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Abstract Optimal blank shape minimizing earing in deep
drawing has a direct influence on material saving as well as
product quality. A number of methods for blank shape opti-
mization have been previously proposed, most of which adopt
a closed-loop type algorithm that requires a large number of
simulation runs. Numerical simulation in sheet metal forming
is so numerically intensive that it is preferable to find an op-
timal blank shape with a small number of simulation runs.
This paper proposes a method for determining the optimal
blank shape design in square cup deep drawing using sequen-
tial approximate optimization (SAO) with a radial basis func-
tion (RBF) network. Sheet metal forming is multi-objective in
nature, and thus the blank shape design problem is formulated
as a multi-objective design optimization. The aim is therefore
to identify the pareto-frontier with a small number of simula-
tion runs. The earing is minimized under tearing and wrin-
kling constraints with a variable blank holder force (VBHF),
which varies through the punch stroke. Numerical results
show that the disconnected pareto-frontier is well identified
with a small number of simulation runs. The earing of the
optimal blank shape with the VBHF is also drastically re-
duced, when compared to a reference blank shape. Based on
the numerical results, the experiments using a servo press are
carried out. Consequently, the validity of the proposed

approach is confirmed through the numerical and experimen-
tal results.

Keywords Blank ShapeOptimization . Sequential
Approximate Optimization .Multi-objective Optimization .

Radial Basis Function network

Abbreviations
BHF Blank holder force
FEA Finite element analysis
FLC Forming limit curve
FLD Forming limit diagram
GSE Geometrical shape error
LHD Latin hypercube design
LS-SVR Least square support vector regression
MOO Multi-objective optimization
RBF Radial basis function
RSM Response surface method
SAO Sequential approximate optimization
SOO Singe objective optimization
SPFC Steel plate formability cold
SVR Support vector regression
TSE Target shape error

1 Introduction

Sheet metal forming processes involve a complicated defor-
mation that is affected by process parameters such as material
properties, blank holder force (BHF), die geometry, blank
shape, friction, and lubrication condition. Among these, the
blank shape has a direct influence on the product quality. The
desired product cannot be obtained with a small initial blank
shape, while a large initial blank shape produces a large flange
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part that is trimmed off as waste. Furthermore, a small BHF
can lead to wrinkling while a large BHF results in tearing.
Thus, it is important to find a suitable blank shape with an
optimal BHF for the material saving and product quality. Tra-
ditionally, a trial-and-error method has been widely used to
determine both the blank shape and BHF, but this is a time-
consuming and difficult task. More recently, computer-aided
engineering (CAE) based on finite element analysis (FEA) has
been adopted as an alternative approach, and is recognized as
one of the most powerful tools available (Gantar et al. 2002;
Katayama et al. 2004). A number of different approaches have
been proposed to determine the optimal blank shape in deep
drawing, and these are mainly classified into two categories:
the use of a closed-loop type algorithm, or those based on the
response surface method (RSM).

In the closed-loop type algorithm approach, an algorithm is
constructed based on FEA. In other words, a large number of
simulation runs are required to determine the optimal blank
shape. Park et al. proposed a method for determining optimal
blank shape using the geometrical shape error (GSE) (Park
et al. 1999), in which FEA is repeatedly carried out until the
GSE value becomes very small. The distance between the
target (the trimmed line) and the deformed shape along the
deformation path of the nodes was used to determine the shape
error. Shim et al. introduced the concept of shape sensitivity
(Shim et al. 2000), which is calculated from the deformation
path of nodes between the original blank and an offset blank.
Kishor and Kumar considered the material flow during
forming to predict the earing (Kishor and Kumar 2002).
Pegada et al. also proposed an algorithm to determine the
optimal blank shape (Pegada et al. 2002) in which, unlike in
(Park et al. 1999), the shape error is simply calculated as the
distance between the target and the deformed shape. In other
words, the deformation path of the nodes is not taken into
account by this method. The algorithm was repeated until
the shape error was suitably reduced. Naceur et al. applied
the evolutionary structural optimization (ESO) method to the
blank shape optimization problem (Naceur et al. 2004), in that
finite elements of the blank were simply eliminated under a
volume constraint. Even though this method was based on
FEA, the approach was completely different to that used by
others (Park et al. 1999; Shim et al. 2000; Kishor and Kumar
2002; Pegada et al. 2002). The GSE is widely used for opti-
mizing blank shape designs, and Wang et al. (2009);
Vafaeesefat (2008, 2011), and Fazli and Arezoo (2012)
adopted it for determining the optimal blank shape design in
deep drawing. Oliveira et al. (Oliveira et al. 2009) indicated
that GSE cannot determine whether the finite element nodes
of the blank are inside or outside the target contour. They
therefore proposed a target shape error (TSE), in order to
quantify the magnitude of deviation of the flange contour from
the required target contour. These GSE and TSE approaches
are somewhat similar, but only TSE is able to take into

