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Abstract Accurate prediction of stochastic responses of a
structure caused by natural hazards or operations of non-
structural components is crucial to achieve an effective design.
In this regard, it is of great significance to incorporate the
impact of uncertainty into topology optimization of structures
under constraints on their stochastic responses. Despite recent
technological advances, the theoretical framework remains
inadequate to overcome computational challenges of incorpo-
rating stochastic responses to topology optimization. Thus,
this paper presents a theoretical framework that integrates ran-
dom vibration theories with topology optimization using a
discrete representation of stochastic excitations. This paper
also discusses the development of parameter sensitivity of
dynamic responses in order to enable the use of efficient
gradient-based optimization algorithms. The proposed topol-
ogy optimization framework and sensitivity method enable
efficient topology optimization of structures under stochastic
excitations, which is successfully demonstrated by numerical
examples of structures under stochastic ground motion
excitations.
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Nomenclature
f(t) Stationary Gaussian input process
v Vector of n uncorrelated standard normal random

variables
s(t) Vector of deterministic basis functions
hf (·) Impulse-response function of a filter
hs (·) Impulse-response function of a system
u(t) Displacement time history
a(t) Vector of deterministic basis functions
u0 Threshold value
Ef Failure event
P(Ef) Failure probability
Pf
target Target failure probability

Φ[·] Cumulative distribution function of the standard
normal distribution

β Reliability index
βtarget Target reliability index
d Vector of deterministic design variables
~ρe dð Þ Element density
p Stiffness penalization parameter
q Mass penalization parameter
D(·) Elastic tensor determined by material density

function
D0 Elasticity tensor of the solid material
E0 Young’s modulus of the solid phase
Ke Element stiffness matrix
Me Element mass matrix
K Global stiffness matrix
M Global mass matrix
C Global damping matrix
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f Global load vector
ü Global acceleration vector
u
�

Global velocity vector
u Global displacement vector
λ Adjoint variable vector
Φ0 Power spectral density of the white noise process
ωf Predominant frequency of a random process (a filter)
ζf Bandwidth of a random process (a filter)
Δi/Li Inter-story drift rations of the i-th floor evaluated at

specified points
Li i-th floor height
Δi i-th floor drift evaluated at a specified point

1 Introduction

Topology optimization aims to identify optimal material lay-
outs of problems through mathematical programming while
fulfilling given design constraints (Bendsøe and Sigmund
2003). Extensive research in the field of topology optimiza-
tion has led to development of many theories, methods and
algorithms to overcome well-known issues such as numerical
instability in checkerboard problems (Diaz and Sigmund
1995; Jog and Haber 1996), mesh dependency problems,
and ill-posed and lacking solutions in continuum settings
(Kohn and Strang 1986; Sigmund and Petersson 1998). A
topology problem can be well-posed by using relaxation
(Bendsøe and Kikuchi 1988) or restriction of the design space
(Kim and Yoon 2000; Poulsen 2002; Guest et al. 2004). An
important example of such advancement in the field is the
development of Solid Isotropic Material with Penalization
(SIMP; Bendsøe 1989; Rozvany et al. 1992; Bendsøe and
Sigmund 1999), a method designed to obtain physical prop-
erties of the intermediate densities. However, SIMP can lead
to numerical instabilities such as “checker-board” effects, i.e.
the formation of areas with alternating solid and void distribu-
tion in the design domain. To resolve issues associated with
the checker-board (Diaz and Sigmund 1995) and the mesh-
dependency, various projection schemes (Guest et al. 2004;
Sigmund 2007) and filtering techniques have been developed
previously (Sigmund and Petersson 1998; Bourdin 2001).

Although the field of deterministic topology optimization
has been well developed, various technical challenges still
exist, especially in achieving reliable solutions under uncer-
tainty. A recent trend has shown active research efforts in
finding topologies under uncertainty, which is often termed
as reliability based topology optimization (RBTO) (Maute
and Frangopol 2003; Allen et al. 2004; Kang et al. 2004;
Kharmanda et al. 2004; Kim et al. 2006; Guest and Igusa
2008; Rozvany 2008; Lógó et al. 2009; Luo et al. 2009; Chen
et al.2010; Jalalpour et al. 2013). These challenges further
complicate topology optimization when it is necessary to
maintain balance between architecture and engineering

criteria, and to solve large-scale problems for high-rise build-
ings. In order to address these issues, a new method for system
reliability-based topology optimization (SRBTO;Nguyen et al.
2011) was recently developed so that a probabilistic constraint
on a system event consisting of multiple component events can
be satisfied. This methodology provides an effective way to
overcome challenges in topology optimization under probabi-
listic constraints on system failure events by incorporating the
matrix based system reliability (MSR)method (Song andKang
2009) into topology optimization. Despite these recent techni-
cal advances, it still remains elusive how uncertain responses
of structures under random vibrations need to be addressed.

It is noted that one of the most fundamental requirements
on building structures is to withstand various uncertain loads
such as earthquake ground motions, wind loads and ocean
waves. The structural design, therefore, needs to ensure safe
and reliable operations over a prolonged period of time despite
random excitations caused by hazardous events. Such a sto-
chastic excitation is often described by a random process f(t),
which is the family (ensemble) of all possible random time
histories (Lutes and Sarkani 2003). Alternatively, the random
process can be understood as a collection of random variables
defined at infinite number of points along the time axis. For
instance, at a given time point t=ti, f(ti) is a random variable
that represents a set of possible realizations across the ensem-
ble. Since the future realization of the random process is not
completely represented by some specific cases or scenarios,
predictions need to be made on the basis of probability. There-
fore, a reasonable representation of the uncertainty in the ran-
dom process is needed to obtain a meaningful solution for
given engineering problems. This has led to active research
efforts in developing random process models that can describe
the uncertainty in input stochastic processes during dynamic
analysis of structures subjected to random excitations.

To model and simulate stochastic processes properly, many
approaches, algorithms and methods were developed previ-
ously. Some of the most widely used approaches are Monte
Carlo simulation techniques (Shinozuka 1972; Kitagawa
1996; Liu and Chen 1998), autoregressive methods (Spanos
and Mignolet 1987; Mignolet and Spanos 1987; Deodatis and
Shinozuka 1988; Novak et al. 1995), and autoregressive mov-
ing average methods (Spanos and Mignolet 1990; Gersch and
Yonemoto 1977). The spectral representation method
(Shinozuka and Jan 1972; Shinozuka and Deodatis 1991
1996, 1996; Grigoriu 1993; Grigoriu 2003; Chen and
Kareem 2005; Chen and Letchford 2005) has been widely
utilized to simulate the random process by using a series of
deterministic basis functions with uncorrelated random coef-
ficients. The discrete representation method describes the sto-
chastic processes in terms of a finite number of uncorrelated
random variables and filters describing frequency contents
and nonstationarity of the processes. Der Kiureghian (2000),
Rezaeian and Der Kiureghian (2008, 2010, 2012) used the
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discrete representation method along with modulating func-
tions to model random ground motions. Konakli and Der
Kiureghian (2012) used the discrete representation method
to define statistical characteristic of ground motions consider-
ing various soil properties. Based on the discrete representa-
tion of input stochastic processes, Fujimura and Der
Kiureghian (2007) developed a Tail-Equivalent Linearization
Method (TELM) to find an equivalent linear system by
matching a first-order approximation of a tail probability be-
tween a linear response and nonlinear response.

The most recent research on topology optimization has been
primarily focused on structures under static loadings. Such ap-
proaches may fail to address important concerns caused by ran-
dom excitations in structural design practices. For example,
lateral-force-resisting structural systems should be designed to
effectively control random dynamic responses caused by natural
hazards or operations of non-structural components. In response
to such needs and challenges, research efforts in topology
optimization of structures under constraints on dynamic
response have been increased recently. However, high
computational cost remains as a major obstacle in
incorporating dynamic/stochastic responses of structures into
topology optimization. Some advances have been made in the
field of research by dealing with dynamic characteristics of the
structure under special loading conditions instead of actual re-
sponse time histories under given deterministic or stochastic
input excitations. For example, Diaz and Kikuchi (1992) dealt
with eigenfrequencies as the key dynamic characteristic during
topology optimization of structures under dynamic loadings.
Since then, several methods and formulations related to frequen-
cies optimization have been developed (Ma et al. 1994;Ma et al.
1995; Jensen and Pedersen 2006; Du and Olhoff 2007). Such an
approach in topology optimization often aims to maximize the
fundamental frequency to indirectly control dynamic responses.
An alternative approach is to minimize the dynamic response of
a structure for a given dominant frequency of dynamic loadings
(Maeda et al. 2006; Rubio et al. 2011). Min et al. (1999) used a
relaxation-homogenization theory to address minimal compli-
ance during a given time interval in structural topology optimi-
zation problems under dynamic loadings. Such methods, how-
ever, are limited in incorporating general structural behavior
addressed in actual design practices into objective functions
and constraints of topology optimization.

In order to overcome these challenges, this paper introduces
a new method that incorporates random vibration theories into
topology optimization to satisfy probabilistic constraints de-
fined in terms of stochastic responses. The discrete representa-
tion method of the stochastic process is adopted in the paper
because the discretized form of a continuous process has prac-
tical advantages such as reducing the computational effort, fa-
cilitating implementation and identifying characteristics of the
stochastic process. Moreover, an analytical sensitivity formula-
tion is derived to enable the use of gradient-based optimizers.

The remainder of the paper is structured as follows. First,
theoretical basis of the discrete representation method of ran-
dom vibration is provided. It is followed by a discussion on
how to characterize a linear structural system subjected to
Gaussian stochastic excitations using the structural reliability
theory. Next, the details of the proposed topology optimiza-
tion method and a new formulation for parameter sensitivities
of dynamic responses are discussed. The proposed methods
are demonstrated with numerical examples and discussion of
the results. Finally, the paper concludes with future directions
and possible extension of our findings.

2 Discrete representation of stochastic excitations

In order to effectively incorporate stochastic processes into
topology optimization, this paper adopts the discrete represen-
tation method. In particular, random ground motions are de-
scribed by the discrete representation method for topology
optimization of structures under seismic excitations.

