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Abstract A generalized sensitivity formulation described in a
curvilinear coordinate system is proposed. Utilizing it, the
continuum-based isogeometric shape sensitivity analysis
method for the shell components is developed in the curvilin-
ear coordinates derived from the given NURBS geometry. In
isogeometric approach, the designs are embedded into the
NURBS basis functions and the control points so that geomet-
rically exact shell models can be incorporated in both response
and sensitivity analyses. The precise shape sensitivities can be
obtained by considering accurate and continuous normal and
curvatures in the boundary integrals of the boundary resultants
of the shell and their material derivatives. Through numerical
examples, the developed isogeometric shape sensitivity is ver-
ified to demonstrate excellent agreements with finite differ-
ence sensitivity. Also, the importance of higher order geomet-
ric information in the sensitivity expressions is identified. For
the shape optimization problem of the shell, the proposed
method works well with boundary resultants accompanying
severe curvature changes.

Keywords Isogeometric analysis . Curvilinear coordinate
systems . Shape sensitivity analysis . Higher order geometric
effects . Geometrically exact shell analysis . Shape design
optimization

1 Introduction

Geometric modeling in CAD (computer-aided design) sys-
tems is usually described by the NURBS (non-uniform ratio-
nal B-Splines) basis functions. In finite element based shape
sensitivity analysis and optimization, however, the finite ele-
ment meshes are approximated from the given CAD geometry
while designs are directly embedded in CAD systems. The
geometric approximations have been usually accomplished
by piecewise linear (or quadratic) polynomials, which leads
accuracy problems in response analysis and more unfavorably
in shape sensitivity analysis. The finite element based shape
optimization changing boundary shapes could be converged
to an undesirable local optimum of selected finite element
nodes representing boundary shapes (Haftka and Grandhi
1986). For smooth and continuous design parametrization,
NURBS parameterization has been employed in which the
spatial positions of the control points of a design model are
parametrized by design variables (Ansola et al. 2002; Espath
et al. 2011; Hassani et al. 2013). The structural responses and
shape sensitivities are, however, computed in an additional
finite element analysis model. This causes degeneration of
accuracy of solutions and sensitivities of complex
geometries. Moreover, mesh constructions and further
refinements during iterations of design optimization require
repetitive communication with the CAD system.

In order to deal with the geometric disparity between anal-
ysis and design models, the isogeometric analysis based on
NURBS was developed by Hughes et al. (2005) and Cottrell
et al. (2006). In the isogeometric approach, the analysis model
employs the same basis functions in the CAD systems rather
than uses the shape functions for the finite element meshes.
The geometric flexibility of the NURBS basis is further capa-
ble to exactly represent the CAD geometry and makes the
subsequent refinements greatly simplified due to no need of
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additional communications with the CAD systems (Cottrell
et al. 2007). Recently, the complete integration of design and
analysis models has been accomplished in the isogeometric
framework for a two-dimensional elasticity problem (Cho and
Ha 2009). They derived a continuum-based isogeometric
shape sensitivity analysis method and performed the shape
optimization with the adjoint sensitivity analysis. Due to the
higher continuity of the NURBS functions, it is capable to
enhance the accuracy of shape sensitivities of complex geom-
etries including higher order geometric effects, such as nor-
mal, curvature, etc. Utilizing the NURBS basis functions both
in the response and sensitivity analyses, design modifications
during optimization process can be performed conveniently
with adjusting control points that represent the geometric
model (Cho and Ha 2009). A mathematical foundation for
shape optimization problem based on continuum-based
isogeometric shape sensitivity can be found in Fuβeder et al.
(2015) in which control points and weights are simultaneously
optimized. Qian (2010) also provided analytical sensitivity
with respect to both control points and weights in discrete
isogeometric systems.

In many engineering applications on a wide scale, curved
geometries represented by shell components have been
employed from microscale graphene to cars, airplanes, ships,
etc. The degenerated solid approach has been widely used for
finite element shell analysis ever since Ahmad et al. (1970).
Alternatively, Simo and Fox (1989) introduced the geometri-
cally exact shell formulation based on the classical shell theory.
Although the degenerated solid approach and classical shell
theory share the same hypothesis for shell structures, the resul-
tant formulation is typically derived numerically in the former,
and analytically in the latter. Avoiding the mathematical com-
plexities associated with classical shell theory, the degenerated
solid approach would be better for the numerical implementa-
tion. On the other hand, the geometrically exact formulation
describes the mathematical model of a shell naturally by curvi-
linear coordinates (Roh and Cho 2003). Employing the
degenerated solid approach, Benson et al. (2010) and
Hosseini et al. (2014) have developed the isogeometric shell
analysis in the rectangular Cartesian coordinate system: a set of
orthogonal unit base vectors has been employed as the basis for
representation of vectors and tensors. Bouclier et al. (2013)
have proposed the locking free isogeometric degenerated solid
model with mixed formulation. Indeed, the parametric knot
representations of the NURBS geometries are rather suited to
describe curved geometries in curvilinear coordinate systems:
arbitrary bases, with base vectors not necessarily orthogonal
nor of unit length, are considered. Thus the isogeometric anal-
ysis of the geometrically exact shell models has been formulat-
ed in curvilinear coordinate systems (Kiendl et al. 2009; Echter
et al. 2013; Nagy et al. 2013).

In the finite element based shape optimization of shell struc-
tures, some early works can be found in Hinton and Rao

(1993), Bletzinger and Ramm (2001), Bletzinger et al. (2010)
and Espath et al. (2011). Additionally, Ansola et al. (2002) and
Hassani et al. (2013) have studied on an integrated approach for
shape and topology optimization of shell structures. For the
isogeometric shape optimization of shell structures, the sensi-
tivities are evaluated in the system of discrete matrix equations
(Nagy et al. 2010, 2013; Kiendl et al. 2014). In those works,
however, the continuum-based sensitivity analysis method was
not provided.Moreover, the boundary resultants that are typical
loading components for shells and design gradients of them
were missing. Although the continuum-based isogeometric
sensitivity analysis has been formulated in the two-
dimensional Cartesian coordinate system (Cho and Ha 2009),
it would not be directly applicable to the general curved shells
described in the curvilinear coordinate systems.

In this study, the continuum-based shape sensitivity analy-
sis using the isogeometric approach is derived in the curvilin-
ear coordinate systems for arbitrary surface shapes. Note that
the curvilinear coordinates compose the “generalized” coordi-
nate systems from which orthogonal and Cartesian systems
are reduced with geometric restrictions. The generalized for-
mulations are applied to the shape sensitivity analysis of the
geometrically exact shell model in which the curvilinear co-
ordinates are directly formed on the given NURBS geome-
tries. The precise sensitivity can be obtained by complete for-
mulations of boundary integrals for the shell boundary resul-
tants and their material derivatives. Incorporating structural
response and generalized shape sensitivity analyses in the
isogeometric framework into the shape optimization problem,
moreover, a complete integration of CAD, CAE, and design
optimization for the general curved geometries is accom-
plished. For the shape optimization of the shell, the shape
design velocity that is the rate of shape perturbation is capable
to represent the configuration design change without consid-
ering additional geometric constraints that is required in the
typical configuration design velocity field. Through the de-
monstrative numerical examples, it is verified that the precise
sensitivity computations including normal and curvatures are
critical and important in the design optimization. A design
optimization problem subjected to the boundary resultant
shows that the original geometry of the shell component can
be perturbed into an arbitrary shape and configuration with
severe curvature variation and then a reasonable optimal shape
can be obtained.

The paper is organized as follows. In Section 2, a shape
design sensitivity analysis is derived in the curvilinear coordi-
nate systems. A brief review of the curvilinear coordinate
systems is given and then material derivative formulas in the
curvilinear systems are derived. Note that the derivations pro-
vide a generalized version of design sensitivity analysis since
the typical sensitivity expressions described in the Cartesian
coordinate system can be readily reduced from the generalized
forms. In Section 3, the generalized formulations are applied
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to the shear deformable shell model (Naghdi 1963). The cur-
vilinear coordinates are formed adaptively from the given
NURBS geometry and then the geometrically exact response
and sensitivity formulations are derived. In order to deal with
the boundary resultants of the shell, the boundary integrals
and corresponding shape sensitivities are considered incorpo-
rating the NURBS functions of higher order continuity. In
Section 4, the isogeometric shape optimization problem of
geometrically exact shell is then formulated utilizing the de-
rived adjoint sensitivity expressions. Design parameterization
with sensitivity analysis and the multilevel design formulation
are also discussed. Numerical examples are then presented in
Section 5. The accuracy of the isogeometric sensitivity is com-
pared to the finite difference solution. Also, the applicability
of isogeometric shape optimization for shell structures is
demonstrated. Finally, conclusions are given in Section 6.