account the target contour. In a closed-loop type algorithm,
since the finite element nodes of the blank are updated at each
step, a large number of numerical simulation runs are required
to obtain the optimal blank shape.

Sheet forming simulation is currently so numerically inten-
sive that the use of RSM is a valid option (Bonte et al. 2008a).
A quadratic polynomial is generally used for this, but the
phenomena associated with sheet forming are inherently high-
ly non-linear. Consequently, approximation using quadratic
polynomial may result in poor quality. In order to obtain a
more highly accurate response surface, the Kriging, the radial
basis function (RBF) network, and the least square support
vector regression (LS-SVR) using the Gaussian kernel should
be used instead. In addition, the sequential approximate opti-
mization (SAO) can be used to find a highly accurate global
minimum with a small number of simulation runs, and has
been recognized as one of the more important approaches
available (Bonte et al. 2010). For the SAO of a single objec-
tive optimization (SOO) problem, the following procedure is
performed:

(STEP1) Initial sampling points are generated with latin hy-
percube design (LHD) and orthogonal array.

(STEP2) Numerical simulation is carried out at the sampling
points to obtain the response.

(STEP3) Response surface is constructed, and the optimal
solution for this is determined.

(STEP4) The optimal solution and a few additional sam-
pling points are used to improve the accuracy of
response surface, and obtain a highly accurate
global minimum.

(STEP5) If the terminal criterion is satisfied, then the SAO
algorithm will be terminated. Otherwise, the SAO
algorithm is returned to STEP2.

The iteration of the above process allows a highly
accurate global minimum to be found from a relatively
small number of simulation runs. In the following, let us
briefly review some papers on blank shape optimization
using the SAO.

Hino et al. used the RSM for obtaining the optimal blank
shape in deep drawing (Hino et al. 2006), in which earing, as
defined by the amount of trimmed material, was minimized
under two design constraints. Naceur et al. used a moving
least square approximation to determine the optimal blank
shape (Naceur et al. 2008), for which the risk of tearing/
wrinkling was approximated using a quadratic polynomial,
and 7 control points (nodes of the blank) were taken as the
design variables. Similarly, Chamekh et al. approximated the
GSE through an artificial neural network (back propagation)
(Chamekh et al. 2010) using 7 control points as the design
variables. Finally, Liu et al. optimized a polygonal blank shape
by using support vector regression (SVR) (Liu et al. 2013), in
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which the risk of tearing/winkling was approximated and 5
control points were taken as the design variables.

One of the advantages using closed-loop type algorithms is
that a more accurate optimal blank shape can be obtained, as
many nodes (control points) are used for determining the
shape error. Unfortunately, this method also presents a number
of issues:

(P1) Only one objective function, such as the shape error, is
essentially used in a closed-loop type algorithm. Sheet
forming however is naturally multi-objective, but it is
difficult to handle more than two objectives in a closed-
loop type algorithm. It is therefore considered prefera-
ble to formulate a blank shape optimization problem as
a multi-objective optimization (MOO) problem.

(P2) A large number of simulation runs (function evalua-
tions) are required to determine an optimal blank shape
with a closed-loop type algorithm, when compared
with the SAO approach. Although the SAO approach
may not produce an optimal blank shape that is as ac-
curate, it is far more important to obtain an approximate
shape with a small number of simulation runs in order
to reduce the required development time.