2.1 Discrete representation of stochastic process

The discrete representationmethod describes an input stochas-
tic process in terms of a finite number of standard normal
random variables by use of a deterministic function
representing the frequency content and nonstationarity
(Rezaeian and Der Kiureghian 2008, 2012). This allows for
evaluation of the failure probability associated with stochastic
response exceeding a threshold at a given time point (“instan-
taneous failure probability”) or crossing events during a time
period (“first-passage probability”) using structural reliability
analysis methods, such as First- and Second-Order Reliability
Methods (FORM and SORM; Der Kiureghian 2000; Der
Kiureghian 2004). For example, a zero-mean stationary
Gaussian input process f(t) is discretized as

f tð Þ ¼
Xn
i¼1

visi tð Þ ¼ s tð ÞTv ð1Þ

where v=[v1, v2…, vn]
T is a vector of n uncorrelated standard

normal random variables. Thus, E[vi]=0 and E[vjvk]=δjk in
which E[·] denotes the mathematical expectation and δjk is
the Kronecker delta. s(t)=[s1(t),…, sn(t)]

T is a vector of deter-
ministic basis functions representing the spectral characteris-
tics of the process. To obtain the basis function, one can use
one of the available methods such as the Karhunen-Loève
orthogonal expansion (Spanos and Ghanem 1989), the orthog-
onal series expansion approach (Zhang and Ellingwood
1994), and the optimal linear estimation method (Li and Der
Kiureghian 1993).
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2.2 Discrete representation of earthquake ground motions

A stochastic groundmotion can bemodeled as the response of
a linear filter to a random pulse train. The filter may represent
the characteristic of soil medium, through which the earth-
quake ground motion passes. For instance, the response of
the linear filter excited by the white noise W(t) can be
expressed by a convolution integral employing the impulse-
response function of the filter, hf (·), i.e.

f tð Þ ¼
Z t

0
hf t−τð ÞW τð Þdτ ð2Þ

The power spectral density function of the white noiseW(t) is
given as a constant, i.e.ΦWW(ω)=Φ0. The white noise process
can be represented approximately by rectangular pulses in
closely spaced time steps. A random height of the pulse,
which may stand for sporadic ground ruptures, is defined by
the temporal average ofW(t) over each time interval, i.e.

W tð Þ≅Wi ¼ 1

Δt

Z
ti

t iþ1

W τð Þdτ; t∈ ti; tiþ1ð � ð3Þ

where Δt=ti+1−ti. Assuming W(t) is a zero-mean Gaussian
process, the integration of (3) results in a Gaussian random
variable Wi. The mean of Wi is derived as

E Wi½ � ¼ E
1

Δt

Z
ti

t iþ1

W τð Þdτ
2
4

3
5 ¼ 1

Δt
⋅E
Z
ti

t iþ1

W τð Þdτ
2
4

3
5 ¼ 0 ð4Þ

The variance of Wi is derived as

Var Wi½ � ¼ E
1

Δtð Þ2
Z
ti

t iþ1Z
ti

t iþ1

W τ1ð ÞW τ2ð Þdτ1dτ2
2
4

3
5

¼ 1

Δtð Þ2
Z
ti

t iþ1Z
ti

t iþ1

RWW τ1; τ2ð Þdτ1dτ2

¼ 1

Δtð Þ2
Z
ti

t iþ1Z
ti

t iþ1

2πΦ0⋅δ τ2−τ1ð Þ½ �dτ1dτ2

¼ 1

Δtð Þ2
Z
ti

t iþ1

2πΦ0dτ2 ¼ 2πΦ0

Δt

ð5Þ

where RWW(⋅) is the auto-correlation function ofW(t), and δ(⋅)
is the Dirac delta function. In summary, Wi is the zero-mean
Gaussian random variable with the variance 2πΦ0 / Δt. One
can also show thatWi andWj (i≠j) are uncorrelated. Therefore,
the Gaussian white noise processW(t) can be represented by a
set of uncorrelated standard normal random variables,

Wi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πΦ0=Δt

p
⋅vi; i ¼ 1;…; n ð6Þ

where n denotes the number of the time intervals for the time
period (0, t).

Substituting (3) and (6) into (2), the filter response of the
Gaussian white noise process is approximately derived in a
discrete form

f tð Þ≅
Xn
i¼1

Wi⋅hf t−tið ÞΔt

¼
Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πΦ0=Δt

p
⋅vi⋅hf t−tið ÞΔt

¼
Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πΦ0Δt

p
⋅h f t−tið Þ⋅vi ¼ s tð ÞTv

ð7Þ

In this case, the basis functions in the vector s(t) are thus

derived as si tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πΦ0Δt

p
⋅h f t−tið Þ.

It should be noted that the model in (7) is an example of
modeling stochastic ground motions by the discrete representa-
tion method, and one can construct such a model fitted for the
characteristics of ground motions at a specific site. For example,
Rezaeian and Der Kiureghian (2008, 2012) incorporated non-
stationarity of spatially varying ground motions into such
models and developed a method for simulating an ensemble of
synthetic ground motions. Konakli and Der Kiureghian (2012)
developed a conditioning simulation method for generating sta-
tionary processes and extended the method to non-stationary
models.

2.3 Characterization of linear system under stochastic
excitations

If a stochastic excitation is described by the discrete representa-
tion method discussed above, the stochastic responses of a struc-
tural system can be also described by a finite number of random
variables. For example, a displacement time history u(t) of the
linear system under the stochastic excitation f(t) is derived as

u tð Þ ¼
Z t

0

f τð Þhs t−τð Þdτ ¼
Z t

0

s τð ÞTv
h i

⋅hs t−τð Þdτ

¼
Z t

0

Xn
i¼1

si τð Þvihs t−τð Þdτ ¼
Xn
i¼1

ai tð Þ⋅vi ¼ a tð ÞTv

ð8Þ

where hs(t) is the unit impulse response function of the
structural system, and a(t) denotes a vector of determin-
istic basis functions

ai tð Þ ¼
Z t

0

si τð Þhs t−τð Þdτ; i ¼ 1;…; n ð9Þ
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As a result, failure events defined in terms of dynam-
ic response can be described in the space of standard
normal random variables v. For example, an ‘instanta-
neous’ failure event described in terms of the displace-
ment of the linear system at time t= t0, i.e. Ef={u(t0)≥
u0} where u0 is a selected threshold can be represented
by a linear half space u0−u(t0)=u0−a(t0)Tv≤0, as illus-
trated in Fig. 1. From theories of structural reliability,
the failure probability P(Ef) is then obtained by a
closed-form solution P(u(t0)≥u0)=Φ[−β(u0,t0)] where
Φ[·] is the cumulative distribution function (CDF) of
the standard normal distribution, and β(u0,t0) =u0/
||a(t0)|| is the reliability index. The reliability index is
alternatively computed by β= α̂ t0ð Þ⋅v* where α̂ t0ð Þ de-
notes the negative normalized gradient vector of the
limit-state function evaluated at the so-called design
point or most probable point (MPP) v*, which is obtain-
ed by u0⋅a(t0)/||a(t0)||2 (Der Kiureghian 2000).

To facilitate finding a(t) in finite element settings
without deriving the impulse response function necessar-
ily, the following procedure is proposed in this paper.
First, a random sample of v is created by generating n
uncorrelated standard normal random variables. Second,
an input time history f(t) is computed by substituting v
into (7). Third, the displacement time history u(ti), i=1,
2,…,n of structures for the input time history f(t) is
computed using a time integration scheme such as
Newmark method (1959). Then, substituting the com-
puted time history u(ti), i=1,2,…,n, and the random
sample of v into (8), one can obtain

u t1ð Þ ¼ a1 t1ð Þv1
u t2ð Þ ¼ a1 t2ð Þv1 þ a2 t2ð Þv2
u t3ð Þ ¼ a1 t3ð Þv1 þ a2 t3ð Þv2 þ a3 t3ð Þv3

⋮
u tn−1ð Þ ¼ a1 tn−1ð Þv1 þ a2 tn−1ð Þv2 þ…þ an−1 tn−1ð Þvn−1
u tnð Þ ¼ a1 tnð Þv1 þ a2 tnð Þv2 þ…þ an−1 tnð Þvn−1 þ an tnð Þvn

ð10Þ

It is noted that ai(tj)=0 for i>j because si τð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πΦ0Δt

p
⋅hf

τ−tið Þ in (9) is zero for τ<ti. When a uniform step size is used,
i.e. ti−ti−1=Δt, i=1,2,....,n and tn=t0, it is found from (7) and
(9) that

ai jΔtð Þ ¼ anþi− j t0ð Þ; i ¼ 1; 2;…; n; j ¼ i;…; n ð11Þ

Appendix provides the details of the derivation. As a result,
the system equation in (10) is given in the following matrix
equation:

u t1ð Þ
u t2ð Þ
⋮

u tn−1ð Þ
u tnð Þ

0
BBBB@

1
CCCCA ¼

u Δtð Þ
u 2Δtð Þ
⋮

u t0−Δtð Þ
u t0ð Þ

0
BBBB@

1
CCCCA

¼

an t0ð Þ 0 ⋯ 0 0
an−1 t0ð Þ an t0ð Þ ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮
a2 t0ð Þ a3 t0ð Þ ⋯ an t0ð Þ 0
a1 t0ð Þ a2 t0ð Þ ⋯ an−1 t0ð Þ an t0ð Þ

2
66664

3
77775

v1
v2
⋮
vn−1
vn

0
BBBB@

1
CCCCA

ð12Þ

Each element ai of the vector a can then be calculated using
the forward-substitution method or solving the following
equivalent matrix equations by use of a solver developed for
the lower triangular matrix:

u t1ð Þ
u t2ð Þ
⋮

u tn−1ð Þ
u tnð Þ

0
BBBB@

1
CCCCA ¼

u Δtð Þ
u 2Δtð Þ
⋮

u t0−Δtð Þ
u t0ð Þ

0
BBBB@

1
CCCCA

¼

0 0 ⋯ 0 v1
0 0 ⋯ v1 v2
⋮ ⋮ ⋱ ⋮ ⋮
0 v1 ⋯ vn−2 vn−1
v1 v2 ⋯ vn−1 vn

2
66664

3
77775

a1 t0ð Þ
a2 t0ð Þ
⋮

an−1 t0ð Þ
an t0ð Þ

0
BBBB@

1
CCCCA

ð13Þ

In both methods, the absolute value of the first element in the
sample, v1 needs to be sufficiently large for numerical stabil-
ity. It is found that the procedure using (13) is less sensitive to
the numerical issue. The obtained vector of deterministic basis
function a(t0) is used in order to compute the reliability index
and its associated failure probability aforementioned.

