbupper , i = 1, 2

μb1 + μb2 = btot ,

μh1/μh2 = hrat . (15)

Here, btot denotes the total span of the wing, hrat denotes
the fixed ratio of thickness, μhlower

and μhupper are lower and
upper bounds of the mean wing thickness, and μblower

and
μbupper are the lower and upper bounds of the mean length of
each wing zone, respectively. All of these constants, along
with Ptol , are fixed by the designer. Pf is be defined as
P(Vdivergence/f lutter ≥ V∞), where the freestream velocity
V∞ is also random. Note that the equality constraints reduce
the dimensionality of the problem by two, that is, only μh1

and μb1 can be considered as optimization parameters.

4 Numerical studies

The proposed modified method is implemented for both
divergence and flutter instabilities, and the results are
reported in this section. Accuracy of these results is verified
against two common methods of solving RBDO problems
— Monte Carlo, and LHS. The computational speed gain,
when compared to these two methods, is also reported.
While estimating the chaos coefficients, both LHS and
Gauss quadrature are used, and the comparison is reported.
Upon evaluation of the chaos coefficients and subsequent
interpolation using bicubic splines, the sampling from the
metamodel — which is in terms of a PCE with known

coefficients – is performed using LHS. The geometric
dimensions h1 and b1 are modeled as independent random
variables as

h1(ξ1) = μh1 + σh1√
2
(ξ2

1 − 1),

b1(ξ2) = μb1 + σb1√
2
(ξ2

2 − 1), (16)

where σh1 and σb1 denote standard deviations, ξ1 and ξ2

are two independent standard normal variables. Positivity
of these two dimensions is imposed by choosing

σh1√
2

<

μh1 and
σb1√

2
< μb1 . The freestream velocity is mod-

eled as an independent random variable with Rayleigh
distribution. All computations are performed using Matlab
(MathWorks 2013).

Two proposed modifications are now implemented in
sequence. First, the Gauss quadrature is implemented, and
the accuracy and computational speed gain are reported in
Section 4.1. Then, the non-uniform grid is implemented, in
addition to the Gauss quadrature, and the results are reported
in Section 4.2.

4.1 Use of the Gauss quadrature for RBDO

In this section, the first proposed modification, that is, the
Gauss quadrature, is implemented in the RBDO process. In
all examples, the chaos coefficients are obtained using the 4
point Gauss quadrature.

4.1.1 Example 1: divergence

First, it should be tested if the PCE performs as a good
metamodel for the divergence velocity. To this end, at an
arbitrarily chosen design point μx , the chaos coefficients
ui defined in (3) are generated using (i) a statistical sam-
pling, and (ii) the Gauss quadrature. Then, the probability
density functions (PDFs) estimated using the second order

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1
0

2

4

6

8

10

Normalized divergence velocity

PD
F

 

 

PCE−Simulation
MCS
PCE−Quadrature 4x4

Fig. 6 Comparison of PDFs for divergence velocity using MC, PCE
with simulation, and PCE with 4 point Gauss quadrature. Second order
chaos expansion is used
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Table 1 Results for the optimization problem considering divergence instability

Column 1 Column 2 Column 3

Simulation based PCE metamodel

MC LHS Simulation Quadrature

Number of True model 71001 70001 25×103 25×16

executions Metamodel - - 73000 71000

Optimization (μh1 , μb1 ) (0.175, 3.9) (0.175, 3.9) (0.17, 3.9) (0.17,3.9)

results (μh2 , μb2 ) (0.14, 3.6) (0.14, 3.6) (0.14, 3.6) (0.14,3.6)

Ptol = 10−2, and 103 realizations are used in all samplings. The divergence velocity is in m/s and design variables are in m. The grid size for the
metamodel is 5 × 5

PCE are plotted in Fig. 6, and are compared with the true
PDF estimated using Monte Carlo sampling. The compar-
ison shows a good match, which implies that the PCE
can serve as a good metamodel for the chosen problem.
The maximum difference in the chaos coefficients esti-
mated by quadrature and by simulation is found to be
1.8 % for the mean and linear terms, and 11.1 % for the
quadratic terms.