(P3) The BHF plays an important role in product quality, but
this has not been extensively discussed in blank shape
optimization. In most cases, a constant BHF through
the punch stroke is simply used. By adopting variable
BHF (VBHF) approach, in which BHF varies through-
out the punch stroke, improvements in the final product
quality should be achievable (Chengzhi et al. 2005; Lin
et al. 2007; Kitayama et al. 2010). Furthermore, the
VBHF is not only useful for reducing the earing in deep
drawing, but also for controlling the material flow into
the die.

In order to resolve the aforementioned issues, this paper
proposes a method for determining the optimal blank shape
with the VBHF in deep drawing. The objective is to find out
the optimal blank shape minimizing the earing under tearing/
wrinkling constraints with the VBHF approach. In this paper,
two objective functions are developed to evaluate the earing.
The tearing/wrinkling is evaluated using the forming limit
diagram (FLD) and are regarded as the design constraints.
Unlike SOO, the aim of MOO is to identify a set of pareto-
optimal solutions (or pareto-frontier in objective space); and in
order to achieve this with a small number of simulation runs,
the SAO approach using the RBF network has been adopted.
In order to examine the validity of the proposed approach, the
experiment using a servo press are also carried out.

In section 2 of this paper, a square cup FEA model and
multi-objective design optimization problem are described.
In section 3, the SAO approach is briefly described. Finally,
numerical and experimental results are presented and

discussed in section 4. LS-DYNA was used to carry out the
numerical simulation.

2 Blank shape optimization with variable blank
holder force

2.1 Multi-objective optimization

Generally speaking, a multi-objective optimization (MOO)
problem is formulated as follows (Miettinen 1998):

f 1 xð Þ; f 2 xð Þ;⋯; f K xð Þð Þ→min
xLi ≤xi≤x

U
i i ¼ 1; 2;⋯; n

g j xð Þ≤0 j ¼ 1; 2;⋯; ncon

9=
; ð1Þ

where fi(x) is the i-th objective function to be minimized, K
represents the number of objective functions, xi denotes the i-
th design variable, xi

L and xi
U are the lower and upper bounds

of the i-th design variable, n represents the number of design
variables, gj(x) denotes the j-th design constraint, and ncon
represents the number of design constraints.

2.2 Finite element analysis model

The FEAmodel used in this paper is shown in Fig. 1, in which
the blank holder force is applied in the positive z-direction
(Kitayama et al. 2010). All corner parts of the die denoted
by the arrows in Fig. 1 are R8. The counter punch and die
drop to the negative z-direction with a total stroke of 62 mm.
At the bottom dead center, the counter punch, die, and blank
holder all move upwards. The motions of these three items are
shown in Fig. 2. The initial velocity is vinit=267 mm/s, and the
maximum velocity is vmax=359 mm/s. The element type and
the number of finite elements are shown in Table 1. The fric-
tion coefficient μ of the interfaces (blank/blank holder, blank/
punch, blank/die, and blank/counter punch) is set to 0.10. The
initial blank size is 185 mm×185mm, and the initial thickness
is 1.20 mm. Considering the symmetry, one-quarter model is
used for the numerical simulation as shown in Fig. 1. Thus, an
initial blank size of 92.5 mm×92.5 mm is actually used in the
numerical simulation. A Belyschko-Tsay shell element with
seven integration points along the thickness direction is used
for the shell mesh of the blank. The penalty coefficient for
contact (blank/blank holder, blank/punch, blank/die, and
blank/counter punch) is set to 0.10. The rigid element is
employed to counter punch, die, blank holder, and punch, as
listed in Table 1. In addition, Steel Plate Formability Cold
(SPFC) 440 is selected as the test material. The material prop-
erties are listed in Table 2. The relationship of stress–strain is
approximated by the database in LS- DYNA as follows:

σ ¼ 793ε0:189 ð2Þ
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The quarter-model deformation of the initial blank is
shown in Fig. 3, in which the dashed line represents the target
(trimmed) contour and the area above this contour is defined
as earing. As shown in Fig. 3, the earing in this square cup
deep drawing is generated in the x-y plane. Ideally, the target
contour should be set to the exact shape of the product denoted
by the bold line. However, it is very difficult to set the exact
shape as the ideal target contour in this deep drawing. As the
result, the tolerance of 5 mm from the exact shape is consid-
ered and is set as the target contour. This approach is widely
used for square cup deep drawing, and can be found in Refs.
(Park et al. 1999; Shim et al. 2000; Naceur et al. 2004; Wang
et al. 2009; Vafaeesefat 2008; Vafaeesefat 2011; Fazli and
Arezoo 2012; Oliveira et al. 2009; Hino et al. 2006; Naceur
et al. 2008; Liu et al. 2013).