MPP

Safe domain

0 0( ) 0u u t

*

0 0( , )u tv

−

0 0( ) 0u u t−
T

0 0( ) 0u ta v−

Failure domain

vi

vj

β(u0, t0)

α̂ (t0)

Fig. 1 Geometric representation of instantaneous failure at time t0 (MPP:
Most Probable Point)
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2.4 Stationarity

In general, evaluating the instantaneous failure probability
P(Ef) requires iterative computations through random vi-
bration analysis and structural reliability analysis. It gen-
erates additional demands for computational resources
and time in optimization. Using the discrete representation
method, the instantaneous failure probability can be ob-
tained by the closed-form solution as described in Sec-
tion 2.3. It should be noted that the instantaneous failure
probabilities is constant over the time period if the re-
sponse achieves stationarity. This stationarity can be con-
firmed by investigating the autocovariance function Kxx(⋅)
(Lutes and Sarkani 2003), which can be computed from
the following form

Kxx t1; t2ð Þ ¼
Z ∞

−∞
ΦF F ωð ÞH ω; t1ð ÞH ω; t2ð Þeiω t1−t2ð Þdω

ð14Þ

where ΦFF(ω) is the power spectral density function and
H(ω, ti), i=1,2 denotes an incomplete Fourier transform of
hs(t). Because H(⋅) is time-variant, responses of the linear
system subjected to the stationary process may not be
stationary in general. The stationarity of responses can
be achieved when t1, t2 go to infinity because H(ω, t1),
H(ω, t2) converge to a frequency response function H(ω)
which does not depend on time t. For a general single
degree-of-freedom oscillator, H(ω, t) can be written as

H ω; tð Þ ¼ H ωð Þ 1− cosωDt þ ξωo þ iω
ωD

sinωDt

� �
e−ξωot⋅e−iωt

� �
ð15Þ

where ωo is the natural frequency of the system, ξ de-
notes the damping ratio and ωD is the damped natural
frequency. Based on (15), a time t taking e−ξωot to ε≪1
can be identified as the time that leads to H(ω, t)≅H(ω).
For instance, a reduction of e−ξωot to about 4% can be
achieved by taking −ξωot=π. Therefore, one can com-
pute a sufficient time for achieving stationarity using the
following expression:

t≈4% ¼ To=2ξ ð16Þ

The primary focus of this paper is topology optimization of
linear structures subjected to the stationary Gaussian process,
for which the aforementioned closed-form solution of the fail-
ure probability can be used. To achieve stationarity, we com-
pute the instantaneous failure probability at a time point after
stationarity is achieved, according to (16).

3 Stochastic topology optimization framework

This section presents our proposed stochastic topology opti-
mization framework. We incorporate the discrete representa-
tion method discussed above into topology optimization for
an effective treatment of uncertainties in stochastic
excitations.

3.1 Topology optimization framework

In this paper, we consider a linear elastic and isotropic con-
stituent material with an elasticity tensor D0. We adopt the
Solid Isotropic Material with Penalization (SIMP; Bendsøe
1989; Rozvany et al. 1992; Bendsøe and Sigmund 1999) mod-
el in which a smooth convex function is defined by a power
function representation, i.e.

ψ xð Þ ¼ xp ð17Þ
where p>0 is a penalization factor. In order to avoid singular-
ity of a stiffness matrix in finite element analysis, a lower
bound needs to be set on the element density ~ρe dð Þ i.e., 0
< ~ρmin≪ ~ρe dð Þ < 1 with a vector of deterministic design var-
iables, d. The element density can be obtained by using a
density filtering method such as the projection technique
(e.g. Guest et al. 2004; Sigmund 2007) to avoid checker-
board-patterns. By using a linear “hat” kernel of radius r, the
element density can be computed as a weighted average of the
design variables within an influence domain Ωe such as

~ρe dð Þ ¼

X
j∈Ωe

w jd j

X
j∈Ωe

w j

ð18Þ

where wj=(r−rj)/r>0 is a weight, and rj is the distance be-
tween the centroids of element e and element j, which lies
within the radius r of element e.

Therefore, an elasticity tensor of an isotropic material in the
state of plane stress is determined as

Dð~ρeðdÞÞ ¼ ψð~ρeðdÞÞD0

¼ ψð~ρeðdÞÞ⋅E0

1−ν2
⋅

1 v 0
v 1 0
0 0 1−vð Þ=2

2
4

3
5 ð19Þ

where E0 denotes the Young’s modulus of the solid phase, ν is
the Poisson’s ratio, and D0 is the elasticity tensor of the solid
material, where the density is 1. Using the SIMP model, the
stiffness matrix of the eth element and its sensitivity are ob-
tained in the element-based computational framework
(Bendsøe and Sigmund 2003):
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Keð~ρeÞ ¼ ~ρe
p
K0

e ;
∂Keð~ρeÞ
∂~ρe

¼ p~ρe
p−1

K0
e ð20Þ

where Ke
0 is computed by

K0
e ¼

Z
Ωe

BTD0B dΩe ð21Þ

in which B denotes a strain–displacement matrix of shape
function derivatives in the domain Ωe of element e. When
considering transient problems, the mass matrix and its sensi-
tivity can be obtained as follows

Með~ρeÞ ¼ ~ρe
q
M0

e ;
∂Með~ρeÞ

∂~ρe
¼ q~ρe

q−1
M0

e ð22Þ

whereMe
0 is the mass matrix of the solid material, and q is the

penalization parameter. To calculate the mass matrix in the
domain of element e, a consistent mass matrixMe

0 is obtained
as

M0
e ¼

Z
Ωe

NTρN dΩe ð23Þ

which has been adopted in this work. Here ρ is the mass
density of material and N is the shape function of element
e. The numerical examples in this paper use penalization
parameter values p=3 and q=1, which are widely used in
the field of topology optimization (Pedersen 2000; Du and
Olhoff 2007). As usual, the global stiffness matrix K and
mass matrix M for the finite element analysis can be as-
sembled over the total number of finite elements ne in the
design domain, that is,

K ¼
X
e¼1

ne

Keð~ρeÞ; M ¼
X
e¼1

ne

Með~ρeÞ ð24Þ

3.2 Stochastic topology optimization formulation

For structures under stochastic excitations, a topology optimi-
zation problem can be formulated as

min
d

f ob jð~ρ dð ÞÞ
s:t P E f

� �
≤P f

target

with M ~ρð Þ€u t; ~ρð Þ þ C ~ρð Þ u� t; ~ρð Þ þK ~ρð Þu t; ~ρð Þ ¼ f t; ~ρð Þ

ð25Þ

where ~ρ¼~ρ dð Þ is the element density vector,M ~ρð Þ,C ~ρð Þ and
K ~ρð Þ are the mass, damping and stiffness matrices of the
design domain, respectively. The quantities €u t; ~ρð Þ; u

�
t; ~ρð Þ;

u t; ~ρð Þ and f t; ~ρð Þ denote the acceleration, velocity, displace-
ment and external force vectors at time t. Pf

target denotes the
target failure probability which is the allowable failure

probability in the probabilistic constraint. The force vector
for the structure subjected to ground acceleration üg(t) gener-
ated in the form of (7) can be expressed as
f t; ~ρð Þ ¼ −M ~ρð Þl€ug tð Þ, in which the vector l represents the
directional distribution of masses with unity. It can be derived
from the behavior of structures subjected to earthquake exci-
tation of the base of the structure. The total displacement of
the massM by ut t; ~ρð Þ is a summation of the relative displace-
ment between the ground and the mass by u t; ~ρð Þ and the
displacement of the ground denoted by ug(t)l. Because elastic
and damping forces are only generated by the relative motion
u t; ~ρð Þ, the inertial force related to the acceleration becomes
M ~ρð Þ €u tð Þ þ l€ug tð Þ� �

. Thus, the external force vector is
expressed as f t; ~ρð Þ ¼ −M ~ρð Þl€ug tð Þ. In this paper, the
damping matrix is constructed by using a Rayleigh damping
model, C=κ0M+κ1K. The coefficients κ0 and κ1 in the Ray-
leigh damping model are determined under the assumption of
2 % damping ratio for structures.

Optimization of nonlinear systems and/or systems subject-
ed to non-stationary or non-Gaussian processes can also be
achieved by modulating various filters (Rezaeian and Der
Kiureghian 2008, 2010) and utilizing structural reliability
analysis methods such as FORM and SORM. In order to up-
date design variables during optimization procedures, nonlin-
ear optimization algorithms such as the sequential quadratic
programming (SQP) or the method of moving asymptotes
(MMA; Svanberg 1987) can be used. In this paper, MMA is
used along with the special purpose sensitivity formulation
described below. The MMA was chosen because the algo-
rithm can handle the multiple constraints effectively and
shows faster convergence compared to the SQP and the inte-
rior point method in the numerical examples.

3.3 Overall topology optimization process

Figure 2 illustrates the proposed procedure of topology
optimization of structures under stochastic excitations.
The procedure begins with an initial design and a stochas-
tic model of excitation. For instance, the Kanai-Tajimi
power spectral density model (Clough and Penzien
1993) can be implemented to approximately match the
spectral characteristics of ground motions. The failure
probability, i.e. the probability that the current design vi-
olates the given probabilistic constraint, is computed by
structural reliability analysis (Der Kiureghian 2000; Der
Kiureghian 2004). As described above, the instantaneous
failure probability of the linear structure under the Gauss-
ian excitations can be computed by the closed-form solu-
tion. Next, the objective function, constraint functions and
their sensitivities are computed to update design variables
using an optimization algorithm such as MMA. The con-
vergence check based on the total change in the material
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distribution is performed at the end of each iteration step.
This process is repeated until a tolerance threshold of
0.5 % is reached.