2 Generalized shape sensitivity analysis
in curvilinear coordinate system

2.1 Curvilinear coordinate system

A position vector x=x1e1+x
2e2+x

3e3 in the Cartesian coordi-
nate system with the fixed base vectors e1,e2,e3 and the coor-
dinates (x1,x2,x3) can be expressed in terms of curvilinear
coordinates (θ1,θ2,θ3) as

x ¼ x θ1; θ2; θ3
� �

: ð1Þ

Covariant base vectors at x are given as

gi ¼
∂x
∂θi

; ð2Þ

where gi emanate from x and are directed towards the site of
increasing coordinate θi. The covariant base vectors are not
necessarily orthonormal to each other and contravariant base
vectors gi are introduced to satisfy the relationship between
reciprocal pairs of general bases: gi ⋅gj=δji. Then, the dot prod-
ucts of a covariant/contravariant base vector with another base
vector define the useful metric coefficients, such as

gi j ¼ gi⋅g j ¼
∂xk

∂θi
∂xk

∂θ j and gi j ¼ gi⋅g j ¼ ∂θi

∂xk
∂θ j

∂xk
: ð3Þ

Obviously, their determinants relate to the square of the
determinants of the Jacobian matrix J≡[∂xi/dθj]:

gi j
�� �� ¼ ∂xi

∂θ j

����
����
2

¼ Jj j2 and gi j
�� �� ¼ ∂θi

∂x j

����
����
2

¼ 1

Jj j2
: ð4Þ

Differentiation in curvilinear coordinates is more involved
than that in Cartesian coordinates because the base vectors are
no longer constant and their derivatives need to be taken into

account. Introducing the second-kind Christoffel symbols to
represent the partial derivatives of base vectors as

Γ k
i j ¼

∂gi
∂θ j ⋅g

k ¼ −
∂gk

∂θ j ⋅gi; ð5Þ

we have the covariant derivative of the vector as:

∂v
∂θ j ≡v

i
��
j
gi ¼

∂vi

∂θ j þ vkΓ i
k j

� �
gi or

∂v
∂θ j ≡vik jg

i ¼ ∂vi
∂θ j −vkΓ

k
i j

� �
gi

: ð6Þ

Consider the surface area dΓ1 of a face of the differential
parallelepiped on which θ1 is constant. On dΓ1 the tangential
curves are aligned with the coordinate curves θ2 and θ3 while
θ1 is constant, and thus g1 is normal to the surface dΓ1.
Similarly on the other surfaces, g2 and g3 are normal, respec-
tively. The surface area dΓ1 is then calculated as

dΓ1 ¼ g2 � g3k kdθ2dθ3
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � g3ð Þ⋅ g2 � g3ð Þ

p
dθ2dθ3

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2⋅g2ð Þ g3⋅g3ð Þ− g2⋅g3ð Þ g2⋅g3ð Þ

p
dθ2dθ3

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g22g33− g23ð Þ2

q
dθ2dθ3

¼
ffiffiffiffiffiffiffi
g11

p
Jj jdθ2dθ3 ;

ð7Þ

and similarly for the other surfaces. The volume dΩ of the
parallelepiped is

dΩ ¼ g1⋅ g2 � g3ð Þj jdθ1dθ2dθ3
¼

ffiffiffiffiffiffiffiffiffi
gi j
�� ��q

dθ1dθ2dθ3

¼ Jj jdθ1dθ2dθ3:
ð8Þ

Note that an orthonormal Cartesian coordinate system can
be obtained with the following conditions gi=g

i=ei,gij=δij,
|gij|=1,Γij

k=0.

2.2 Material derivatives in curvilinear coordinate system

If we consider the variation of the structural domain as shown
schematically in Fig. 1. The initial structural geometry Ω is
changed to the perturbed geometry Ωτ by using a mapping or
transformation T. A scalar parameter τ denotes the amount of

Ω

τΩ

)(xVτ

x

τx

Γ

τΓ

Fig. 1 Variation of domain
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shape change in the design variable direction. Themapping T:
x→xτ, x∈Ω is given by:

xτ≡T x; τð Þ ð9Þ
and

Ωτ≡T Ω; τð Þ: ð10Þ
A design velocity field that is equivalent to a mapping rate

can be defined as

V xτ ; τð Þ≡ dxτ
dτ

¼ dT x; τð Þ
dτ

¼ ∂T x; τð Þ
∂τ

: ð11Þ

Suppose zτ(xτ) is a smooth, classical solution to the varia-
tional equation on the perturbed domain Ωτ:

ð12Þ

where Zτ⊂Hm(Ωτ) is the space of kinetically admissible dis-
placements. If the point-wise material derivative exists at
x∈Ω, then it is defined as

z≡
d

dτ
zτ xþ τV xð Þð Þ

����
τ¼0

¼ z0 þ ∇z⋅V; ð13Þ

where V(x)≡V(x,0). z ′ and ∇z are the partial derivative and
gradient of z, respectively.

Since the parametric coordinate is independent of design
perturbation, the order of differentiation between the material
derivative and parametric derivative can be interchanged.
However, since the Jacobian matrix J≡[∂xi/dθj] relates the
physical coordinate to the parametric coordinate, it depends
on the design. The material derivative of the Jacobian matrix
becomes the Jacobian matrix of the shape design velocity as

d

dτ
Jτ

����
τ¼0

≡
d

dτ
∂xiτ
∂θ j

� �����
τ¼0

¼ ∂
∂θ j

dxiτ
dτ

����
τ¼0

� �� �
¼ ∂V i

∂θ j

� �
ð14Þ

and the material derivative of its inverse can also be obtained,
by using the fact of JJ−1=I, as

d

dτ
J−1τ

����
τ¼0

¼ d

dτ
∂θi

∂x jτ

� �����
τ¼0

¼ −J−1
∂V i

∂x j

� �
: ð15Þ

Finally, the material derivative of the determinant of the
Jacobian matrix can be obtained from direct calculation with
Jacobi’s formula as

d

dτ
Jτj j
����
τ¼0

¼ Jj jdivV: ð16Þ

Using the fact that dΩτ=|Jτ|dθ
1dθ2dθ3 from (8), the variation

of the infinitesimal volume of domain Ωτ can be obtained as

d

dτ
dΩτ

����
τ¼0

¼ d

dτ
Jτj j
����
τ¼0

dθ1dθ2dθ3 ¼ Jj jdivVdθ1dθ2dθ3: ð17Þ

From (7), the variation of the infinitesimal surface area of a
face of domain Ωτ on which θ1 is constant (to which gτ

1 is
normal) can be calculated as

d

dτ
dΓ 1τ

����
τ¼0

¼ d

dτ

ffiffiffiffiffiffiffi
g11τ

q
Jτj j
����
τ¼0

d θ2 d θ3

¼ d

dτ

ffiffiffiffiffiffiffi
g11τ

q ����
τ¼0

� �
Jj jdθ2dθ3 þ

ffiffiffiffiffiffiffi
g11

p d

dτ
Jj jτ
����
τ¼0

� �
dθ2dθ3

¼ ∇g1⋅V
� �

⋅g1
.
g11 þ divV

h i ffiffiffiffiffiffiffi
g11

p
Jj j dθ2dθ3

:

ð18Þ

According to Theorem 3.5.3 in (Haug et al. 1986), only the
normal component of the velocity field V need be considered.
When V=V1g

1 on Γ1, (18) can be rewritten as

d

dτ
dΓ 1τ

����
τ¼0

¼ ∇g1⋅g1
� �

⋅g1
.
g11 þ divg1

h i
V 1

ffiffiffiffiffiffiffi
g11

p
Jj jdθ2dθ3

ð19Þ
and similarly for the other surfaces.

Consider the performance measures in domain and bound-
ary integral forms:

Φ1 ¼ ∭ΩF xð Þ Jj jdθ1dθ2dθ3 ð20Þ

and

Φ2 ¼ ∬Γ i
G xð Þ

ffiffiffiffiffi
gii

p
Jj jdθ jdθk no sum on ið Þ; ð21Þ

where i, j, k are different to each other and repeated indices are
not summed. The first order variations with respect to the
shape design parameter are, respectively, derived as:

Φ
0
1≡

d

dτ
∭ΩFτ xτð Þ Jτj jdθ1dθ2dθ3

����
τ¼0

¼ ∭Ω F 0 þ ∇F⋅Vþ FdivVð Þ Jj jdθ1dθ2dθ3
ð22Þ

and

Φ
0
2≡

d

dτ
∬Γ i

Gτ xτð Þ
ffiffiffiffiffi
giiτ

q
Jτj jdθ jdθk

���
τ¼0

¼ ∬Γ i
G0 þ V i ∇G⋅gi þ G ∇gi⋅gi

� �
⋅gi
.
gii þ Gdivgi

	 
h i
ffiffiffiffiffi
gii

p
Jj jdθ jdθk

ð23Þ
where i, j, k are different to each other and the quantities with
the repeated index i are not summed.

Note that the generalized derivations on the curvilinear
coordinate system can be reduced to the expressions for the
Cartesian coordinate system introduced in (Haug et al. 1986).
In the Cartesian system, we considerV=Vnn onΓ and thenwe
have

divgi ¼ divn; gii ¼ n⋅n ¼ 1;∇gi⋅gi ¼ ∇n⋅n ð24Þ
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aΩτ zτ ; zτ
	 


¼ ℓ Ωτ zτ
	 


; ∀zτ∈Zτ ;



Since n in this case is a unit normal vector, the following
relation holds:

0 ¼ 1

2
∇ n⋅nð Þ ¼ ∇n⋅n ð25Þ

Finally, (23) is rewritten as

Φ
0
2 ¼ ∬Γ G0 þ Vn ∇G⋅nþ Gdivnð Þ½ �dΓ ð26Þ

which is the material derivative of boundary functional
for the Cartesian coordinate system given in (Haug et al.
1986).

3 Isogeometric shape sensitivity analysis
of geometrically exact shell

The geometric modeling in the CAD system can be
generated by the NURBS basis functions and control
points. In this section, we firstly introduce the general-
ized curvilinear coordinate system based on NURBS
representations. In the isogeometric framework, the geo-
metrically exact shell model is then formulated in the
derived curvilinear coordinate system. In the isogeometric
analysis, the solution space is represented in terms of
the same basis functions to represent the NURBS geom-
etry in the CAD systems. Due to the use of NURBS,
the isogeometric analysis has advantages in terms of
geometric exactness and simple refinements over the conven-
tional finite element analysis. Besides, the isogeometric
shape design sensitivity analysis of the geometrically
exact shell model is derived based on the generalized
shape sensitivity introduced in Section 2.