2.3 Design variables

The blank shape is determined using the four design variables
shown in Fig. 4, where one-quarter model of the formed prod-
uct is depicted. The three nodes denoted by black squares are
taken as the design variables for determining the blank shape.

Nodes 1 and 3 move along the vertical and 45° line, respec-
tively, while the movement of Node 2 depends on x4. These
nodes are connected by straight line as shown in Fig. 4, and
the initial blank shape is then determined. VBHF is also taken
into consideration to control the material flow into the die. For
the VBHF, total stroke Lmax is partitioned into M sub-stroke
steps and the BHF of each sub-stroke is taken as the design
variables. An illustrative example of these design variables is
shown in Fig. 5, where it should be noted that the design
variable for VBHF starts from x5.

2.4 Objective functions

Minimization of earing is desirable for ensuring material sav-
ing and product quality. Let us explain how to evaluate the
earing with Fig. 4, in which the dashed line represents the
target (trimmed) contour. Both TSE and GSE use the node
distance between the target and the deformed contour to eval-
uating the degree of earing. However, it is also possible to
evaluate the earing directly using the area by the following
procedure: First, the area above the target contour is evaluated
as the first objective function f1(x), as shown in Fig. 4. Unfor-
tunately, in this method, the area below the target contour
cannot also be evaluated. Consequently, this area below the
target contour is evaluated as the second objective function
f2(x). As f1(x) will be large with a large blank shape, while
f2(x) will be large with a small blank shape, a trade-off be-
tween these objectives can thus be observed.

There is another reason to consider the blank shape design
problem as a MOO, as demonstrated by the illustrative exam-
ples of the initial and deformed blank shapes given in Fig. 6.
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Table 1 Element type and number of finite elements

Element type Number of finite elements

Counter punch Rigid 120

Die Rigid 924

Blank Shell (Belytschko-Tsay) 2116

Blank holder Rigid 432

Punch Rigid 962

Table 2 Material properties of SPFC440

Density: ρ [kg/mm3] 7.84×10−6

Young's modulus: E [MPa] 2.06×105

Poisson’s ratio: ν 0.3

Yield stress: σ Y [MPa] 353

Tensile strength: σ T [MPa] 479

Normal anisotropy coefficient: r 0.98

Strain hardening coefficient: N 0.189
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These figures reveal that f1(x) and f2(x) depend on the initial
blank shape, and it is difficult to determine an optimal blank
shape while simultaneously minimizing both f1(x) and f2(x).
In addition, as described in section 2.3, the VBHF trajectory as
well as the blank shape is determined in the proposed ap-
proach. If a single objective function is defined, only one
VBHF trajectory could be obtained. However, this is not al-
ways true. Practically, there will be various VBHF trajectories
for the successful forming. Under such conditions, a MOO is
beneficial for determining both an optimal blank shape and
VBHF trajectory. Thus, several VBHF trajectories could be
obtained by formulating a multi-objective design optimiza-
tion. A set of pareto-optimal solutions (or pareto-frontier) will
be found, from which we can select a preferred solution. As
discussed in section 1, the high cost of sheet forming simula-
tion means that the pareto-frontier between f1(x) and f2(x)
needs to be identified with a small number of simulation runs.

2.5 Constraints

Tearing and wrinkling are the major defects that typically
occur in deep drawing, and are handled as the design con-
straints in this paper. The FLD is used to evaluate these de-
fects, in which the strain states of all elements are plotted on a

major-minor strain plane. In order to evaluate the degree of
tearing and wrinkling, the strains in the formed element are
analyzed and compared against the forming limit curve (FLC,
as shown in Fig. 7). The following FLC was defined in the
principal plane of logarithmic strains proposed by Hillman
and Kubli (Hillmann and Kubli 1999).