4 Sensitivity calculations

Computing the sensitivity of structural responses with respect
to various design parameters is essential for efficient gradient-
based optimization. Therefore, various approaches have been
developed for computing sensitivity of static as well as dy-
namic responses (Haug and Arora 1978; Haftka and Gürdal
1992). Computing gradients of responses of the system under
stochastic process, however, differs from aforementioned sen-
sitivity calculations, in that this system requires an additional
layer of complexity due to the randomness of the input pro-
cess. In this paper, a new sensitivity formulation employing
the adjoint method is developed for linear structures subjected
to stochastic excitations modeled by the discrete representa-
tion method.

Consider the following constraint on the probability of the
instantaneous failure event described by the discrete represen-
tation method:

P E f

� � ¼ Pðu0−aðt0; ~ρÞTv≤0Þ≤P f
target ð26Þ

Alternatively, the constraint in (26) can also be described
using the CDF of the standard normal distribution and the
reliability index, i.e.

Φ½−βðu0; t0; ~ρÞ�≤Φ −βtarget
	 


or βðu0; t0; ~ρÞ≥βtarget ð27Þ

where βtarget denotes the target reliability index, which is (1−
Pf

target) quantile of the standard normal distribution, i.e..
Φ[−βtarget]=Pf

target. Therefore, the sensitivity of the reliability
index with respect to the design variables d needs to be eval-
uated to enable the use of gradient-based optimization algo-
rithms. As described above, the reliability index is computed
as

βðu0; t0; ~ρÞ ¼ u0

aðt0; ~ρÞ
��� ���

¼ u0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1ðt0; ~ρÞ2 þ a2ðt0; ~ρÞ2 þ⋯þ anðt0; ~ρÞ2

q
ð28Þ

By applying the chain rule to (28), the sensitivity of the reli-
ability index with respect to the design variable de∈d is de-
rived as

∂βðu0; t0; ~ρÞ
∂de

¼
X
k¼1

ne ∂βðu0; t0; ~ρÞ
∂~ρk

⋅
∂~ρk
∂de

¼ −
u0

ða1ðt0; ~ρÞ2 þ⋯þ anðt0; ~ρÞ2Þ3=2

" #
⋅
X
k¼1

neXn
i¼1

aiðt0; ~ρÞ⋅ ∂aiðt0;
~ρÞ

∂~ρk

 !
⋅
∂~ρk
∂de

¼
X
k¼1

neXn
i¼1

ciðu0; t0; ~ρÞ⋅ ∂aiðt0;
~ρÞ

∂~ρk

 !
⋅
∂~ρk
∂de

(29)
where

ciðu0; t0; ~ρÞ ¼ −u0⋅aiðt0; ~ρÞ a1ðt0; ~ρÞ2 þ⋯þ anðt0; ~ρÞ2
h i−3=2

ð30Þ

In (29), the index k represents the k-th element, k=1,…,ne, and
the partial derivative ∂~ρk=∂de can be obtained from the filter-
ing function in (18).

However, the sensitivity formulation in (29) cannot be
completed as is because of the implicitly defined sensitivities
with respect to the element density, i.e. ∂ai t0; ~ρð Þ=∂~ρk . To
enable the sensitivity calculation, a new sensitivity calculation
procedure based on the adjoint method is developed as pre-
sented below.

4.1 Adjoint sensitivity analysis

The basic idea of the adjoint method is introducing an
adjoint system of equations so that computing implicitly
defined terms in the sensitivity analysis can be avoided
and thus computational cost can be reduced (Haug et al.
1986; Haftka and Gürdal 1992; Choi and Kim 2005). In
the sensitivity analysis of the reliability index, the
discretized system in the last line of (25) is considered
as the adjoint system. The equation of motion can be

Result: Optimal Topology

Yes

No (iterate)
Convergence Criteria 

achieved?

Random Vibration Analysis using dynamic 

FEA, and compute Pfailure

Sensitivity Analysis of objective and constraint 

functions

Update Design Variables using Mathematical 

Programming

Generating Stochastic 
Excitation Model

Initial Design 
ρ = ρInitial 

Fig. 2 Flow chart for topology optimization under stochastic excitations
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solved numerically using one of the time integration
schemes such as the central difference method (Hulbert
and Chung 1996), Houbolt method (Houbolt 1950) or
Newmark method (Newmark 1959). The implicit
Newmark time integration method is presented here be-
cause the approach shows more stable and accurate re-
sults for the numerical examples. The Newmark method
is based on the following time-stepping rules:

u
� ðt jþ1Þ ¼u

� ðt jÞ þ 1−γð ÞΔt½ �€uðt jÞ þ γΔtð Þ€uðt jþ1Þ ð31Þ
uðt jþ1Þ ¼ uðt jÞ þΔt u

� ðt jÞ þ 0:5−ηð ÞΔt2
	 


€uðt jÞ þ ηΔt2
	 


€uðt jþ1Þ
ð32Þ

The parameters γ and η determine the stability and accuracy
characteristic of the method (γ=0.5 and η=0.25 are used in
the research). Substituting (31)-(32) for ü(tj+1) and u

� ðt jþ1Þ
into the second-order governing equation in (25) at t=tj+1,
one can obtain the following expression

1

η Δtð Þ2 Mð~ρÞ þ γ
ηΔt

Cð~ρÞ þKð~ρÞ
 !

uðt jþ1; ~ρÞ ¼ fðt jþ1; ~ρÞ

þ Cð~ρÞ γ
ηΔt

uðt j; ~ρÞ þ γ
η
−1

� �
u
� ðt j; ~ρÞ þΔt

γ
2η

−1
� �

€uðt j; ~ρÞ
� �

þMð~ρÞ 1

η Δtð Þ2 uðt j;
~ρÞ þ 1

ηΔt
u
� ðt j; ~ρÞ þ 1

2η
−1

� �
€uðt j; ~ρÞ

" #

ð33Þ
Based on a general recurrence relation associated with three
sequential displacements (Chan et al. 1962; Zienkiewicz
1977), the equilibrium equations of motion can be solved for
uðt jþ1; ~ρÞ:
Mð~ρÞ þ γΔtCð~ρÞ þ η Δtð Þ2Kð~ρÞ
� 


uðt jþ1; ~ρÞ ¼ η Δtð Þ2 fðt jþ1; ~ρÞ

þ 0:5þ γ−2ηð Þ Δtð Þ2 fðt j; ~ρÞ þ 0:5−γþ ηð Þ Δtð Þ2 fðt j−1; ~ρÞ

− −2Mð~ρÞ þ 1−2γð ÞΔtCð~ρÞ þ 0:5þ γ−2ηð Þ Δtð Þ2Kð~ρÞ
h i

uðt j; ~ρÞ
− Mð~ρÞ þ γ−1ð ÞΔtCð~ρÞ þ 0:5−γþ ηð Þ Δtð Þ2Kð~ρÞ
h i

uðt j−1; ~ρÞ

ð34Þ
It should be noted that the force vector fðt jþ1; ~ρÞ can be re-
placed by the inertia force vector −M ~ρð Þ1 f ðt jþ1Þ for struc-
tures subjected to ground excitations aforementioned. The fol-
lowing notations are introduced in order to simplify the deri-
vations:

Að~ρÞ ¼ Mð~ρÞ þ γΔt⋅Cð~ρÞ þ η Δtð Þ2Kð~ρÞ

Bð~ρÞ ¼ −2Mð~ρÞ þ 1−2γð ÞΔtCð~ρÞ þ 0:5þ γ−2ηð Þ Δtð Þ2Kð~ρÞ
Eð~ρÞ ¼ Mð~ρÞ þ γ−1ð ÞΔtCð~ρÞ þ 0:5−γþ ηð Þ Δtð Þ2Kð~ρÞ

ð35Þ
Substituting (34) with (35) and differentiating the equation
with respect to the element density, one can obtain the
discretized adjoint system as follows:

∂Að~ρÞ
∂~ρk

⋅uðt jþ1; ~ρÞ þ Að~ρÞ⋅ ∂uðt jþ1; ~ρÞ
∂~ρk

−η Δtð Þ2 ∂ fðt jþ1; ~ρÞ
∂~ρk

− 0:5þ γ−2ηð Þ Δtð Þ2 ∂ fðt j; ~ρÞ
∂~ρk

− 0:5−γþ ηð Þ Δtð Þ2 ∂ fðt j−1; ~ρÞ
∂~ρk

þ ∂Bð~ρÞ
∂~ρk

⋅uðt j; ~ρÞ

þ Bð~ρÞ⋅ ∂uðt j; ~ρÞ
∂~ρk

þ ∂Eð~ρÞ
∂~ρk

⋅uðt j−1; ~ρÞ þ Eð~ρÞ⋅ ∂uðt j−1; ~ρÞ
∂~ρk

¼ 0

ð36Þ

It should be noted that this adjoit system is self-adjoint be-
causeM, C andK are symmetric based on (21) and (23). Pre-
multiplying the discretized adjoint system with a ndof dimen-
sional adjoint variable vector λn−j+1 and adding to right-hand
side terms of (29), one obtains

∂βðu0; t0; ~ρÞ
∂~ρk

¼
Xn
i¼1

ciðu0; t0; ~ρÞ⋅ ∂aiðt0; ~ρÞ
∂~ρk

 !