The optimization problem is next solved, where the
standard deviations of the random variables are chosen as
5 % of the mean, and Ptol is chosen as 10−2. The num-
ber of realizations in all statistical simulations is chosen
as 103. A second order PCE is used to create the meta-
model, as this order was numerically found to be sufficient.
The metamodel was created using a 5 × 5 grid on the
parameter space. That means, a total of 25 six-dimensional
vectors of chaos coefficients are evaluated and stored in
the computer memory. Initial values of the design vari-
ables (μh1 , μb1 ) are (0.12, 5.625). The results are reported
in Table 1. In this table, Column 2 reports the results from
a pure simulation-based RBDO — used here as the bench-
mark for comparison, and Column 3 reports the results using
the proposed method. While the initial design point cor-
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Fig. 7 Comparison of PDFs for flutter velocity using MC, PCE with
simulation, and PCE with 4 point Gauss quadrature. Second order
chaos expansion is used. The grid size is 10 × 10

responds to Pf = 0.99, the optimal design corresponds
to Pf = 0.01. Similar trend is followed in all other
examples.

The key observations from this table are as follows.
First, the proposed PCE metamodel based method yields
good accuracy in solving the optimization problem com-
pared to pure simulation-based methods. Next, the number
of executions of the true model is reduced significantly,
especially when the quadrature is used to evaluate the chaos
coefficients. This reduction is the main gain in the pro-
posed method. As the mechanics model — termed as the
true model here — becomes more elaborate, its relative
execution cost becomes higher compared to the meta-
model, since the metamodel involves only a few scalar-level
operations.

4.1.2 Example 2: flutter

The RBDO considering flutter instability is considered next.
The flutter derivatives reported in Ref. Le Maı̂tre et al.
(2003) are used in (14). In the literature, the flutter deriva-
tives are obtained for a few values of the reduced frequency
k. Hence, to evaluate the flutter derivatives at intermediate
values of k, a spline interpolation is used. Similar to the
divergence case, applicability of the PCE as a metamodel is
again verified here. Thus, the PDFs of the flutter velocity at
an arbitrarily chosen design point are compared in Fig. 7.
Here also it is noticed that the second-order PCE yields a
good approximation.

For the optimization problem two Ptol-s are chosen: 10−1

and 10−3. First Ptol = 10−1 is considered, and the results
are reported in Table 2. The initial iterate is chosen as
(μh1 , μb1 ) = (0.18, 1.5) and a 10 × 10 grid is used for creat-
ing the metamodel. Here Vf l denotes the flutter velocity of
the wing with optimal dimensions. 102 realizations are used
in all statistical samplings. Column 2 of Table 2 shows the
computational cost for pure simulation based optimization,
whereas column 3 shows the computational cost for PCE
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Table 2 Results for the optimization problem considering flutter instability

Ptol = 10−1, and 102 realizations are used in all samplings. The flutter velocity is in m/s and design variables are in m. The grid size for the
metamodel is 10 × 10

metamodel based optimization. Similar to the divergence
problem, it is observed that (i) the metamodel-based method
yields good accuracy in the solution, and (ii) the quadrature-
based PCE yields considerable computational acceleration
— both in terms of computational time and number of
executions of the true model.

The convergence history of the objective function is
shown in Fig. 8. It is observed from this figure that the
optimization converges in 12 iterations. The rate of con-
vergence of the RBDO process is driven by the default
tolerance level defined within the solver. Since a lower tol-
erance level will require more iterations, the computational
saving using the metamodel will be more pronounced in that
case.

For problems of practical interest, often a much lower
value of Pf is expected. Hence, results for the flutter RBDO
problem for Ptol=10−3 are obtained next. The grid size
is 10 × 10, and 104 realizations are used in all statisti-
cal simulations. The results are reported in Table 3. It is
observed that, for this low value of Pf , the computational
time required by the pure simulation-based method was pro-
hibitive, and thus is not reported. Here the computational
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Fig. 8 Typical convergence history of the objective function for grid
size 10×10 and Pf =10−1. The chaos coefficients were obtained using
the quadrature rule

gain is even more pronounced — both in terms of computa-
tional time and number of executions of the true model. The
cost difference between the sampling-based and quadrature-
based metamodels is very high — the first one takes about
seven days whereas the second one takes only two-and-half
hours.

The effect of the grid size in the PCE metamodel on accu-
racy and computational time is studied next. In this case, the
LHS with 104 realizations is used for Ptol = 10−3. Figure 9
shows the cost breakup, as well as the total computational
cost of the RBDO. It is observed that the total computa-
tional costs for very coarse grids of sizes of 3 × 3 and 6 × 6
are the least. However, the optimization results are found to
be relatively inaccurate for these coarse grid sizes — and
thus are not reported here. It is observed that accuracy is
achieved from grid size of 7 × 7 onwards. The total com-
putational cost keeps fluctuating till grid size of 13 × 13,
after which it begins to converge. It should be noted that the
total computational cost of estimating the PC coefficients
increases with the grid size. The fluctuating component
of the total computational cost is the time required for
optimization.