ε1 ¼ φT ε2ð Þ ε1 ¼ φW ε2ð Þ ð3Þ

where φT is the FLC that controls tearing, and φW is the
FLC that controls wrinkling. It should be noted that both of
these FLCs depend on the material; they are generally giv-
en as knots data in tables. Then, the following safety FLC
is defined:

θT ε2ð Þ ¼ 1−sð ÞφT ε2ð Þ
θW ε2ð Þ ¼ 1þ sð ÞφW ε2ð Þ

�
ð4Þ

where s represents the safety tolerance, and is defined by
the engineers (in this paper, s is set to 0.2). If an element
comes to or lies above FLC, it is expected that a risk of
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tearing can be observed. Similarly, a risk of wrinkling can
be assumed if an element lies in the wrinkling region. Un-
like previous studies (Wang et al. 2008a, b, 2010), the risk
of both wrinkling and tearing were evaluated according to
the following two constraints (Kitayama et al. 2012):

For tearing:

g1 xð Þ ¼
X nelm

j¼1
T j

� �1=p

ð5Þ

where

T j ¼ ε j1−θT ε j2
� �� �p

ε j1 > θT ε j2
� �

T j ¼ 0 otherwise
ð6Þ

For wrinkling:

g2 xð Þ ¼
X nelm

j¼1
W j

� �1=p

ð7Þ

where

W j ¼ θW ε j2
� �

−ε j1
� �p

ε j1 < θW ε j
2

� �
W j ¼ 0 otherwise

ð8Þ

Based on the literature (Wang et al. 2008a, b, 2010;
Kitayama et al. 2012), p is set to 4. Also, nelm represents the
number of finite elements of the blank.

3 Sequential approximate optimization using radial
basis function network

SAO is now recognized as one of the most important optimi-
zation approaches in metal forming (Bonte et al. 2008b;
Ingarao and Di Lorenzo 2010), and utilizes the repeated con-
struction and optimization of response surface. This allows for
a global minimum to be found from a relatively small number
of function evaluations. Various SAOmethods have been pro-
posed, but this study adopts the RBF network.

3.1 Radial basis function network

The RBF network is a three-layer feed-forward network. Ac-
cording to (Orr M.J.L.), given the training data expressed by
{xj, yj} (j=1,2,⋯,m), where m represents the number of

Fig. 7 Forming limit diagram for evaluating tearing and wrinkling

Fig. 8 Illustrative example of the density function in one dimension
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sampling points, the output of the network ỹ(x) (response sur-
face) is given by

~y xð Þ ¼
X m

j¼1
wjh j xð Þ ð9Þ

where hj(x) is the j-th basis function, andwj denotes the weight
of the j-th basis function. The following Gaussian kernel is
widely used as the basis function:

hj xð Þ ¼ exp −
x−x j

� �T
x−x j

� �
r2j

 !
ð10Þ

where rj is the width of the j-th basis function. The RBF network
usually accomplishes learning by solving the following equation:

E ¼
X m

j¼1
y j−~y x j

� �� �2
þ
X m

j¼1
λ jw

2
j→min ð11Þ

where the second term is introduced for the purpose of regular-
ization. It is also recommended that λj in (11) have a sufficiently
small value (e.g., λj=1.0×10

−3). Thus, in the RBF network, the
learning is equivalent to finding the weight vector w. The neces-
sary condition of (11) results in the following equation:

w ¼ HTH þΛ
� �−1

HTy ð12Þ

where H,Λ, and y are given as follows:

H ¼
h1 x1ð Þ h2 x1ð Þ ⋯ hm x1ð Þ
h1 x2ð Þ h2 x2ð Þ ⋯ hm x2ð Þ
⋮ ⋮ ⋱ ⋮

h1 xmð Þ h2 xmð Þ ⋯ hm xmð Þ

2
664

3
775 Λ ¼

λ1 0 ⋯ 0
0 λ2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 0 λm

2
664

3
775

ð13Þ

y ¼ y1; y2;⋯; ymð ÞT ð14Þ
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It is clear from (12) that the learning is equivalent to the
matrix inversion (HTH+Λ)−1. Using the RBF network, it is
easy to calculate the weight vector w, because the additional
learning is reduced to the incremental calculation of the matrix
inversion (Nakayama et al. 2002).