3.1 Curvilinear coordinate system based on NURBS
representation

Consider a knot vector in one dimensional space, which is the
set of coordinates θi in a parametric space:

θ1 θ2 ⋯ θmþpþ1½ �T ð27Þ
where p and m are the order and the number of basis
functions, respectively. It is called a uniform knot vector
if knots are equally spaced in the parametric space and
a non-uniform knot vector, otherwise. The knots are
named as repeated when they are repeated at the same
coordinates, and open when the end knots are repeated
(p+1) times. The B-spline basis functions are defined,
recursively, as

ϕi;0 θð Þ ¼ 1; if θi≤θ≤θiþ1

0; otherwise


p ¼ 0ð Þ ð28Þ

and

ϕi;p θð Þ ¼ θ−θi
θiþp−θi

ϕi;p−1 θð Þ þ θiþpþ1−θ
θiþpþ1−θiþ1

ϕiþ1;p−1 θð Þ p ¼ 1; 2; 3;⋯ð Þ:

ð29Þ

Note that the denominators involving knot differences can
become zero (in the case of repeated knots); the quotient is
defined to be zero in this case. The B-spline has the following
desirable properties as a basis function:

(A) ∑i=1
m ϕi,p(θ)=1 (partition of unity)

(B) ϕ i ,p is contained in the interval θi; θiþpþ1½ �
(compactness)

(C) ϕi,p(θ)≥0 (non-negativity)

NURBS curves are obtained from the linear combination of
rational basis functions ϕi,p and the corresponding control
points Pi=Pi(x). For the given m pairs of p-th order B-spline
basis function ϕi,p and the corresponding (projective) control
points, the NURBS curve in d-dimensional space is defined at
a single parametric coordinate θ1, such as

S θ1
� � ¼X m

i¼1
Mi;p θ1

� �
Pi; ð30Þ

where

Mi;p θ1
� � ¼ ϕi;p θ1

� �
ωi

.X m

j¼1
ϕ j;p θ1
� �

ω j; ð31Þ

ωi ¼ Pω
i

� �
dþ1; ð32Þ

and

ð33Þ

For a point Pi=(xi
1,xi

2,xi
3) in three-dimensional Euclidean

space (d=3), for instance, the homogeneous coordinates in
four-dimensional space are defined as Pi

ω=(ωixi
1,ωixi

2,ωixi
3,

ωi) where ωi≠0. If an equal weight ωi is used, the NURBS
curve becomes the B-spline curve. Using a tensor product of
coordinates, NURBS surfaces can be defined:

S θ1; θ2
� � ¼X m

i¼1

X n

j¼1
Mi;p θ1

� �
N j;q θ2

� �
Pi; j: ð34Þ

For brevity of expressions, (34) is rewritten as:

S θ1; θ2
� �

≡
X CP

I¼1
WI θ1; θ2
� �

PI xð Þ; ð35Þ

withCP=m⋅n. Besides the properties as a basis function men-
tioned previously, the constructed NURBS basis functions
possess the property of affine covariance and are (p - 1) con-
tinuously differentiable. If the knots or control points are re-
peated k-times, the continuity decreases k-times as well. Note
that the NURBS basis functions are not interpolatory. The
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detail of NURBS geometry can be found in the following
references, Piegl and Tiller (1997), Rogers (2001), and Farin
(2002).

(35) implies that any point on a NURBS geometry can be
expressed in terms of a set of parametric coordinates (θ1,θ2,
θ3). Note that the knot parameters are independent to each
other and then the corresponding covariant base vectors can
be obtained from (2):

gi ¼
∂x
∂θi

¼
X CP

I¼1

∂WI

∂θi
PI : ð36Þ

The derivative of the NURBS basis function can be explic-
itly obtained from the well known recursive formula for the n-
th order derivative of B-spline basis function as

ϕi;p θð Þ� � nð Þ ¼ p
ϕi;p−1 θð Þ� � n−1ð Þ

θiþp−θi
−

ϕiþ1;p−1 θð Þ� � n−1ð Þ

θiþpþ1−θiþ1

 !
: ð37Þ

The metric coefficients gij and other geometric quantities
can be explicitly computed with NURBS basis functions.

3.2 Geometrically exact isogeometric shell analysis

In this section, we employ the NURBS representation of the
curvilinear coordinates to derive geometrically exact shell for-
mulations in isogeometric framework. In what follows, for
brevity of expressions, (•),i will denote partial differentiation
with respect to the curvilinear coordinates θi. Moreover, in the
index notation, Greek letters such as α,β take values 1 and 2
while Latin italic letters take values from 1 to 3.

Consider a three-dimensional solid structure in domainΩ⊂
R3 bounded by a closed boundary Γ. A material point x in
domainΩ is transformed to the curvilinear coordinates (θ1,θ2,
θ3). If one takes θ3 as a parameter defined as −0.5h≤θ3≤0.5h
with h as the shell thickness, a neutral surface (θ3=0) of the
shell component can be represented by a surface geometry as
shown in Fig. 2. For the shell surface, the boundary Γ can be
decomposed into Γ1 and Γ2. On the edge of Γ1, the tangential
curve is aligned with the coordinate curve θ2 while θ1 is con-
stant, and thus an outward normal vector n to the boundary is
parallel to g1. Similarly on Γ2, g

2 is perpendicular to the tan-
gential coordinate curve θ1. In terms of boundary conditions,
the boundary is composed of a prescribed displacement
boundary ΓD and a prescribed traction boundary ΓN and mu-
tually disjointed as

Γ ¼ ΓD∪ΓN and ΓD∩ΓN ¼ ∅: ð38Þ

The traction boundary ΓN is subjected to the boundary
resultants q while the distributed load intensities p is imposed
on Ω.

In Fig. 2, the position vector x is a material point in the
undeformed configuration of the shell. The position vector nx

denotes the point to the neutral surface of the shell. Let a3 be a
unit normal vector to the given surface. The position vector x
is then given as

x θ1; θ2; θ3
� � ¼ nx θ1; θ2

� �þ θ3a3 θ1; θ2
� �

; ð39Þ

and the corresponding covariant base vectors are

gα≡x;α ¼ aα þ θ3a3;α ¼ aα−θ3bβαaβ; ð40Þ

where aα≡nx,α and bαβ are the tangent base vector to the surface
coordinate curve and the mixed curvature tensor, respectively.
The covariant components of the surface metric tensor is
given as

aαβ ¼ aα⋅aβ and bαβ ¼ −aα⋅a3;β ¼ aα;β⋅a3 : ð41Þ

Using the facts that aα3=a
α3=0 and a33=a

33=1, the deter-
minant of metric coefficients is

Jj j2 ¼
a11 a12 0
a21 a22 0
0 0 1

������
������ ¼ aαβ

�� ��; 1

Jj j2 ¼
a11 a12 0
a21 a22 0
0 0 1

������
������ ¼ aαβ

�� ��:
ð42Þ

We consider the shear deformable shell model (Naghdi
1963) in which the shell is deformed linearly by transverse
shearing. The displacement is then assumed as

z θ1; θ2; θ3
� � ¼ uα þ θ3ψα

� �
aα θ1; θ2
� �þ wa3 θ1; θ2

� � ð43Þ

where uα=uα(θ
1,θ2), w=w(θ1,θ2), and ψα=ψα(θ

1,θ2) are re-
sponse coefficients of in-surface displacement, out-of-surface
displacement, and rotational angle measure, respectively.
Notice that the dependence on the parametric coordinates will
not be appeared unless necessary for brevity. For the further
derivations, the vector of response coefficients is useful, such
as

d≡ u1 u2 w ψ1 ψ2½ �T: ð44Þ

),,( 321 θθθx

),( 21 θθx
n

O (Reference frame)

1θ

2θ

),( 21

1 θθa

),( 21

2 θθa

),( 21

3

3 θθθ a

Ω

NΓ

DΓ

q

n

p

Fig. 2 Shell geometry represented on a neutral surface (θ3=0)
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Thus strain tensors in the shell tangent plane are given as, in
terms of the response coefficients,

Eαβ dð Þ ¼ εαβ dð Þ þ θ3ωαβ dð Þ ð45Þ

where

εαβ dð Þ ¼ sym uαkβ−bαβw
	 


¼ 1

2
uαkβ þ uβ

��
α
−2bαβw

	 

ð46Þ

and

ωαβ dð Þ ¼ sym ψαkβ
	 


¼ 1

2
ψαkβ þ ψβ

��
α

	 

; ð47Þ

in which (•)α‖β≡(•)α,β−(•)μΓαβ
μ means covariant differentia-

tion in the shell surface. Similarly, the transverse shear strain
can be found as

γα dð Þ ¼ 2Eα3 dð Þ ¼ w;α þ ψα þ bβαuβ: ð48Þ

Using the principle of virtual work, an equilibrium equa-
tion is expressed as

ð49Þ

where Z is a variational space defined by:

Z ¼ d∈ H1 Ωð Þ� �5
: d ¼ 0onΓD

n o
: ð50Þ

The bilinear strain energy form can be written as

a d; d
	 


¼∬Ω

Z h=2

�h=2
CαβμλEαβ dð ÞEμλ d

	 

þ Cα3β3γα dð Þγβ d

	 
h i
Jj jdθ3dθ1dθ2

¼∬Ω Cαβμλεαβ dð Þεμλ d
	 


þ h2

12
Cαβμλωαβ dð Þωμλ d

	 

þ Cα3β3γα dð Þγβ d

	 
� �
h Jj jdθ1dθ2;

ð51Þ

Note that the coupled terms of εαβ and ωαβ vanish since
they are odd functions of θ3. For homogeneous linear elastic
isotropic materials, material tensors are