þ
Xn
j¼1

λT
n− jþ1

∂Að~ρÞ
∂~ρk

⋅uðt j; ~ρÞ þ Að~ρÞ⋅ ∂uðt j; ~ρÞ
∂~ρk

2
4

−η Δtð Þ2 ∂ fðt j; ~ρÞ
∂~ρk

− 0:5þ γ−2ηð Þ Δtð Þ2 ∂ fðt j−1; ~ρÞ
∂~ρk

− 0:5−γþ ηð Þ Δtð Þ2 ∂ fðt j−2; ~ρÞ
∂~ρk

þ ∂Bð~ρÞ
∂~ρk

⋅uðt j−1; ~ρÞ

þ Bð~ρÞ⋅ ∂uðt j−1; ~ρÞ
∂~ρk

þ ∂Eð~ρÞ
∂~ρk

⋅uðt j−2; ~ρÞ þ Eð~ρÞ⋅ ∂uðt j−2; ~ρÞ
∂~ρk

�
ð37Þ

It is noted that the first summation on the right-hand side of
(37) includes gradients of a(t) which was introduced to de-
scribe a certain degree-of-freedom, i.e. u(t)=a(t)Tv while the
added terms in the second summation are expressed with gra-
dients of displacement vector u including all degrees-of-free-
dom. To derive the sensitivity in (37) in terms of derivatives of
u(t), the terms in the first summation are alternatively de-
scribed as

Xn
i¼1

ciðt0; ~ρÞ⋅ ∂aiðt0;
~ρÞ

∂~ρk

 !
¼
Xn
i¼1

Ti⋅zT⋅
∂uðti; ~ρÞ
∂~ρk

 !
ð38Þ

where z is a binary vector that indicates which degree-of-
freedom (DOF) that a(t) indicates. If the sensitivity of the k-
th degree-of-freedom is of interest, all elements of z vector are
zeroes except the k-th element, which is 1. From (8), the sen-
sitivity of a selected degree-of-freedom of the displacement
vector, i.e. u(t)∈u(t), is determined as

∂uðt; ~ρÞ
∂~ρk

¼ ∂aðt; ~ρÞT

∂~ρk
v ð39Þ
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By means of a procedure similar to the one described in (10)-
(13), the following matrix equation is derived to obtain
∂ai t0; ~ρð Þ=∂~ρk , i =1…,n:

∂u t1ð Þ=∂~ρk
∂u t2ð Þ=∂~ρk

⋮
∂u tn−1ð Þ=∂~ρk
∂u tnð Þ=∂~ρk

0
BBBBB@

1
CCCCCA ¼

∂an t0ð Þ=∂~ρk 0 ⋯ 0 0

∂an−1 t0ð Þ=∂~ρk ∂an t0ð Þ=∂~ρk ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

∂a2 t0ð Þ=∂~ρk ∂a3 t0ð Þ=∂~ρk ⋯ ∂an t0ð Þ=∂~ρk 0

∂a1 t0ð Þ=∂~ρk ∂a2 t0ð Þ=∂~ρk ⋯ ∂an−1 t0ð Þ=∂~ρk ∂an t0ð Þ=∂~ρk

2
666664

3
777775

v1
v2
⋮
vn−1
vn

0
BBBB@

1
CCCCA

ð40Þ
Substituting (40) into (38), one obtains the following expres-
sion

c1ðt0; ~ρÞ⋅ ∂a1ðt0;
~ρÞ

∂~ρk
þ c2ðt0; ~ρÞ⋅ ∂a2ðt0;

~ρÞ
∂~ρk

þ…þ cnðt0; ~ρÞ⋅ ∂anðt0;
~ρÞ

∂~ρk
¼

T1⋅
∂anðt0; ~ρÞ

∂~ρk
⋅v1 þ T 2⋅

∂an−1ðt0; ~ρÞ
∂~ρk

⋅v1 þ ∂anðt0; ~ρÞ
∂~ρk

⋅v2

 !
þ…þ

Tn⋅
∂a1ðt0; ~ρÞ

∂~ρk
⋅v1 þ ∂a2ðt0; ~ρÞ

∂~ρk
⋅v2 þ…

∂anðt0; ~ρÞ
∂~ρk

⋅vn

 !
ð41Þ

Comparing the coefficients of the left and right hand sides of
(41), one can find

Tnv1 ¼ c1ðt0; ~ρÞ
Tn−1v1 þ Tnv2 ¼ c2ðt0; ~ρÞ
⋮
T 1v1 þ T 2v2 þ…þ Tnvn ¼ cnðt0; ~ρÞ

ð42Þ

The coefficients Ti, i=1,…,n, can be obtained by solving (42).
Substituting (38) into (37) and isolating implicitly defined
terms ∂uðt j; ~ρÞ=∂~ρk , one obtains:

∂βðu0; t0; ~ρÞ
∂~ρk

¼
Xn
i¼1

Ti⋅zT
∂uðti; ~ρÞ
∂~ρk

 !

þ
Xn
j¼1

λT
n− jþ1

∂Að~ρÞ
∂~ρk

⋅uðt j; ~ρÞ−η Δtð Þ2 ∂fðt j; ~ρÞ
∂~ρk

2
4

− 0:5þ γ−2ηð Þ Δtð Þ2 ∂ fðt j−1; ~ρÞ
∂~ρk

− 0:5−γþ ηð Þ Δtð Þ2 ∂ fðt j−2; ~ρÞ
∂~ρk

þ ∂Bð~ρÞ
∂~ρk

⋅uðt j−1; ~ρÞ þ
∂Eð~ρÞ
∂~ρk

⋅uðt j−2; ~ρÞ
3
5

þ
Xn
j¼1

λT
n− jþ1 Að~ρÞ⋅ ∂uðt j; ~ρÞ

∂~ρk

"
þBð~ρÞ⋅ ∂uðt j−1; ~ρÞ

∂~ρk
þ Eð~ρÞ⋅ ∂uðt j−2; ~ρÞ

∂~ρk

#

ð43Þ

It is noted that this procedure requires knowledge of u t−1; ~ρð Þ,
u 0; ~ρð Þ and their partial derivatives so that a special starting
procedure such as initial displacements by the central differ-
ence method can be used to generate initial results. The terms
including ∂uðt j; ~ρÞ=∂~ρk , j=1,…,n, are identified and grouped

in (43). Then, the value of the adjoint vector λn is found, such
that the coefficients of unknown derivatives ∂u t j; ~ρ

� �
=∂~ρk ,

j=1,…,n, are zero, i.e.

Tn⋅zT þ λT
1 ⋅Að~ρÞ ¼ 0

Tn−1⋅zT þ λT
2 ⋅Að~ρÞ þ λT

1 ⋅Bð~ρÞ ¼ 0

Tn−2⋅zT þ λT
3 ⋅Að~ρÞ þ λT

2 ⋅Bð~ρÞ þ λT
1 ⋅Eð~ρÞ ¼ 0

⋮
T 1⋅zT þ λT

n ⋅Að~ρÞ þ λT
n−1⋅Bð~ρÞ þ λT

n−2⋅Eð~ρÞ ¼ 0

ð44Þ

Finally, substituting the value of the adjoint vector obtained
from (44) into (43) gives the sensitivity from the following
equation that does not involve implicitly defined derivative
terms:

∂βðu0; t0; ~ρÞ
∂~ρk

¼
Xn
j¼1

λn− jþ1
T

∂Að~ρÞ
∂~ρk

⋅uðt j; ~ρÞ−η Δtð Þ2 ∂ fðt j; ~ρÞ
∂~ρk

2
4

− 0:5þ γ−2ηð Þ Δtð Þ2 ∂ fðt j−1; ~ρÞ
∂~ρk

− 0:5−γþ ηð Þ Δtð Þ2 ∂ fðt j−2; ~ρÞ
∂~ρk

þ ∂Bð~ρÞ
∂~ρk

⋅uðt j−1; ~ρÞ þ
∂Eð~ρÞ
∂~ρk

⋅uðt j−2; ~ρÞ
3
5

þ λn
T Bð~ρÞ⋅ ∂uð0; ~ρÞ

∂~ρk
þ Eð~ρÞ⋅ ∂uðt j−1; ~ρÞ

∂~ρk

" #
þ λn−1

T Eð~ρÞ⋅ ∂uð0; ~ρÞ
∂~ρk

" #

ð45Þ

4.2 Performance of the proposed method for sensitivity
calculations

The performance of the proposed method for the sensitivity
calculation is tested with a numerical example in terms of
efficiency and accuracy. For this purpose, the example con-
siders a structure shown in Fig. 3 (a), which is subjected to the
filtered stationary process which is represented in the form of
(1) with the basis functions si(t)=exp[−2.4π(t−ti)]⋅sin[3.2π(t
−ti)]⋅H(t−ti) (Der Kiureghian 2000) where H(⋅) is a unit step
function. The basis functions are normalized such that ‖s(t)‖=
1. The continuum structure is discretized with quadrilateral
elements (Q4). The frame elements illustrated as straight lines
in Fig. 3(a) are divided into smaller elements. Those are then
connected to the nodes of Q4 elements along the straight lines.
The thickness of the Q4 element is 0.1 m, the size of frame
elements is 0.45 m × 0.45m, and Young’s modulus E=21,000
MPa and density ρ=2,400 kg/m3 are used to describe the
material properties of the structure. The uniform distribution
of the material density 0.5 over the Q4 domain is assumed in
the sensitivity calculation. The probabilistic constraint is given
on tip-displacements, which are evaluated at red dots as
shown in Fig. 3(a). The failure event Ef occurs when the
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average tip-displacement exceeds a given threshold value
u0(=0.02 m) at t0=8, i.e.

E f ¼ u0−
uLeft þ uRight

2

� �
≤0 ð46Þ

where uLeft ¼ a t0; ~ρð ÞTLeftv and uRight ¼ a t0; ~ρð ÞTRightv denote

displacements at time t0 respectively, computed using a
t0; ~ρð Þ functions evaluated at the left and right red dots in
Fig. 3(a), respectively. The direct differentiation method

(DDM) and the proposed adjoint method (AJM) are carried
out to calculate the sensitivity ∂β u0 ¼ 0:02; t0 ¼ 8; ~ρð Þ=∂d j.
The finite difference method (FDM) with varying per-
turbations from Δd=10−1 to Δd=10−16 is also imple-
mented to verify the proposed method. Table 1 summa-
rizes sensitivity results from the FDM at three selected
elements shown in Fig. 3(a) and those from the pro-
posed AJM and the DDM. Figure 3 (b)-(d) show nor-
malized sensitivities computed by the three methods.
The DDM and proposed AJM yield results that are
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Fig. 3 Sensitivities by different approaches: (a) geometry of the structure, (b) adjoint method, (c) direct differentiation method, and (d) finite difference
method

Table 1 Sensitivities at the element A, B, and C using the proposed AJM, DDM, and FDM with a perturbation Δd

Elem. A Elem. B Elem. C

AJM 0.003110 0.008650 0.021623

DDM 0.003110 0.008650 0.021623

FDM

∆ d Elem. A Elem. B Elem. C ∆ d Elem. A Elem. B Elem. C 

1×10
−1

0.002585 0.007872 0.020308 1×10
−9

0.003361 0.008789 0.022355 

1×10
−2

0.003053 0.008570 0.021484 1×10
−10

0.018385 0.018541 0.029197 

1×10
−3

0.003104 0.008642 0.021609 1×10
−11

0.159606 0.143707 0.081490 

1×10
−4

0.003109 0.008650 0.021621 1×10
−12

0.311751 -0.32685 0.567768 

1×10
−5

0.003110 0.008650 0.021623 1×10
−13

13.37375 9.74998 5.90417 

1×10
−6

0.003112 0.008652 0.021624 1×10
−14

85.7980 242.6503 71.7870 

1×10
−7

0.003128 0.008635 0.021620 1×10
−15

-1345.81 206.501 315.525 

1×10
−8

0.002872 0.008645 0.021704 1×10
−16

1725.286 4276.579 11146.63 
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consistent with those from the FDM. Figure 4 shows
normalized computational times for different levels of
discretization of the structure. The computational times
are normalized by the result of the AJM for 800 finite
elements. The proposed AJM shows the most efficient
performance in terms of computational time while main-
taining the accuracy of results.