In order to easily determine the width, the following simple
estimate is proposed (Kitayama et al. 2011):

r j ¼ d j;maxffiffiffi
n

p ffiffiffiffiffiffiffiffiffi
m−1n

p j ¼ 1; 2;⋯;m ð15Þ

where rj denotes the width of the j-th Gaussian kernel, and dj,
max denotes the maximum distance between the j-th sampling
point and the other sampling points. (15) is applied to each
Gaussian kernel individually, and can deal with the non-
uniform distribution of the sampling points. (15) can also be
successfully applied to the classifier using the least square
support vector machine (LS-SVM) and the RBF network
(Kitayama and Yamazaki 2011).

3.2 Density function

One of the key issues for successful optimization in SAO is
how to find an unexplored region. By adding new sampling
points around an unexplored region, a global approximation
can be successfully achieved. To resolve this issue, we have
developed the density function with the RBF network
(Kitayama et al. 2011). The basic concept of the density

function is simple. Local maxima are generated at the sam-
pling points. As the result, local minima are generated around
the unexplored region. To achieve this objective, every output
y of the RBF network is replaced with +1. A detailed proce-
dure for constructing this density function is summarized as
follows:

(D-STEP1) The vector yD=(1,1,⋯,1)m×1
T is prepared at the

sampling points.
(D-STEP2) The weight vector wD of the density function

D(x) is calculated as:

wD ¼ HTH þΛ
� �−1

HTyD ð16Þ
(D-STEP3) The density functionD(x) is minimized to deter-

mine the unexplored region.

D xð Þ ¼
X m

j¼1
wD

j h j xð Þ→min ð17Þ

(D-STEP4) The point minimizing D(x) is taken as the new
sampling point.

Figure 8 provides an illustration of this process in one di-
mension, the black dots representing the sampling points.
Note that local minima are generated around the unexplored
region. The RBF network is essentially the interpolation be-
tween sampling points; and thus points A and B in Fig. 8
represent the lower and upper bounds of the design variable
x1 of the density function.

Table 3 Comparison between
reference and optimal blank shape Reference blank Optimal blank with VBHF Improvement [%]

(constant BHF of 100 kN)
Point A Point B Point A Point B

Area [mm2] 8556 6633 6803 22.5 20.5

Earing [mm2] 1989 104.3 226.1 94.8 88.6

Minimum thickness [mm] 0.9434 0.9595 0.9811 1.4 3.2
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Fig. 13 Comparison between
initial and optimal blank shape
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3.3 Sequential approximate optimization
for multi-objective optimization

The aim of SAO is to find a global minimum with a small
number of sampling points (simulation runs), while the aim of
MOO is to identify a set of pareto-optimal solutions. In this
paper, the MOO problem described in section 2 is solved by
using SAO; and consequently the aim is to identify a set of
pareto-optimal solutions with a small number of sampling
points. The flow can be summarized as follows:

(STEP1) Initial sampling points are generated by the LHD.
(STEP2) Numerical simulation is carried out, in which ob-

jective functions (fi(x)(i=1,2,⋯,K)) and con-
straints (gj(x)(j=1,2,⋯,ncon)) are numerically
evaluated at all sampling points.

(STEP3) All functions are approximated by the RBF net-
work; wherein the approximated objective func-

tions are denoted as ~f i xð Þ i ¼ 1; 2;⋯;Kð Þ, and
the approximated constraint functions are denoted
as ~g j xð Þ j ¼ 1; 2;⋯; nconð Þ.

(STEP4) A pareto-optimal solution for the response surface
is found using the weighted lp norm method for-
mulated as follows (Chengzhi et al. 2005):

X K

i¼1
αi
~f i xð Þ

� �p
 �1=p
→min

~g j xð Þ≤0 j ¼ 1; 2;⋯; ncon

9>=
>; ð18Þ

where αi(i=1,2,⋯,K) represents the weight of the
i-th objective function, and p is the parameter (set
to 4 in this paper). In order to obtain a set of pareto-
optimal solutions, various weights are assigned.

(STEP5) The density function is constructed andminimized,
and the optimal solution of the density function is
added as a new sampling point. This step is repeat-
ed till a terminal criterion is satisfied.

(STEP6) If terminal criterion is satisfied, the SAO algorithm
will be terminated. Otherwise, it is returned to
STEP 2.

Figure 9 shows the proposed SAO algorithm for MOO,
which offers the following advantages:

1. With the use of the weighted lp norm method, the MOO
problem is transformed into a SOO problem; and thus we
can apply the SAO for SOO to the MOO.