Cαβμλ ¼ E

2 1þ νð Þ aαμaβλ þ aαλaβμ þ 2ν
1−ν

aαβaμλ
� �

and

Cα3β3 ¼ E

2 1þ νð Þ a
αβ;

ð52Þ
where E is Young’s modulus and ν is Poisson’s ratio. For
a conservative system, the external load is independent
of deformation and then the linear load form can be
composed of the virtual works of distributed load inten-
sities and boundary resultants. According to the response
coefficient vector d, the distributed load intensity vector
p and the boundary resultant vector q can be defined as:

p≡ p1 p2 p3 0 0
� �T

and q≡ N 1 N2 Q M 1 M 2
� �T ;

ð53Þ
where pα and p3 are, respectively, in-surface distributed
load intensities and an out-of-surface distributed load
intensity. Nα and Q are in-surface stretching resultants
and a shear resultant, respectively. M α are moment re-
sultants. All of force quantities are presumed to be ap-
plied on the neutral surface (θ3=0) and its traction
boundary Γ N. Depending on the directions of edge

rotations on Γ 1
N, M 1=−MB,M

2=MT where MB and MT are
the bending and twisting moment resultants, respectively.
Similarly, M 1=MT,M

2=−MB on Γ 2
N. For

d ¼ u1 u2 w ψ1 ψ2

� �T
, the linear load form is writ-

ten as

ð54Þ

Using (35), the material point on the neutral surface can be
expressed in terms of NURBS basis functions and coefficients
at control points, such as

nx θ1; θ2
� � ¼X CP

I¼1
WI θ1; θ2
� �

PI : ð55Þ

Then, the covariant base vectors are obtained as

aα ¼ nx;α ¼
X CP

I¼1
WI ;αPI : ð56Þ

Using an isoparametric mapping, the response coefficient
vector (44) can be expressed as:

d ¼ u1 u2 w ψ1 ψ2½ �T ¼
X CP

I¼1
WIyI ; ð57Þ
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a d; d
	 


¼ ℓ d
	 


; ∀d∈Z;

ℓ d
	 


¼ ∬Ωd
Tp Jj jdθ1dθ2 þ

Z
ΓN

1

dTq
ffiffiffiffiffiffiffi
a11

p
Jj jdθ2

þ
Z

ΓN
2

dTq
ffiffiffiffiffiffiffi
a22

p
Jj jdθ1:



where yI ¼ y xð Þ ¼ u1I u2I wI ψ1I ψ2I½ �T are the re-
sponse coefficients at control points. Then (49) can be rewrit-
ten as:

ð58Þ

where the bilinear strain energy form of

a y; y
	 


¼ ∬Ω

X CP

I ;K
y
T

K BK
m
T
DmB

I
m þ h2

12
BK
b
T
DbB

I
b þ BK

s
T
DsB

I
s

� �
yI

h Jj jdθ1dθ2;
ð59Þ

in which the subscripts m, b, and s are the indications for
membrane, bending, and transverse shear, respectively. In
the strain measures, the differential operators Bm, Bb and Bs

include not only partial derivatives with respect to θ1 and θ2

but also the second-kind Christoffel symbols. To help the
comprehension, membrane, bending and shear measures are
given in the matrix form in detail as follows.

ε11
ε22
2ε12

8<
:

9=
; ¼

∂
∂θ1

−Γ 1
11 −Γ 2

11 −b11

−Γ 1
22

∂
∂θ2

−Γ 2
22 −b22

∂
∂θ2

−2Γ 1
12

∂
∂θ1

−2Γ 2
12 −2b12

2
666664

3
777775

u1
u2
w

8<
:

9=
;;

ð60Þ

ω11

ω22

2ω12

8<
:

9=
; ¼

∂
∂θ1

−Γ 1
11 −Γ 2

11

−Γ 1
22

∂
∂θ2

−Γ 2
22

∂
∂θ2

−2Γ 1
12

∂
∂θ1

−2Γ 2
12

2
666664

3
777775

ψ1

ψ2

 �
; ð61Þ

and

γ1
γ2

 �
¼

b11 b21
∂
∂θ1

1 0

b12 b22
∂
∂θ2

0 1

2
64

3
75

u1
u2
w
ψ1

ψ2

8>>>><
>>>>:

9>>>>=
>>>>;
: ð62Þ

The linear load form is written as

ð63Þ

where ~WI is the modified NURBS basis function for the
boundary integral.

3.3 Material derivatives for shell structural domain

The variation of the structural domain of the shell component
can be described as shown in Fig. 3. The design dependence
on the thickness coordinate θ3 of the shell is neglected.
Applying (39) into (9), we have

xτ ¼ nxτ þ θ3a3τ
nxτ
� � ð64Þ

A design velocity field of the shell component is then given
as

V xð Þ≡dxτ
dτ

����
τ¼0

¼ V nx
� �þ θ3∇a3⋅V nx

� �
; ð65Þ

where V nx
� �

≡dnxτ
dτ

���
τ¼0

and ∇a3 is the gradient of a3. Note that

the design velocity field does not have to satisfy the geometric
constraint that is required in the typical configuration design
velocity field. Therefore, in this formulation, the original ge-
ometry of the shell component can be perturbed into any con-
figurations with arbitrary curvatures.

We recall the point-wise material derivative of the displace-
ment z at x∈Ω, such as:

z≡
d

dτ
z τ xþ τVð Þ

����
τ¼0

¼ z0 þ ∇z ⋅V: ð66Þ

For the shell component, the partial derivative of z is given
as

z0 ¼ u
0
α þ θ3ψ

0
α

	 

aα þ w0a3 ð67Þ

and the convective term is calculated as

∇z ⋅V ¼ uα þ θ3ψα

� �
∇aα ⋅Vð Þ þ w ∇a3 ⋅Vð Þ: ð68Þ

For shell analysis, every variables is represented on the
neutral surface and thus the superscript n can be omitted with-
out confusion: e.g., V=V(nx) in (66). The details for the gra-
dient computations can be found in Appendix.

1θ
Ω

τΩ

τ1a

τ2a
2θ

τθ 3

3
a

)( xV
nτ

x
n

τx
n3

3
aθ

)(xVτ

x

τx

Γ
τΓ

Fig. 3 Variation of domain of shell
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a y; y
	 


¼ ℓ y
	 


; ∀d ¼
X CP

I¼1
WIyI∈Z;

ℓ y
	 


¼ ∬Ω

X CP

I
W Iy

T

I p Jj jdθ1dθ2

þ
Z

ΓN
1

X CP

I
~WIy

T

I q
ffiffiffiffiffiffi
a11

p
Jj jdθ2

þ
Z

ΓN
2

X CP

I
~WIy

T

I q
ffiffiffiffiffiffi
a22

p
Jj jdθ1;



A performance measure for the shell structure is usually
defined on the neutral surface and written in integral form as

Φ ¼ ∬ΩF xð Þ Jj jdθ1dθ2 þ
Z

ΓN
1

G xð Þ
ffiffiffiffiffiffi
a11

p
Jj jdθ2 þ

Z
ΓN

2

G xð Þ
ffiffiffiffiffiffi
a22

p
Jj jdθ1:

ð69Þ

The first order variation with respect to the shape design
parameter is derived as

Φ0≡
d

dτ
∬ΩFτ xτð Þ Jτj jdθ1dθ2

����
τ¼0

þ d

dτ

Z
ΓN

1

G xð Þ
ffiffiffiffiffiffi
a11

p
Jj jdθ2

�����
τ¼0

þ d

dτ

Z
ΓN

2

G xð Þ
ffiffiffiffiffiffi
a22

p
Jj jdθ1

�����
τ¼0

¼ ∬Ω F 0 þ ∇F⋅Vþ FdivVð Þ Jj jdθ1dθ2

þ
Z

ΓN
1

G0 þ V 1 ∇G⋅a1 þ G ∇a1⋅a1
� �

⋅a1=a11 þ Gdiva1
� �� � ffiffiffiffiffiffi

a11
p

Jj jdθ2

þ
Z

ΓN
2

G0 þ V 2 ∇G⋅a2 þ G ∇a2⋅a2
� �

⋅a2=a22 þ Gdiva2
� �� � ffiffiffiffiffiffi

a22
p

Jj jdθ1

ð70Þ

where, considering (16) on the neutral surface, the material
derivative of the determinant of the Jacobian matrix is obtain-
ed as

2

For conservative loads, the variation of the load linear form
(76) has no implicit dependence terms. If the concentrated,

constant load is only considered, (76) vanishes. Besides, ż is
recovered by (66) after calculating d ′ from (74).
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d

dτ
Jτj j

����
τ¼0

¼ Jj jdivV

¼
ffiffiffiffiffiffiffiffiffiffi
aαβ
�� ��q

aα⋅
∂V
∂θα

þ a3⋅ ∇a3⋅Vð Þ
� �

: ð71Þ

3.4 Isogeometric shape sensitivity analysis—direct
differentiation method

Taking the first order variation of the bilinear strain energy
form and linear load form with respect to shape design param-
eter τ, we have the followings:

a d; d
	 
h i0

¼ a0 d; d
	 


þ a d0; d
	 


þ a d; d
0	 


ð72Þ

and

ℓ d
	 
h i0

¼ ℓ 0 d
	 


þ ℓ d
0	 

; ð73Þ

where d0≡ u
0
1 u

0
2 w0 ψ

0
1 ψ

0
2

� �T
. a0 d; d

� �
and ℓ 0 d

� �
de-

note the explicit variation terms with the dependence of their
arguments on the shape design parameter suppressed. Using

the fact that a d; d0
� � ¼ ℓ d0

� �
; ∀d0∈Z, the shape sensitivity

equation is obtained as

a d0; d
	 


¼ ℓ 0 d
	 


−a0 d; d
	 


; ∀d∈Z; ð74Þ

where

a d0; d
	 


¼ ∬Ω Cαβμλεαβ d0ð Þεμλ d
	 


þ h2

12
Cαβμλωαβ d0ð Þωμλ d

	 