5 Numerical applications

The proposed method is applied to obtain a lateral bracing
system with minimum volume for a building structure
subjected to stochastic ground motion excitations. The
topology optimization formulation in (25) is used while
the objective function f ob j ~ρ dð Þð Þ is defined as the volume

of the structure determined by the material density distri-
bution. The material distribution in the design domain is
optimized under probabilistic constraints on inter-story
drift ratios (ASCE7 2010, NEHRP 2009) during random
excitations of an earthquake event, which are important
criteria for seismic designs. Topology optimization is per-
formed for a variety of multi-story buildings and condi-
tions in order to investigate the impact of prescribed prob-
abilistic parameters, characteristics of the filtered white
noise, and building dimensions on topology optimization
solutions.

5.1 Input stochastic process

In subsequent numerical examples presented in this pa-
per, the stochastic seismic excitation is modeled as the
filtered white-noise process. Accordingly, the unit-
impulse response function hf(·) in (7) follows the

Kanai-Tajimi filter model (Clough and Penzien 1993;
Fujimura and Der Kiureghian 2007), i.e.

hf tð Þ ¼ exp −ζ fω f t
� � 2ζ2f −1

� 

ω fffiffiffiffiffiffiffiffiffiffi

1−ζ2f
q sin ω f

ffiffiffiffiffiffiffiffiffiffi
1−ζ2f

q
⋅t

� 

−2ζ fω f cos ω f

ffiffiffiffiffiffiffiffiffiffi
1−ζ2f

q
⋅t

� 
2
64

3
75

ð47Þ

where ωf and ζf are filter parameters representing the pre-
dominant frequency and the bandwidth of the process. The
corresponding power spectral density (PSD) function (Lutes
and Sarkani 2003) of the input process is

Φ ωð Þ ¼ 1þ 4ζ2f ω=ωg

� �2
1− ω=ωg

� �2� 
2
þ 2ζ fω=ωg

� �2 Φ0 ð48Þ

where Φ0 represents the power spectral density of the
underlying white noise process. Typical values for pre-
dominant frequency and the bandwidth of ground mo-
tions on a firm ground are ωf =5π rad/s and ζf =0.4.

5.2 Topology optimization of three-story buildings

Figure 5 shows a three-story building with a width of 5 m,
a height of 15 m, and a uniform thickness of 0.1 m. The
design domain, represented by the gray area, is modeled
by bilinear quadrilateral (Q4) elements, and the material
densities in the elements are optimized to minimize the
volume while satisfying the probabilistic constraints on
the inter-story drift ratio. The two vertical lines represent
the structural columns modeled by frame elements, whose
material properties or dimensions remain constant during
the optimization process. The frame element is discretized
into many smaller frame elements, which are attached at
every node of quadrilateral meshes along the column lines
and move together with quadrilateral elements. Young’s
modulus E=21,000 MPa and density ρ=2,400 kg/m3 are
used as material properties to represent normal-weight
concrete. The filtering radius r=0.1625 m and initial vol-
ume fraction 0.7 over the Q4 domain are employed. The
coefficients used in the Rayleigh damping model are κ0=
1.93, κ1 = 1.52×10

−4 under the assumption of 2 %
damping ratio for the three-story building. For each of
the floor levels 2, 3 and 4 shown in Fig. 5, the averages
of the inter-story drift ratios (Δi/Li) are evaluated at spec-
ified points for the left and right columns as the stochastic
response of the structure. Constraints are given on the
probabilities of the failure events, which are defined as
those exceeding the average inter-story drift ratios for
the given threshold value. More precisely, the failure
event of the i-th floor level is defined as
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Fig. 4 Normalized computational time (FDM: finite difference method,
DDM: direct differentiation method, and AJM: adjoint method)

784 J. Chun et al.



E f i ¼ ui0−
ðaðt0; ~ρÞTi;Left þ aðt0; ~ρÞTi;RightÞv

2Li

0
@

1
A≤0

8<
:

9=
; for i ¼ 2

ui0−
ðaðt0; ~ρÞTi;Left þ aðt0; ~ρÞTi;RightÞv

2Li
−
ðaðt0; ~ρÞTði−1Þ;Left þ aðt0; ~ρÞTði−1Þ;RightÞv

2Li

0
@

1
A≤0

8<
:

9=
; for i ¼ 3; 4

ð49Þ

where Li(=5 m), ui0(=0.02), a t0; ~ρð ÞTi;Left and a t0; ~ρð ÞTi;Right rep-
resent the floor height, the threshold value of the inter-story
drift ratio respectively, as well as a vectors to determine the
lateral displacement at the left and right columns of the i-th
floor level at t=t0, for i=2,3,4. Although the events described
in (49) have a different form from (26), it is noted that the inter-
story drift ratios in (49) are still linear functions of the random
vector v, i.e. b t0; ~ρð ÞTi v. Therefore, the closed-form solution in
(27) and the sensitivity calculation methods developed in Sec-
tion 4.1 can still be used by replacing a vectors (displacement)

in the formulations by b vector (inter-story drift). Table 2 pro-
vides filter parameters, column size, and parameters used for
probabilistic constraints, which include the threshold values of
average drift ratios. The filter parameters in Table 2 represent
ground motions on a typical firm ground. The threshold value
of the inter-story drift ratio is chosen as one of design criteria in
ASCE7 (2010).

In these examples, constraints are given on the instanta-
neous probability during the strong ground motions for which
the earthquake excitation can be approximated as a stationary
process (Soong & Grigoriu 1993). Even when a stationary
input is used for a linear structure, it takes time to achieve
the stationarity in the structural response. In order to achieve
stationarity, the drift ratio at t0=6s is used when computing the
instantaneous failure probability. Optimization problems are
solved with different column sizes, intensities of filtered
Gaussian excitations, and target reliability indices, which cor-
respond to allowable failure probabilities.

Topology optimization solutions are obtained (see Figs. 6
and 7) while the intensity of the ground motion is varied for
Cases I-III as tabulated in Table 2. As the intensity increases,

Table 2 Three-story building: parameters used for design domain,
probabilistic constraint and ground motion model

Filter parameters Column size (m×m) u0

ωf ζf

Case I 5π 0.4 0.5×0.5 0.02

Case II 5π 0.4 0.5×0.5 0.0175

Case III 5π 0.4 0.6×0.6 0.02

LEVEL 4

EL: 15 m

Frame element

Design domain:

Bilinear quadrilateral element Q4

5 m

LEVEL 3

L4

P4aP4average P4b

P3aP3average P3b

P2aP2average P2b

L3

L2

EL: 10 m

LEVEL 2

EL: 5 m

GROUND

EL: 0 m

Δ2

Δ3

Δ4Fig. 5 Three-story building
subjected to stochastic excitations
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the converged topologies become significantly different at the
lower level. In particular, the intersection point of the bracing
at the lower level moves up vertically with increasing intensity
while the thickness of the bracing increases at the lower level
but remains relatively stable at higher levels. The results
shown in Figs. 6 and 7 indicate that topology optimization
satisfies probabilistic constraints for increased intensities by
strengthening the lower level first, i.e. by placing more mate-
rials and changing geometry of the bracings. This is why the
bracing of the top level mostly remains constant and maintains
its 45° angle as the intensity increases. It is also noted that the
points where the bracing meets the column around the second
floor (termed as “bracing-column points” hereafter) move up
as the intensity increases. Based on this observation, an effi-
cient way to control the inter-story drift ratio is strengthening
lower parts of the structural system. Comparing results from

Case I and Case II shows that decreased threshold value of
drift ratios (Case II) moves up both bracing-column points and
intersection points of the bracings at the lower floor level. It is
also important to note that a change in the threshold value can
affect the optimization result as shown in both Case I and Case
II. Distinct changes of topologies are observed at the lower
floor level with additional branches of the material distribution
for the case with reduced threshold value. The change in the
column size (Case III) leads to overall increases in the thick-
ness of material distributions. Volumes of the optimization
solutions are tabulated in Table 3. The values in the paren-
theses are volumes for discrete material distributions con-
verted from intermediate densities. Detailed discussion of
the conversion process and its impact on the results are
included in Section 5.3. The volumes of optimization solu-
tions for Case I are lower than those of Case II because the

LEVEL 4

EL: 15 m

LEVEL 3

EL: 10 m

LEVEL 2

EL: 5 m

GROUND

EL: 0 m
(a) (b) (c) 

Fig. 6 Topology optimization
solutions to the three-story building
example (Φ0=250, β

target=2.5,
Pf=0.62 %). (a) Case I: column
size 0.5m×0.5m, u0 =0.02; (b)
Case II: column size 0.5m × 0.5m,
u0 =0.0175; (c) Case III: column
size 0.6m×0.6m, u0 =0.02

LEVEL 4

EL: 15 m

LEVEL 3

EL: 10 m

LEVEL 2

EL: 5 m

GROUND

EL: 0 m(a) (b) (c) 

Fig. 7 Topology optimization
solutions to the three-story building
example (Φ0=300, β

target=2.5,
Pf=0.62 %). (a) Case I: column
size 0.5m×0.5m, u0 =0.02; (b)
Case II: column size 0.5m×0.5m,
u0 =0.0175; (c) Case III: column
size 0.6m × 0.6m, u0 =0.02
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lower threshold values of inter-story drift ratios in Case I
requires more strict the constraints. Compared to Case I,
the larger column size in Case III results in the increased
optimized volume. Note that the column size does not
change during topology optimization, and thus the stiffness
and mass matrices of the column remain the same. There-
fore, in Case III, applied earthquake loads to degrees of
freedom along column locations would be greater than dy-
namic forces applied to columns in Case I, resulting in the
increased volume.