To further explore the effect of grid size, the number
of reliability calculations for each grid size for Pf =10−3

Table 3 Results for the optimization problem considering flutter
instability

Ptol = 10−3, and 104 realizations are used in all samplings. The
flutter velocity is in m/s and design variables are in m. The grid size
for the metamodel is 10 × 10
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Fig. 9 Computational time for each grid size for the flutter problem
with Ptol=10−3 and the number of realizations = 104. PC coefficients
are estimated using 4 point Gauss quadrature

with 104 realizations is presented in Fig. 10. The default
tolerance level of the solver is used in this case. It should be
noted that a lower tolerance level would require more reli-
ability calculations than shown in this figure. In this figure,
note that the number of reliability calculations does not vary
significantly beyond a grid size — at and above 8×8 in this
case. This observation asserts the existence of an optimal
grid size for the metamodel in terms of computational cost.
However, the level of accuracy cannot be judged by this
figure. As mentioned earlier, the time required to calculate
the flutter velocity for each realization of random variables
is reduced to a great extent by replacing the true model with
the PCE based metamodel. This helps to perform reliabil-
ity estimation in a computationally inexpensive manner in
RBDO.

Thus, in both the examples it is noticed that the usage
of Gauss quadrature to estimate the chaos coefficients has
led to a significant computational saving with comparable
accuracy.
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Fig. 10 Reliability calculations for each grid size for the flutter prob-
lem with Pf =10−3. 104 realizations are used, and the default tolerance
level of the optimization solver is used

Table 4 Results for the optimization problem considering divergence
instability upon using Sobol’ indices and therefore a non-uniform grid

Ptol=10−2, and 103 realizations are used. The grid size for the
metamodel is 5 × 4

4.2 Use of a non-uniform grid

The second proposed modification, usage of a non-uniform
grid based on global sensitivity, will be numerically tested
now.

4.2.1 Example 1: divergence

For the divergence example, Sobol’ indices for length and
thickness are found to be 0.63 and 0.37, respectively. Thus,
to obtain an appropriate mesh size, discretization should
be finer for the length parameter b, and coarser for the
thickness h. Accordingly, a mesh size of 5 × 4 is cho-
sen, instead of the previous size 5 × 5. The RBDO is
carried out for the metamodel obtained using this non-
uniform mesh. The cost of computation of Sobol’ indices
is lower compared to the RBDO. The optimized values of
the design parameters are given in Table 4. The results in
this table should be compared with quadrature results of
Column 3 of Table 1. Here, a reduction in the computa-
tional cost is observed due to fewer executions of the true
model.

4.2.2 Example 2: flutter

Sobol’ indices for flutter velocity in the present problem are
found to be as follows: length b : 0.9, and thickness h : 0.1.
Using this rank ordering, the uniform mesh size 10 × 10 is

Table 5 Results for the optimization problem considering flutter
instability upon using Sobol’ indices and therefore a non-uniform grid

Ptol=10−3, and 104 realizations are used. The grid size for the
metamodel is 10 × 5



Reliability based optimization in aeroelastic stability problems using polynomial chaos based metamodels 1079

now changed to a non-uniform mesh of size 10 × 5. Again,
the non-uniform mesh is kept finer in the ‘b-direction’ and
coarser in the ‘h-direction’. However, the number of divi-
sions along h is half the number of divisions along b. The
reason is, compared to the divergence example, here the
relative sensitivity for h is much lower. The RBDO is car-
ried out for the metamodel obtained using this non-uniform
mesh. The optimized values of the design parameters are
given in Table 5. This table should be compared with Col-
umn 3 of Table 3. By this comparison, a reduction in the
computational cost is observed — from 149 minutes to 102
minutes. The reduction in the computational time is mainly
due to lesser number of executions of the true model. The
Sobol’ indices are obtained by evaluating the PC coeffi-
cients using the Gauss quadrature. The cost of computation
involved in evaluating these indices is small compared to the
RBDO.

Thus, in both the examples, it is observed that the
selection of a non-uniform grid has led to a considerable
cost saving. The benefit is more pronounced in the flutter
example.

5 Concluding remarks

Both the proposed modifications to the PCE-based meta-
model have led to a significant cost saving. As the cost of
running the true model increases, the computational gain in
using the metamodel increases. The modified method has
potential to be used in problems outside the area of aeroelas-
ticity as well. Note that the Gauss quadrature in a standard
tensor product grid is best when the stochastic dimension
of the problem — characterized by the number of indepen-
dent random variables in the design space — is low. As this
dimensionality grows, the current method can be extended
in two ways: First, by using a dimensional reduction via
the same sensitivity analysis. Second, by using a sparse grid
instead of the tensor product Gauss quadrature. These issues
remain as a topic of further exploration.
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