þ Cα3β3γα d0ð Þγβ d

	 
� �
h Jj jdθ1dθ2 ð75Þ

and

ℓ 0 d
	 


¼ ∬Ωd
T
∇p⋅Vþ pdivV½ � Jj jdθ1dθ2

þ
Z

ΓN
1

d
T
∇q⋅a1 þ q ∇a1⋅a1

� �
⋅a1=a11 þ diva1

� �� �
V 1

ffiffiffiffiffiffi
a11

p
Jj jdθ2

þ
Z

ΓN
2

d
T
∇q⋅a2 þ q ∇a2⋅a2

� �
⋅a2=a22 þ diva2

� �� �
V 2

ffiffiffiffiffiffi
a22

p
Jj jdθ1:

ð76Þ



The explicit expression of a0 d; d
� �

depends on the shell
formulation, which will be derived as follows. The first order
variation of the membrane strain tensor with respect to shape
design parameter can be obtained from (46), such as

εαβ dð Þ� �0 ¼ εαβ d0ð Þ þ ε
0
αβ dð Þ

¼ sym u
0
α;β−Γ

μ
αβu

0
μ−bαβw

0
	 


þ sym − ∇Γμ
αβ⋅V

	 

uμ− ∇bαβ⋅V
� �

w
	 


:

ð77Þ

εαβ
′ (d) represents the explicitly dependent part computed from
both the structural response and the design velocity. Similarly,

the first order variation of the bending and shear strain tensors
(47–48) become

ωαβ dð Þ� �0 ¼ ωαβ d0ð Þ þ ω
0
αβ dð Þ

¼ sym ψ
0
α;β−Γ

μ
αβψ

0
μ

	 

þ sym − ∇Γμ

αβ⋅V
	 


ψμ

	 

ð78Þ

and

γα dð Þ½ �0 ¼ γα d0ð Þ þ γ
0
α dð Þ

¼ w
0
;α þ ψ

0
α þ bβαu

0
β

	 

þ ∇bβα⋅V
� �

uβ:
ð79Þ

Finally, the explicitly dependent term of the bilinear strain
energy form a0 z; zð Þ can be calculated as

a0 d; d
	 


¼ ∬Ω ∇Cαβμλ⋅V
� �

εαβ dð Þεμλ d
	 


þ h2

12
∇Cαβμλ⋅V
� �

ωαβ dð Þωμλ d
	 


þ ∇Cα3β3⋅V
� �

γα dð Þγβ d
	 
� �

h Jj jdθ1dθ2

þ∬Ω Cαβμλε
0
αβ dð Þεμλ d

	 

þ h2

12
Cαβμλω

0
αβ dð Þωμλ d

	 

þ Cα3β3γ

0
α dð Þγβ d

	 
� �
h Jj jdθ1dθ2

þ∬Ω Cαβμλεαβ dð Þε0
μλ d
	 


þ h2

12
Cαβμλωαβ dð Þω0

μλ d
	 


þ Cα3β3γα dð Þγ0
β d
	 
� �

h Jj jdθ1dθ2

þ∬Ω Cαβμλεαβ dð Þεμλ d
	 


þ h2

12
Cαβμλωαβ dð Þωμλ d

	 

þ Cα3β3γα dð Þγβ d

	 
� �
h Jj jdivVdθ1dθ2:

ð80Þ

In Appendix, the gradient computations with respect to the
design velocity V in (77–80) are expressed in detail.

Using isogeometric discretization, (74) can be written as:

ð81Þ

where

a y0; y
	 

¼ ∬Ω

X CP

I ;K
y
T

K BK
m
T
DmB

I
m þ h2

12
BK
b
T
DbB

I
b þ BK

s
T
DsB

I
s

� �

y
0
I h Jj jdθ1dθ2;

ð82Þ

ð83Þ

and

a0 y; y
	 


¼ ∬Ω

X CP

I ;K
y
T

K BK
m
T
DmVB

I
m þ h2

12
BK
b
T
DbVB

I
b þ BK

s
T
DsVB

I
s

� �
yI h Jj jdθ1dθ2

þ∬Ω

X CP

I ;K
y
T

K BK
m
T
DmB

I
mV þ h2

12
BK
b
T
DbB

I
bV þ BK

s
T
DsB

I
sV

� �
yI h Jj jdθ1dθ2

þ∬Ω

X CP

I ;K
y
T

K BK
mV

T
DmB

I
m þ h2

12
BK
bV

T
DbB

I
b þ BK

sV
T
DsB

I
s

� �
yI h Jj jdθ1dθ2

þ∬Ω

X CP

I ;K
y
T

K BK
m
T
DmB

I
m þ h2

12
BK
b
T
DbB

I
b þ BK

s
T
DsB

I
s

� �
yI h Jj jdivVdθ1dθ2;

ð84Þ
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a y0; y
	 


¼ ℓ 0 y
	 


−a0 y; y
	 


;

∀d ¼
X CP

I¼1
WI θ1; θ2

� �
yI∈Z

ℓ 0 y
	 


¼∬Ω

X CP

I
W Iy

T

I pdivVþ ∇p⋅V½ �h Jj jdθ1dθ2

þ
Z

ΓN
1

X CP

I
~WIy

T

I ∇q⋅a1 þ q ∇a1⋅a1
� �

⋅a1=a11 þ diva1
� �� �

V 1

ffiffiffiffiffiffi
a11

p
Jj jdθ2

þ
Z

ΓN
2

X CP

I
~WIy

T

I ∇q⋅a2 þ q ∇a2⋅a2
� �

a2=a22 þ diva2
� �� �

V 2

ffiffiffiffiffiffi
a22

p
Jj jdθ1;



in which the quantities having the additional subscript V in-
clude the gradient computations with respect to the design
velocity V referring to (77–80). To help the comprehension,
explicit dependences of membrane, bending and shear mea-
sures are given in the matrix form in detail as follows:

ε
0
11

ε
0
22

2ε
0
12

8><
>:

9>=
>; ¼

−∇Γ 1
11⋅V −∇Γ 2

11⋅V −∇b11⋅V
−∇Γ 1

22⋅V −∇Γ 2
22⋅V −∇b22⋅V

−2∇Γ 1
12⋅V −2∇Γ 2

12⋅V −2∇b12⋅V

2
64

3
75

u1

u2
w

8<
:

9=
;;

ð85Þ
ω

0
11

ω
0
22

2ω
0
12

8>>>><
>>>>:

9>>>>=
>>>>;

¼
−∇Γ 1

11⋅V −∇Γ 2
11⋅V

−∇Γ 1
22⋅V −∇Γ 2

22⋅V

−2∇Γ 1
12⋅V −2∇Γ 2

12⋅V

2
64

3
75 ψ1

ψ2

 �
; ð86Þ

and

γ
0
1

γ
0
2

( )
¼ ∇b11⋅V ∇b21⋅V

∇b12⋅V ∇b22⋅V

" #
u1

u2

( )
: ð87Þ

3.5 Isogeometric shape sensitivity analysis—adjoint
variable method

To derive an adjoint equation for the adjoint sensitivity anal-
ysis, consider a general performance functional in integral
forms, such as

Φ ¼ ∬ΩF dð Þ Jj jdθ1dθ2 þ
Z

ΓN
1

G dð Þ
ffiffiffiffiffiffi
a11

p
Jj jdθ2

þ
Z

ΓN
2

G dð Þ
ffiffiffiffiffiffi
a22

p
Jj jdθ1:

ð88Þ

Taking the Fréchet derivative 〈•, • 〉 with respect to

the response coefficient vector d in the direction of d
leads to

∂Φ dð Þ
∂d

; d

� �
¼ ∬Ωd

T ∂F dð Þ
∂d

Jj jdθ1dθ2

þ
Z

ΓN
1

dT ∂G dð Þ
∂d

ffiffiffiffiffiffiffi
a11

p
Jj jdθ2

þ
Z

ΓN
2

dT ∂G dð Þ
∂d

ffiffiffiffiffiffiffi
a22

p
Jj jdθ1: ð89Þ

Define a Lagrangian as

ð90Þ

where λ is the solution (coefficients) of an adjoint sys-
tem. Taking the Fréchet derivative 〈 •, • 〉 of (90) with
respect to d in the direction of kinematically admissi-

ble λ, using a stationary condition, the adjoint equation
can be derived as

∂L d;λð Þ
∂d

;λ

� �
¼ ∂Φ dð Þ

∂d
;λ

� �
−

∂a d;λð Þ
∂d

;λ

� �
¼ 0: ð91Þ

Using (51) and the symmetry of bilinear form, the follow-
ings yield

∂a d;λð Þ
∂d

;λ

� �
¼ ∬Ω Cαβμλ λ

T ∂εαβ dð Þ
∂d

� �
εμλ λð Þ þ h2

12
Cαβμλ λ

T ∂ωαβ dð Þ
∂d

� �
ωμλ λð Þ þ Cα3β3 λ

T ∂γα dð Þ
∂d

� �
γβ λð Þ

� �
h Jj jdθ1dθ2

¼ ∬Ω Cαβμλεαβ λ
	 


εμλ λð Þ þ h2

12
Cαβμλωαβ λ

	 

ωμλ λð Þ þ Cα3β3γα λ

	 

γβ λð Þ

� �
h Jj jdθ1dθ2 ≡ a λ;λ

	 

:

ð92Þ

Also, using (54) we have

ð93Þ
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L d;λð Þ ¼ Φ dð Þ þ ℓ λð Þ−a d;λð Þ;

∂Φ dð Þ
∂d

;λ

� �
¼ ∬Ωλ

T ∂F dð Þ
∂d

Jj jdθ1dθ2 þ
Z

ΓN
1

λ
T ∂G dð Þ

∂d

ffiffiffiffiffiffi
a11

p
Jj jdθ2 þ

Z
ΓN

2

λ
T ∂G dð Þ

∂d

ffiffiffiffiffiffi
a22

p
Jj jdθ1≡ℓ λ

	 

:



Substituting (92–93) into (91), the following adjoint equa-
tions can be obtained as

ð94Þ

Differentiating the Lagrangian (90) with respect to design
we have the followings:

Φ0 dð Þ ¼ ∬Ω ∇F⋅Vþ FdivVð Þ Jj jdθ1dθ2 þ
Z

ΓN
1

V 1 ∇G⋅a1 þ G ∇a1⋅a1
� �

⋅a1
.
a11 þ Gdiva1

	 
 ffiffiffiffiffiffi
a11

p
Jj jdθ2

þ
Z
ΓN

2

V 2 ∇G⋅a2 þ G ∇a2⋅a2
� �

⋅a2
.
a22 þ Gdiva2

	 
 ffiffiffiffiffiffi
a22

p
Jj jdθ1

ð96Þ

and

ð97Þ

a ′(d,λ) is the same as in (80) by substituting d into λ. Using
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a λ;λ
	 


¼ ℓ λ
	 


; ∀λ∈Z:

L d;λð Þ½ �0 ¼ Φ d0ð Þ þ Φ0 dð Þ þ ℓ λ0ð Þ
þ ℓ 0 λð Þ−a d0;λð Þ−a d;λ0ð Þ−a0 d;λð Þ;

ℓ 0 λð Þ ¼ ∬Ωλ
T ∇p⋅Vþ pdivV½ � Jj jdθ1dθ2

þ
Z

ΓN
1
λT ∇q⋅a1 þ q ∇a1⋅a1

� �
⋅a1

.
a11 þ diva1

	 
h i
V 1

ffiffiffiffiffiffi
a11

p
Jj jdθ2

þ
Z

ΓN
2

λT ∇q⋅a2 þ q ∇a2⋅a2
� �

⋅a2
.
a22 þ diva2

	 
h i
V 2

ffiffiffiffiffiffi
a22

p
Jj jdθ1:

L d;λð Þ½ �0 ¼ Φ0 dð Þ þ ℓ 0 λð Þ−a0 d;λð Þ: ð98Þ

For brevity of the problem, the external loads are assumed
independent of shape variations and the integrand of perfor-
mance functional is assumed linear to the response coeffi-
cients, i.e., F(y)=yTf andG(y)=yTg. (98) can bewritten, using
isogeometric discretization, as:

L y;μð Þ½ �0 ¼ Φ0 yð Þ þ ℓ 0 μð Þ−a0 y;μð Þ; λ ¼
X CP

I¼1
WI θ1; θ2

� �
μI

� �

ð99Þ

where

Φ0 yð Þ¼∬Ω

X CP

I
W Iy

T
I ∇f ⋅Vþ fdivVð Þ Jj jdθ1dθ2

þ
Z

ΓN
1

~WIy
T
I ∇g⋅a1 þ g ∇a1⋅a1

� �
⋅a1

.
a11 þ diva1

	 
h i
V 1

ffiffiffiffiffiffi
a11

p
Jj jdθ2

þ
Z

ΓN
2

~WIy
T
I ∇g⋅a2 þ g ∇a2⋅a2

� �
⋅a2

.
a22 þ diva2

	 
h i
V 2

ffiffiffiffiffiffi
a22

p
Jj jdθ1;

ð100Þ
ℓ 0 μð Þ ¼ ∬Ω

X CP

I
W Iμ

T
I pdivVþ ∇p⋅V½ �h Jj jdθ1dθ2

þ
Z

ΓN
1

X CP

I
~WIμ

T
I ∇q⋅a1 þ q ∇a1⋅a1

� �
⋅a1

.
a11 þ diva1

	 
h i
V 1

ffiffiffiffiffiffi
a11

p
Jj jdθ2

þ
Z

ΓN
2

X CP

I
~WIμ

T
I ∇q⋅a2 þ q ∇a2⋅a2

� �
a2
.
a22 þ diva2

	 
h i
V 2

ffiffiffiffiffiffi
a22

p
Jj jdθ1;

ð101Þ
and

a0 y;μð Þ ¼ ∬Ω

X CP

I ;K
μT
K BK

m
T
DmVB

I
m þ h2

12
BK
b
T
DbVB

I
b þ BK

s
T
DsVB

I
s

� �
yI h Jj jdθ1dθ2

þ∬Ω

X CP

I ;K
μT
K BK

m
T
DmB

I
mV þ h2

12
BK
b
T
DbB

I
bV þ BK

s
T
DsB

I
sV

� �
yI h Jj jdθ1dθ2

þ∬Ω

X CP

I ;K
μT
K BK

mV
T
DmB

I
m þ h2

12
BK
bV

T
DbB

I
b þ BK

sV
T
DsB

I
s

� �
yI h Jj jdθ1dθ2

þ∬Ω

X CP

I ;K
μT
K BK

m
T
DmB

I
m þ h2

12
BK
b
T
DbB

I
b þ BK

s
T
DsB

I
s

� �
yI h Jj jdivVdθ1dθ2:

ð102Þ

where the explicitly dependent terms on the design are
expressed, respectively,

the fact that a d;λ0ð Þ ¼ ℓ λ0ð Þ; ∀λ0∈Z and
a d0;λð Þ ¼ Φ d0ð Þ≡ℓ d0ð Þ; ∀d0∈Z, the adjoint shape sensitivity
equation is derived as

ð95Þ



4 Isogeometric shape optimization

4.1 Optimization formulations

In the isogeometric shape optimization, the control points P
play the role of design variables. The objective of
isogeometric shape optimization is to determine the design
variables P that minimize the objective function Φ(P,z) of
system under the prescribed loadings while satisfying the con-
straint functions gi(P,z). The structural shape optimization
problem can be expressed as:

minimize Φ P; zð Þ; ð103Þ
subject to gi P; zð Þ≤Gi i ¼ 1; 2;…ð Þ; ð104Þ
where the side constraint for the admissible displacement field
is given by

Plower≤P≤Pupper: ð105Þ

To solve the nonlinear mathematical programming prob-
lem of (103–105), a gradient-based optimization algorithm
(MMFD; modified method of feasible direction) and the gra-
dients of objective and constraint functions, Φ P; z; z;Vð Þ and
g P; z; z;Vð Þ, are used. The necessary design velocity field can
be obtained, by the material derivative of (55), directly from
the NURBS basis function as:

V nx
� � ¼ d

dτ

X CP

I¼1
WI PI þ τδPIð Þ

����
τ¼0

¼
X CP

I¼1
WIδPI : ð106Þ

4.2 Multilevel design parameterization

In design parameterization, the structural shape is con-
trolled by a set of design variables. The design control
net is only as dense as necessary for defining the
boundary shape. Excessive number of design variables
could lead to wriggly optimal shapes. Although the
isogeometric analysis can be performed with the CAD
model without further FE discretization, the fine analy-
sis model is still required for the accurate analysis. It is
more essential for the accurate analytical sensitivity
analysis and thus for successful gradient-based shape
optimization. In this study, the resolutions of the design
and analysis models are different: the analysis model is
obtained through h-refinement of the design model
keeping the polynomial degree constant. The basic con-
cept of the multilevel design parameterization has been

presented as sensitivity propagation concept in (Qian
2010). It is worthwhile to present the brief procedure
of multilevel design parameterization for a NURBS
curve and updating the shape design velocity during
the isogeometric shape optimization. Note that in this
study the control points are design variables while the
weights not.

The basic procedure for h-refinement is accomplished by
multiple applications of the knot insertion. Inserting a new

knot θ∈½θk ; θkþ1Þ into the given knot vector (27), the
NURBS curve has a representation on the new knot vector
of the form

S θð Þ ¼
X CPþ1

I¼1
WI θð ÞQI ; ð107Þ

where WI θð Þ� �
are the NURBS basis functions on the

new knot space. The knot insertion does not change the
curve either geometrically or parametrically, but it is
just a change of vector space basis. Solving a system
of linear equations as

X CP

I¼1
WI θð ÞPI ¼

X CPþ1

I¼1
WI θð ÞQI ; ð108Þ

we obtain the formula for computing QI, that is

QI ¼ αIPI þ 1−αIð ÞPI−1 ð109Þ
where

αI ¼
1 ; I ≤ k − p

θ−θI
θIþp−θI

; k−pþ 1≤ I ≤k

0 ; I ≥ k þ 1 :

8>><
>>: ð110Þ

For the isogeometric shape optimization, two sets of con-
trol points {PI} and {QI} compose the design and analysis
models, respectively. Let the knot space be independent of
the design space, the definition of the design velocity (106)
is valid through the knot refinement, such as

V ¼
X CP

I¼1
WIδPI ¼

X CPþ1

I¼1
WIδQI : ð111Þ

Once a control point PM of the design model is
perturbed (thus, only δPM≠0), corresponding control
points in the analysis model is perturbed with the fol-
lowing relation,

δQM ¼ αMδPM ð112Þ
and

δQMþ1 ¼ 1−αMþ1ð ÞδPM : ð113Þ
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Then the design velocity in the analysis model is calculated
accordingly. By repeating the above knot insertion procedure
and the design velocity update to the bivariate knot space and
corresponding control points, the multilevel design parameter-
ization can thus be applied to a NURBS surface.