The target reliability index of the cases is changed to 2.0
and 3.0 which correspond to the target failure probabilities
Pf

target=Φ[−2.0]=2.28 % and Pf
target=Φ[−3.0]=0.13 %, re-

spectively. The optimization solutions using changed target
reliability indices are illustrated in Figs. 8 and 9. This shows
the impact of changing the target reliability index on optimal
bracings. More specifically, the increase in the reliability in-
dex results in thicker bracings and alters intersection points on
the first two bottom floor levels. Additional branches of ma-
terial distributions are also observed and the volumes obtained
for the cases in Figs. 8 and 9 are summarized in Table 4.

Figure 10 shows the convergence histories of the objective
function (volume), the reliability index and the failure probability
of Case II shown in Fig. 9 (b), whose parameters are Φ0=300,
βtarget=3.0, u0=0.0175. The convergence histories confirm that
the proposed topology optimization method and the sensitivity
formulation can successfully achieve the topology optimization
solution under constraints on the instantaneous failure

probabilities defined in terms of the drift ratios. Additionally, a
neighborhood in the design domain that satisfies the constraints
is quickly identified, and the remaining design iterations are to
achieve the minimum volume within the identified neighbor-
hood. Figure 11 shows time histories of inter-story drift ratios
(Case II, Φ0=300, β

target=3.0, u0=0.0175) of the initial design
(i.e. the continuum domain completely filled) and the optimal
design for an input process randomly generated from the
Kanai-Tajimi filter model. The optimized system shows im-
proved dynamic performance even though only 40.1 % of the
original volume is used.

A manufacturing constraint on pattern repetition in topolo-
gy optimization (Almeida et al. 2010; Stromberg et al. 2011)
can be implemented for practical engineering applications.
This constraint allows engineers to achieve constructability
of the structural system such as same connection details, re-
usages of formworks for bracing and considering aesthetic
perspective as well. Topology optimization results of Case I
with βtarget=2.5, and varying Φ0 of 250 or 300 are shown in
Figs. 12 and 13. The number of pattern repetitionsm=2, 3 and
4 are used to obtain these results. Volumes of topology opti-
mization results are summarized in Table 5.

5.3 Study of stochastic responses over topology
optimization results

After the topology optimization result is obtained with the
constraint on the instantaneous failure probability at the time
point t0=6 s, reliability indices and failure probabilities of the
obtained topology layout solution at different time points from
0.5s to 10 s are studied. For this study, the topology optimiza-
tion result with the pattern repetition shown in Fig. 13 (c) is
used. Our results show that failure probabilities (and reliability
indices) remain constant within the time duration considered
after approximately 3 s (see Fig. 14). This confirms that the

LEVEL 4

EL: 15 m

LEVEL 3

EL: 10 m

LEVEL 2

EL: 5 m

GROUND

EL: 0 m
(a) (b) (c) 

Fig. 8 Topology optimization
solutions to the three-story
building example (Φ0=300,
βtarget=2.0, Pf=2.28 %). (a) Case
I: column size 0.5m×0.5m, u0
=0.02; (b) Case II: column size 0.5
m×0.5m, u0 =0.0175; (c) Case III:
column size 0.6m×0.6m, u0 =0.02

Table 3 Volume of final topologies (βtarget=2.5, Pf=0.62 %)

Фo Case I Case II Case III

250 1.717 (1.734) m3 2.049 (2.059) m3 2.157 (2.169) m3

300 1.904 (1.928) m3 2.251 (2.278) m3 2.402 (2.419) m3
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optimization solution at the specific time point (t0=6 s) by the
proposed method under the filtered Gaussian input process
can represent the reliability of the system during the stationary
strong motion period.

The effects of solutions converted to discrete material
layouts on dynamic responses and failure probabilities
are studied for practical engineering purposes. During
a post-processing stage, material densities less than 0.5
are converted to zero, and those that are greater than
0.5 are converted to one. The optimization results under
the pattern repetition constraint (see Figs. 12 and 13)
are processed using converted material densities. The
layout solutions of this process are illustrated in Figs. 15
and 16. Comparison of results between continuous so-
lutions in Figs. 12 and 13 and interpreted discrete solu-
tions after the post-processing are tabulated in Table 6.
Discrete solutions show increased reliability indices in
all cases and result in lower failure probabilities. Dy-
namic responses of the continuous solution of Φ0=300,
βtarget=2.5, and m=4 (see Fig. 13 (c)) in each floor
level and the discrete solution (see Fig. 16 (c)) under
a randomly generated filtered ground motion are shown
in Fig. 17. Compared to the continuous solutions, the
overall dynamic responses of the discrete layout solu-
tion show reduced magnitudes, which indicate the pos-
sibility of the lower failure probability.

Lastly, a cross-comparison among optimization results
is performed to study whether different model parameters
in topology optimization lead to significant changes of
structural responses. As shown in Fig. 18, differences in
dynamic responses of Case I and Case III under Φ0=250,
βtarget=2.5 are negligible. The topology optimization result
of Case II, which has u0 = 0.0175 leads to overall reduced
magnitude compared to others, resulting in observable dif-
ferences in structural responses. Further study of optimiza-
tion solutions from the pattern repetition constraint was
performed. Figure 19 illustrates structural responses of
topology optimization results subjected to a randomly
generated ground motion with Φ0=300, βtarget=2.5,
Pf=0.62 % considered in Fig. 16 (a)-(c) with the number
of pattern repetitions m. Structural responses of these cases
remain relatively constant despite changes in pattern num-
bers, which led to different material layouts and final
volumes.

5.4 Study of geometric uncertainty of discrete material
distribution

A further study on the geometry uncertainty is carried out.
The geometry uncertainty may be caused during the
converting process in practical fields from continuous to-
pology optimization solutions to discrete ones aforemen-
tioned in Section 5.3. Thus, the cut-off value of material
density assumes that it follows the normal distribution
with a mean of μm_cut-off and a standard deviation of
]σcut-off rather than the fixed value 0.5. Therefore, each
density value in each finite element is compared to a
random cut-off value in order to convert to discrete mate-
rial layouts. Figure 20 shows discrete solutions of Case III
(Φ0=250, β

target=2.5) shown in Fig. 16 (c) under the geometry

LEVEL 4

EL: 15 m

LEVEL 3

EL: 10 m

LEVEL 2

EL: 5 m

GROUND

EL: 0 m
(a) (b) (c) 

Fig. 9 Topology optimization
solutions to the three-story building
example (Φ0=300, β

target=3.0,
Pf=0.13 %). (a) Case I: column
size 0.5m×0.5m, u0 =0.02; (b)
Case II: column size 0.5m×0.5m,
u0 =0.0175; (c) Case III: column
size 0.6m x 0.6m, u0 =0.02

Table 4 Volume of final topologies (Φ0=300)

βtarget Case I Case II Case III

2.0 1.505 (1.531) m3 1.720 (1.731) m3 1.870 (1.884) m3

3.0 2.401 (2.409) m3 3.004 (3.022) m3 3.077 (3.100) m3
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uncertainty. It is noted that the result is one of 20 simulations
with random cut-offs. A discrete solution without the geometry
uncertainty is provided in Fig. 20 (a) for comparison. Figure 21
shows effects of geometry uncertainties on reliability indices

associated with inter-story drift ratio constraints after 20 simu-
lations. The reliability indices are still within target reliability
indices from continuous solutions and reliability indices from
discrete solutions.
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Fig. 10 Convergence history of the problem shown in Fig. 9 (b): (a) volume (b) reliability index (c) failure probability
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Fig. 11 Dynamic response comparison of the problem shown in Fig. 9 (b): (a) Randomly generated ground motion excitations; (b-c) corresponding
dynamic responses of the initial design and the optimal design
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5.5 Parametric study on impact of ground motion
characteristics

A numerical example of a six-story building is considered
for a parametric study on the impact of ground motion
characteristics. The example employs the same parameters

as those used for the three-story building example unless spec-
ified otherwise. Coefficients κ0=0.56 and κ1=5.0×10

−4 are
used for the Rayleigh damping model to achieve 2 %
damping. The column sizes and the target reliability indices
are shown in Table 7.

Three values of the dominant frequency and damping
ratio (bandwidth) of the Kanai-Tajimi filter are applied
respectively, i.e. ωf=4.7π, 5.0 π, 5.3 π (rad/sec) and
ζf=0.2, 0.3, 0.4. The impact of the dominant frequency
is shown in Fig. 22 (a)-(c), while Fig. 22 (d)-(e) dem-
onstrates the impact of the bandwidth parameter. The
convergence history of volumes for different parameters
in damping ratios and dominant frequencies are shown
in Fig. 23. From the modal analysis of the original
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(a) (b) (c) 

Fig. 12 Topology optimization
solutions to the three-story
building example with the pattern
repetition constraint. Φ0=250,
βtarget=2.5, Pf=0.62 %: (a) m=2;
(b) m=3; (c) m=4
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Fig. 13 Topology optimization
solutions to the three-story
building example with the pattern
repetition constraint. Φ0=300,
βtarget=2.5, Pf=0.62 %: (a) m=2;
(b) m=3; (c) m=4

Table 5 Volume of final topologies with the pattern repetition
constraint (βtarget=2.5, Pf=0.62 %)

Ф0 m=2 m=3 m=4

250 2.627 (2.656) m3 2.590 (2.616) m3 2.995 (3.037) m3

300 3.117 (3.144) m3 2.966 (3.001) m3 3.318 (3.363) m3
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structure with the uniform distribution of the material
density 0.5 over the Q4 design domain, the first natural
frequency of the six-story building is approximately
18.06 rad/s (the natural period T1 =0.348 s). A decrease
in the damping ratio of the filter (the bandwidth of the
process) increases the optimized volume, as shown in
Fig. 23. In order to identify the causes for these results,
the power spectral density function of the input ground
motion is plotted in Fig. 24 (a). For the given ground
motion model, a decrease in the filter damping ratio
increases the power spectral density at the natural fre-
quency of the building structure, which explains the

increase in the volume of the optimization solution. Fig-
ure 24 (b) shows that an increase in the predominant
frequency of the filter increases the power spectral den-
sity at the natural frequency. This shows why an in-
crease in the dominant frequency results in larger opti-
mized volume for the given example, as shown in
Fig. 23.