5 Numerical examples

5.1 Verification of isogeometric shape sensitivity
of the hemispherical shell

The purpose of this example is to verify the generalized shape
sensitivity analysis by comparing with the numerical sensitivity
analysis using finite difference method. The verification model
shown in Fig. 4a is a quarter model of a pinched hemispherical
shell along its equator. The hemisphere has a radius of 10 and
an 18° hole at its top. As shown in Fig. 4a, the symmetry
boundary conditions are applied along the cutting edges and
other two are free. There are two point loads (F=1.0) alternat-
ing sign at 90° intervals along the equator. The thickness of the
shell is 0.4. A linear elastic material with E=6.825×107 and ν=
0.3 is used.

For the verification of isogeometric sensitivity for the geo-
metrically exact shell model, the derived generalized
isogeometric shape sensitivity formulation is employed. The
surface is represented by the quadratic NURBS basis function
and 529 control points. The control points of the model are
perturbed by 0.1 % in radial direction to obtain the finite
difference sensitivity. The perturbed domain in Fig. 4b is
drawn by 200 times exaggerated design velocities for illustra-
tion purposes. The isogeometric shape sensitivity of response
coefficients at the selected positions 1–4 as shown in Fig. 4b is
compared with the central finite difference sensitivity using
the isogeometric analysis. Table 1 shows the finite difference
sensitivity, the analytical isogeometric sensitivity, and their
percent agreements for response coefficients at the selected

coordinates 1–4. Excellent agreements are observed at all
the degrees of freedom of the control points as shown in the
last column.

5.2 Higher order geometric effects of isogeometric
sensitivity

In this example, the higher order geometric effects implement-
ed on isogeometric shape sensitivity are examined by compar-
ing with finite difference sensitivity. The verification model
shown in Fig. 5a is a cantilevered planar shell with a curved
edge. The model is subjected to a uniform twisting moment
resultantMT=50 along the curved edge and then the deforma-
tion appears in Fig. 5a. A linear elastic material with E=1.0×
107 and ν=0.3 is considered and the shell thickness is 0.05.
The geometrically exact isogeometric formulation for the
shear deformable shell model and its generalized isogeometric
shape sensitivity formulation are used with the quadratic
NURBS basis function and 91 control points. To obtain the
finite difference sensitivity using the isogeometric analysis,
the control points along the curved edge are perturbed by a

Table 1 Verification of isogeometric shape sensitivity of response
coefficients

Degrees of
freedom

Finite difference
sensitivity

Isogeometric
sensitivity

Agreement
(%)

1_w 1.94662E-07 1.94662E-07 100.000 %

1_ψ1 4.48909E-07 4.48909E-07 100.000 %

2_u1 −8.65978E-07 −8.65963E-07 100.002 %

2_ψ2 −3.78064E-07 −3.78064E-07 100.000 %

3_u2 −5.84995E-07 −5.84995E-07 100.000 %

3_ψ1 2.51868E-07 2.51868E-07 100.000 %

4_w 8.21851E-09 8.21731E-09 100.015 %

4_ψ1 5.69088E-08 5.69088E-08 100.000 %
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Fig. 4 Verification model for
shape sensitivity analysis: a
problem description of a pinched
hemispherical shell with an 18°
hole cut-out b radial design
perturbation drawn by 200 times
exaggerated design velocities
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simple quadratic function of y(x)=τ(1−x2). Note that τ=0.001
to obtain the accurate finite difference sensitivity while the
perturbed design in Fig. 5b is drawn by 500 times exaggerated
design velocities for illustration purposes.

Recalling the isogeometric shape sensitivity (83), normal
vectors and their derivatives are found in the boundary inte-
gral forms where the problem has boundary resultants. In this
example, the curved edge Γ2

N is subjected to the twisting mo-
ment resultantMTand thus the variation of the linear load form
(83) can be rewritten as

ð114Þ
The higher order geometric components, such as a2, ∇a2

and diva2, can be exactly obtained from the NURBS basis
function and the well known recursive formula for the n-th
order derivative of B-spline basis function (37).

The isogeometric shape sensitivity of displacements at the
selected positions 1–5 as shown in Fig. 5b is compared with
the central finite difference sensitivity using the isogeometric
analysis. To examine the higher order effects of geometry, the
sensitivities including the higher order (HO) terms of ∇a2,div-
a2 in (114) are compared to the sensitivity analysis results

artificially excluding those HO terms. During the implemen-
tation of conventional finite element based shape sensitivity,
the higher order geometric effects are generally missing or
inaccurate due to the use of linear elements (Cho and Ha
2009). Table 2 shows the finite difference sensitivity, the
isogeometric sensitivity excluding HO terms (case A), the
isogeometric sensitivity including HO terms (case B), and
their percent agreements for the displacements at the selected
coordinates in Fig. 5b. As expected, the results of case A show
very bad agreements whereas those of case B excellent ones as
shown in the last column. The sensitivity distributions of dis-
placements of cases A and B are, respectively, illustrated in
Figs. 6 and 7. Not only the sensitivity values shown in Table 2,
but overall distributions are also quite different between two
distinct cases. For the two-dimensional isogeometric model
developed in the Cartesian coordinate system, Cho and Ha
(2009) also examined the importance of the higher order geo-
metric components in the shape sensitivity for the traction
loads applied along the curved boundary. Comparing with
their shape sensitivity expressions in Cartesian coordinate sys-
tem, there are not only the curvature diva2 but also the gradient
of the normal vector ∇a2 involved due to the representation in
the curvilinear coordinate system. Since the shell boundary
could be typically curved and subjected to various boundary

(a)                     (b)

X Y

Z

TM

Deformed
shape

5
Original
shape

1
2

3

4

X

Y

-1 0 1

-1

0

1

2

3

τ

Ω

V
ΩτFig. 5 Verification model for

shape sensitivity analysis: a
problem description and selective
design variables 1–5 b design
perturbation drawn by 500 times
exaggerated design velocities

Table 2 Higher order geometric effects in shape sensitivity of response coefficients

Degrees of
freedom

Finite difference
sensitivity

Isogeometric sensitivity
(without HO terms)

Case A agreement
(%)

Isogeometric sensitivity
(with HO terms)

Case B
agreement (%)

1_ψ1 −1.31318E-04 −4.61029E-04 28.484 −1.31317E-04 100.001

2_ψ1 −1.77759E-04 −6.27599E-04 28.324 −1.77758E-04 100.001

3_w 2.01827E-04 4.68863E-04 43.046 2.01826E-04 100.000

4_ψ1 −2.61287E-04 −8.30145E-04 31.475 −2.61286E-04 100.000

4_ψ2 −6.27287E-04 −8.72651E-04 71.883 −6.27286E-05 100.000

5_w −1.48855E-05 2.82209E-05 −52.746 −1.48856E-05 100.000

5_ψ2 3.11797E-05 −1.01366E-04 −30.760 3.11799E-05 99.999

Generalized isogeometric shape sensitivity analysis and optimization of shell structures 1083

ℓ 0 ψ2

	 

¼

Z
ΓN

2

X CP

I
~WIψ2IMT ∇a2⋅a2

� �
a2=a22 þ diva2

� �
V 2

ffiffiffiffiffiffi
a22

p
Jj jdθ1:



resultants, moreover, it would be more required the use of the
isogeometric shape sensitivity analysis providing better gradi-
ent information than the conventional finite element sensitiv-
ity for the precise shape optimization of the shell geometry.

5.3 Isogeometric shape optimization: cantilever shell
under edge moments

Accurate sensitivity analysis is important in the shape design
optimization since the shape sensitivity provides the search
direction in gradient based optimization. Using the derived
isogeometric shape sensitivity, shape design optimization
problems of shell structures are solved for minimal compli-
ance with a material volume constraint. The structural shape

optimization problem is then stated, using the adjoint sensitiv-
ity analysis method, as:

Minimize L d;λð Þ ¼ ∬Ωd
Tp Jj jdθ1dθ2

þ
Z

ΓN
1

dTq
ffiffiffiffiffiffi
a11

p
Jj jdθ2

þ
Z

ΓN
2

dTq
ffiffiffiffiffiffi
a22

p
Jj jdθ1

ð115Þ

subject to m ¼ ∬Ωh Jj jdθ1dθ2≤Mmax; ð116Þ

Plower≤P≤Pupper; ð117Þ
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Fig. 6 Shape sensitivities of responses including higher order geometric
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Fig. 7 Shape sensitivities of responses without higher order geometric effects
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where Mmax and λ are the allowable material volume and the
response of adjoint system, respectively. P is a control point as
a design variable whose lower and upper bounds are Plower

and Pupper, respectively. Using the fact that d=λ for the com-
pliance performance measure and (95–97), the shape variation
of (115) is obtained as:

¼ 2∬Ωd
T ∇p⋅Vþ pdivV½ � Jj jdθ1dθ2 þ 2

Z
ΓN

1

dT ∇q⋅a1 þ q ∇a1⋅a1
� �

⋅a1
.
a11 þ diva1

	 
h i
V 1

ffiffiffiffiffiffi
a11

p
Jj jdθ2

þ2

Z
ΓN

2

dT ∇q⋅a2 þ q ∇a2⋅a2
� �

⋅a2
.
a22 þ diva2

	 
h i
V 2

ffiffiffiffiffiffi
a22

p
Jj jdθ1

−∬Ω ∇Cαβμλ⋅V
� �

εαβ dð Þεμλ dð Þ þ h2

12
∇Cαβμλ⋅V
� �

ωαβ dð Þωμλ dð Þ þ ∇Cα3β3⋅V
� �

γα dð Þγβ dð Þ
� �

h Jj jdθ1dθ2

−∬Ω Cαβμλε
0
αβ dð Þεμλ dð Þ þ h2

12
Cαβμλω

0
αβ dð Þωμλ dð Þ þ Cα3β3γ

0
α dð Þγβ dð Þ

� �
h Jj jdθ1dθ2

−∬Ω Cαβμλεαβ dð Þε0
μλ dð Þ þ h2

12
Cαβμλωαβ dð Þω0

μλ dð Þ þ Cα3β3γα dð Þγ 0
β dð Þ

� �
h Jj jdθ1dθ2

−∬Ω Cαβμλεαβ dð Þεμλ dð Þ þ h2

12
Cαβμλωαβ dð Þωμλ dð Þ þ Cα3β3γα dð Þγβ dð Þ

� �
h Jj jdivVdθ1dθ2:

ð118Þ

Also, the shape variation of (116) can be obtained by:

m0 ¼ dmτ

dτ

����
τ¼0

¼ ∬Ωh Jj jdivVdθ1dθ2: ð119Þ

Consider a square shell model with the thickness of 0.1 and
the width of 12. As shown in Fig. 8, the shell model is
clamped along an edge and subjected to a uniform
bending moment resultant MB=1 along the other side.
The material properties are E=10×106 and ν=0.3. The
design model is composed of 49 control points to rep-
resent arbitrary curved surfaces as shown in Fig. 9.
Besides, the control points or design variables are pa-
rameterized into 24 sets according to the locations
where the symmetry of the model is considered: the
control points (dv1-dv18) in the solid square are capable
to translate in x, y, and z directions while (dv19-dv24)
in the circles are only able to move in z direction. The
control points in the dotted square are symmetric pairs

of the solid square and then they have to move sym-
metrically to those in the solid square with respect to
the symmetry line. Control points along the fixed edge
are excluded from the design parameterization. For all
design variables, the translations on the xy plane are
allowed from −1.5 to 1.5 while the movement along z direc-
tion is allowed from −6 to 6. Notice that the initial shell model
is an almost flat and shallow arch: along the y-directional
edges the z coordinate is 0 but it is smoothly increasing toward
0.01 on the symmetry line.

X Y

Z

BM

12 Original
shape

Deformed
shape

Fig. 8 Cantilever shell subjected to edge bending
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Fig. 9 Design parameterization
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Although the resolution of the design model, 49 con-
trol points, would be sufficient to represent curved sur-
faces, the analysis model shall be refined from the de-
sign model to have 729 control points for accurate re-
sponse and sensitivity analyses. The multilevel design
parameterization obtained through h-refinement was ex-
plained in the Section 4.2. In order to prevent the
locking phenomenon during the analysis, the reduced
integration scheme is selectively employed for mem-
brane and transverse shear stiffness matrices. The opti-
mum shell shape is found in Fig. 10 to minimize the
compliance for the given boundary conditions while
keeping the same material volume or m=Mmax. The
control points or design variables are determined by
the mathematical programming algorithm, based on the
shape sensitivities in (118–119). After the shape optimi-
zation, the loaded edge winds roundly to reduce the
deformation against bending as shown in Fig. 10a.
The optimum design demonstrates the well-known fact
that an open circular cylindrical shell supports the bend-
ing moments not only by means of the bending but also
by straining the surface while a flat plate resists the applied
moment by means of bending only. Consequently, the maxi-
mum value of the deflection in the optimum design is only
0.04 % of 1.33759 in the initial design and it appears only at
the local part of the rounded edge as shown in Fig. 10b. As
shown in Fig. 8, whilst, the initial model suffers large and
global deformation. Figure 11 shows the optimization history
that the compliance is smoothly minimized with nine sensitiv-
ity evaluations. Under the condition of same material volume

or m=Mmax, the compliance of the optimum design can be
decreased by 0.12 % of the one of the initial design ([L(d,
λ)]optimum=6.635E−02,[L(d,λ)]initial=5.636E+01). Note that
the allowable movement along z direction of design variables
is sufficiently large so that, in the optimum design, the largest
value is less than 1.5 while the translation on the xy plane is
restricted to prevent entangling control nets. One could use the
initial design with opposite arch: along the y-directional edges
the z coordinate changes from 0 to −0.01 on the symmetry
line. The optimized shape configuration from this initial de-
sign appears perfectly overturned the optimum design shown
in Fig. 10. However, the optimization histories of performance
measures are exactly same for both problems.

The higher order geometric components are incorporated
into the boundary integrals in (118). In order to investigate the
impact of the higher order geometric components on the de-
sign optimization, the optimum design is found through the
exactly same conditions of the previous optimization problem
using inaccurate sensitivity expression of (118) excluding the
higher order geometric components. The optimization result is
illustrated in Fig. 12. Comparing with Fig. 10a, this inaccurate
shell shape in Fig. 12 is more uniformly rounded and much
smoother around the corners of the loading boundary. This test
implies that the influence of higher order geometric compo-
nents on the optimum shape is not trivial.
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6 Conclusions

A generalized formulation of a continuum-based shape sensi-
tivity analysis is derived in curvilinear coordinate systems.
Note that the curvilinear coordinates compose the generalized
coordinate systems from which orthogonal and Cartesian sys-
tems are readily reduced with geometric restrictions. Utilizing
the generalized formulation in the isogeometric frame-
work, both of the response and sensitivity analysis
methods for the geometrically exact shear deformable
shell are developed in the curvilinear coordinates. The
curvilinear coordinate system can be directly and adap-
tively derived from the given NURBS surface geometry.
By the fully analytical derivations, the boundary inte-
grals for the boundary resultants that would be impor-
tant in many engineering applications, and their material
derivatives are precisely incorporated. In the sensitivity
computations of the boundary integrals, furthermore, the
higher order geometric effects, such as normal and cur-
vatures, are encountered. The NURBS basis functions
have the higher order continuity from the recursive dif-
ferentiability of B-spline functions, and thus the higher
order geometric information can be accurately calculated
and enhance the accuracy of sensitivities. Through nu-
merical examples, the developed isogeometric sensitivity
analysis method is verified to provide very accurate de-
sign gradients comparing with finite difference sensitiv-
ities. The importance of existing higher order geometric
effects for the sensitivity analysis is also confirmed
through ostensive comparisons of isogeometric sensitiv-
ity results including or excluding the higher order terms.
Moreover, the NURBS basis functions conveniently pro-
vide the smooth and non-local design velocity field
whose computation is essential but not easy in the finite
element based shape optimization. For the shape optimi-
zation of the cantilevered shell subjected to the bound-
ary resultants, the derived adjoint variable sensitivity
analysis method is incorporated with the gradient-based
numerical optimization method. As a result, the applica-
bility of the isogeometric shape optimization for the
shell is demonstrated.

At the present time only spatial positions of control
points are considered as design variables, although the
weights also alter NURBS geometry. Examples provided
are single patch surface models in a linear elastic mate-
rial, while many practical industrial problems could be
represented with several patches and behaved
nonlinearly. Considering those issues, the generalized
shape sensitivity analysis and optimization systems pro-
posed in this work could be further extended in the
future.
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Appendix. Gradient computations for design
sensitivity analysis

The unit normal vector a3 to the other base vectors can be
calculated as

a3 ¼ a1 � a2
a1 � a2k k : ðA� 1Þ

Its gradient computation shown in (68) with respect to the
shape parameter is given by

∇a3⋅V ¼ V;1 � a2
a1 � a2k k þ a1 � V;2

a1 � a2k k −
a3

a1 � a2k k a3⋅ V;1 � a2 þ a1 � V;2

� �� �
ðA� 2Þ

where

∇aα⋅V ¼ ∂
∂nx

∂nx
∂θα

� �
⋅V ¼ V;α: ðA� 3Þ

Obviously,V=V(nx) in all equations in this appendix. Also
in (68), the following yields

∇aα⋅V ¼ ∇ aαβaβ
� �

⋅V ¼ ∇aαβ⋅V
� �

aβ þ aαβV;β: ðA� 4Þ

Using aαλaλμ=δμ
α, we have

∇aαβ ⋅V ¼ −aαλ ∇aλμ⋅V
� �

aμβ

¼ −aαλ V;λ⋅aμ þ aλ⋅V;μ

� �
aμβ: ðA� 5Þ

The gradient computations shown in (77) are given by

∇Γμ
αβ⋅V ¼ ∇aα;β⋅V

� �
⋅aμ þ aα;β⋅ ∇aμ⋅Vð Þ

¼ V;αβ⋅aμ þ aα;β⋅ ∇aμλ⋅V
� �

aλ þ aμλV;λ
ðA� 6Þ

and

∇bαβ⋅V ¼ ∇a3⋅Vð Þ⋅aα;β þ a3⋅ ∇aα;β⋅V
� �

¼ ∇a3⋅Vð Þ⋅aα;β þ a3⋅V;αβ:
ðA� 7Þ

Also in (79), we have

∇bβα⋅V ¼ ∇bλα⋅Vð Þaβλ þ bλα ∇aβλ⋅V
� �

: ðA� 8Þ

Moreover, the gradient computations of the material ten-
sors in (80) can be given from (52),
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∇Cαβμλ⋅V ¼ E

2 1þ νð Þ ∇aαμ⋅Vð Þaβλ þ aαμ ∇aβλ⋅V
� �þ ∇aαλ⋅V

� �
aβμ þ aαλ ∇aβμ⋅V

� �� �
þ 2νE
2 1þ νð Þ 1−νð Þ ∇aαβ⋅V

� �
aμλ þ aαβ ∇aμλ⋅V

� �� �
ðA� 9Þ

and

∇Cα3β3⋅V ¼ E

2 1þ νð Þ ∇a
αβ⋅V: A� 10
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