It is observed that characteristics of the ground mo-
tion make significant impacts on the topologies such as
geometries, intersection points, bracing-column points,
and the shape of the bracings. Additionally, the match
between the frequency content of the ground motion
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Fig. 14 (a) Reliability index and
(b) failure probability of the
topology optimization solution in
Fig. 13 (c) with varying time
points
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Fig. 15 Discrete solutions to the
three-story building example with
the pattern repetition constraint.
Φ0=250, β

target=2.5, Pf=0.62 %:
(a) m=2; (b) m=3; (c) m=4
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Fig. 16 Discrete solutions to the
three-story building example with
the pattern repetition constraint.
Φ0=300, β

target=2.5, Pf=0.62 %:
(a) m=2; (b) m=3; (c) m=4

Table 6 Comparison between continuous solution and discrete solution (βtarget=2.5, Pf=0.62 %)

Discrete solution

Continuous solution Ф0=250 Ф0=300

m=2 m=3 m=4 m=2 m=3 m=4 m=2 m=3 m=4 m=2 m=3 m=4
β Pf β Pf β Pf

E f 1 2.5 0.621 2.83 2.88 2.97 0.233 0.199 0.149 2.83 2.82 2.91 0.233 0.240 0.181

E f 2 2.5 0.621 2.89 2.80 2.87 0.193 0.256 0.205 2.88 2.73 2.79 0.199 0.317 0.264

E f 3 2.5 0.621 2.72 2.89 2.77 0.326 0.193 0.280 2.77 2.79 2.83 0.280 0.264 0.233
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Fig. 17 Dynamic response comparison between continuous solution shown in Fig. 13 (c) and discrete solution of Fig. 16 (c). Randomly generated
ground motion excitations (a) and corresponding dynamic responses (b)
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and the natural frequency of the structure affects how
the ground motion characteristics determine topological
solutions. Therefore, it is important to describe the fre-
quency content of the ground motion accurately during
topology optimization under stochastic excitations.

The pattern repetition constraint of the aforemen-
tioned example of three story building is further applied
to the six story building problem. Figure 25 shows to-
pology optimization solutions for the number of patterns
under two target reliability indices βtarget =2.5 and
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Fig. 18 Comparison of topology optimization results to the three-story
building example,Φ0=250,β

target=2.5, Pf=0.62%. Randomly generated
ground motion excitations (a) and corresponding dynamic responses (b).

(Case I: column size 0.5m×0.5m, u0 =0.02. Case II: column size 0.5m×
0.5m, u0 =0.0175. Case III: column size 0.6m×0.6m, u0 =0.02)
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Fig. 19 Comparison of topology optimization results to the three-story building example with the pattern repetition constraint,Φ0=300,β
target=2.5,Pf=

0.62 %. Randomly generated ground motion excitations (a) and corresponding dynamic responses (b)
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Fig. 20 Discrete solutions under geometry uncertainty: (a) μm_cut-off =0.5, σcut-off =0; (b) μm_cut-off =0.5, σcut-off =0.1; (c) μm_cut-off =0.5, σcut-off =0.15; (d)
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Fig. 21 Reliability indices
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constraints after geometry
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Table 7 Six-story building: Parameters used for design domain, probabilistic constraint and ground motion model

Φ0 βtarget Pf
target (%) Column size (m×m) u0

2 2.5 0.62 0.6×0.6 0.02
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βtarget=2.0. The different number of pattern repetition
constraints in topology optimization result in various material
distributions so that those can be implemented into aes-
thetical facades design with structural engineering. The

convergence histories of solutions over iterative proce-
dure of the optimization are shown in Fig. 26.

6 Concluding remarks

In this paper, a new topology optimization framework is
proposed for structures under stochastic excitations. For
the linear structure subjected to the Gaussian excitation,
the instantaneous failure probability regarding stochastic
response is obtained from the closed form solution by
using the discrete representation method. A formulation
of the adjoint method is created to evaluate the sensi-
tivities of the instantaneous failure probability described
by the discrete representation method. The proposed sto-
chastic topology optimization method and sensitivity
formulations are applied to numerical examples for op-
timizing lateral bracing systems under stochastic ground
motions. In the first numerical example, effects of vary-
ing model parameters and prescribed probabilistic
values, such as column size, intensities of Gaussian
white process, thresholds and reliability indices are stud-
ied. By investigating the failure probabilities of optimi-
zation solutions at different time points, it is also shown
that the instantaneous failure probability can be a
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Fig. 22 Topology optimization solutions to the six-story building (Φ0=2,β
target=2.5): (a)ωf =4.7π, ζf =0.4; (b)ωf =5.0π, ζf =0.4; (c)ωf =5.3π, ζf =0.4;

(d) ωf =5.0π, ζf =0.2; (e) ωf =5.0π, ζf =0.3
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Fig. 23 Convergence history of topology optimization solutions shown
in Fig. 22 (Φ0=2, β

target=2.5). (a) change in the predominant frequency
of the random process; (b) change in the bandwidth of the randomprocess
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reasonable indicator of the entire process if the proba-
bility is evaluated after stationarity is achieved. In addi-
tion, studies on changes in structural responses of topol-
ogy optimization solutions considering the standard den-
sity method (with gray region) and the interpreted dis-
crete solutions (i.e. black and white) show that the latter
(discrete) shows reduced overall response with respect

to the former, which indicates lower failure probability.
Effects of ground motion characteristics such as the
predominant frequency and the damping ratio of the
Kanai-Tajimi filter model on final topologies are inves-
tigated in the second example. In summary, the pro-
posed topology optimization method can provide struc-
tural engineers with an efficient and accurate method to
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Fig. 25 Topology optimization solutions to the six-story building example with the pattern repetition constraint (Φ0=2, ωf =5.0π, ζf =0.4): (a) m=3,
βtarget=2.5; (b) m=4, βtarget=2.5; (c) m=6, βtarget=2.5; (d) m=3, βtarget=2.0; (e) m=4, βtarget=2.0; (f) m=6, βtarget=2.0

796 J. Chun et al.



obtain optimal topologies while satisfying probabilistic
constraints defined in terms of instantaneous failure prob-
ability under stochastic input excitations. When the sto-
chastic response of a structure is non-Gaussian due to
either non-linear system or non-Gaussian input excita-
tions, the framework proposed in this paper is able to
compute the failure probability efficiently by utilizing
structural reliability methods such as FORM or SORM,
instead of using the closed-form solution described in
this paper. Furthermore, the proposed method can be
extended to system reliability problems to incorporate
the first-passage probability, multiple checkpoint loca-
tions in a structure or multiple failure modes into topol-
ogy optimization under stochastic excitations. That ex-
tension will require evaluating multiple failure events at
discretize time points and locations using on an efficient
structural reliability analysis. In addition, a sensitivity
analysis needs to be altered for the extension based on
the proposed sensitivity approach in this paper.
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Appendix: Derivation of (11)

To derive (11) with a uniform time step, the convolution inte-
gral in (9) is carried out for discrete time intervals. An entry of
the vector a(tj) can be written as follows:

ai t j
� � ¼ Z t j

0
si τð Þhs t j−τ

� �
dτ ðA:1Þ

where

ti ¼ iΔt; t j ¼ jΔt ðA:2Þ

Then, one can consider the following three cases:

Case 1: i=j

ai tið Þ ¼
Z ti

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πΦ0Δt

p
⋅h f τ−tið Þhs ti−τð Þdτ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πΦ0Δt

p
⋅
Z

hf τ−tið Þhs ti−τð Þdτ
� �����

τ¼ti

∵ h f τ−tið Þ ¼ 0 for 0≤τ < ti
� �

ðA:3Þ

Case 2: i>j

ai t j
� � ¼ Z t j

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πΦ0Δt

p
⋅hf τ−tið Þhs t j−τ

� �
dτ

¼ 0 ∵ hf τ−tið Þ ¼ 0 for 0≤τ < ti
� �

ð A:4Þ

Case 3: i<j

ai t j
� � ¼ Z t j

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πΦ0Δt

p
⋅h f τ−tið Þhs t j−τ

� �
dτ

¼
Z t j

ti

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πΦ0Δt

p
⋅h f τ−tið Þhs t j−τ

� �
dτ

∵hf τ−tið Þ ¼ 0 for 0≤τ < ti
� �

¼
Z t j−ti

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πΦ0Δt

p
⋅hf ~τ
� 


hs t j−ti−~τ
� 


d~τ

¼
Z cΔt

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πΦ0Δt

p
⋅h f ~τ
� 


hs cΔt−~τ
� 


d~τ; c ¼ j−i

ð A:5Þ

Thus,

aiðt jÞ ¼ ai jΔtð Þ

¼
an tnð Þ i ¼ j
0 i > j
an−c tnð Þ i < j; c ¼ j−i

8<
:

ðA:6Þ

Therefore, the uniform step size (tn-tn-1=Δt, tn=t0) in the con-
volution integral leads to the following expression:

aiðt jÞ ¼ ai jΔtð Þ ¼ anþi− j t0ð Þ; i ¼ 1; 2;…; n; j ¼ i;…; n

ðA:7Þ
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in Fig. 25 (Φ0=2, ωf =5.0π, ζf =0.4): (a) target reliability index βtarget=
2.5; (b) target reliability index βtarget=2.0
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