2. The weighted lp norm method is used to find a pareto-
optimal solution, and the weight for each objective func-
tion should be assigned. Unlike the weighted sum, the
weighted lp norm method can find a set of pareto-
optimal solutions of the non-convex pareto-frontier with
various weights (Chengzhi et al. 2005).

3. The density function is repeatedly constructed and mini-
mized, as shown in Fig. 9, where the parameter count is
introduced in this phase. This parameter controls the num-
ber of sampling points that can be obtained by the density
function. Thus, in the proposed algorithm, the number of
sampling points for the density function varies according
to the number of design variables. If the parameter count
is less than int(n/2), this parameter is increased as count=
count +1. The terminal criterion in this stage is given by
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int(n/2), where int() denotes the rounding-off. It is expect-
ed that iterative use of the density function will yield a
uniform distribution of sampling points. Furthermore,
parts of disconnected pareto-optimal solutions may also
be found by repeating this step.

4 Numerical and experimental results

Numerical simulation was carried out to obtain the optimal
blank shape and VBHF. In this paper, two objectives (the areas
above/below the target contour) and two design constraints
(wrinkling/tearing) are considered (therefore, K=2 and ncon=
2). For the VBHF, the total stroke was divided into 3 (L1, L2,
and L3). Then, the total number of design variables is 7. The
lower and upper bounds of the design variables are defined as
follows:

38≤x1≤42:5 mm½ � 33≤x2≤40 mm½ � 23≤x3≤62 mm½ �
π=12≤x4≤π=6 rad½ �
20≤x5≤120 kN½ � f or 0≤L1≤20 mm½ �
20≤x6≤120 kN½ � f or 20≤L2≤40 mm½ �
20≤x7≤120 kN½ � f or 40≤L3≤62 mm½ �

9>>>>=
>>>>;
ð19Þ

Fifteen initial sampling points are first generated with
the LHD, and the pareto-frontier is identified. The error
in the pareto-optimal solutions is adopted as the terminal
criterion, which is set to 5.0 %. Various weights are
assigned to the each objective function, and a total of
56 sampling points (simulation runs) are required to
identify the pareto-frontier. All feasible sampling points
in the objective space are shown in Fig. 10. In addition,
an enlarged view of the enclosed region in Fig. 10 is
shown in Fig. 11, in which the deformed shape using the
optimal blank shape and VBHF at two representative
points (A and B) is presented. From Figs. 10 and 11 it
can be seen that the pareto-frontier is disconnected. Fur-
thermore, we can also see that the optimal blank shape
and the deformed shape are not qualitatively different,
but the same is not true in the case of the optimal
VBHF.

At point A, the initial BHF is low but gradually increases.
This implies that the material readily flows into the die with
the low BHF, but becomes hardened as the BHF increases. On
the other hand, at point B, the material is hardened at the initial
stage by the high BHF; with the lower BHF needing to be
applied during the middle stage in order to prevent tearing.
Finally, the material is again hardened by the high BHF at the
final stage.

-100

-50

0

50

100

-100 -50 0 50 100

195 mm

Experiment

Numerical simulation

x

yz

Fig. 16 Blank shape used in the
experiment

0

20

40

60

80

100

120

140

0 20 40 60

Experiment

Numerical simulation

B
H

F
 [

k
N

]

Stroke [mm]

Fig. 17 VBHF trajectory and
product at point A

1010 S. Kitayama et al.



For optimization of both the blank shape and VBHF
trajectory, an initial blank size of the quarter model
(92.5×92.5 mm, which is giving the area of 8556 mm2)
is used as the reference blank. The experiments using the
reference blank have already been carried out in
Ref.(Kitayama et al. 2010), in which a constant BHF and
various VBHF trajectories were used for the successful
sheet metal forming. The earing produced by this blank
size is 1989 mm2 (see Fig. 3), and the minimum thickness
that is observed at the corner region shown in Fig. 12 is
0.9434 mm, from which it is also found that the thickness
distribution is improved. Here, let us compare the follow-
ing items at points A and B shown in Fig. 11: (1) the area
of optimal blank before forming, (2) the earing associated
with the optimal blank shape, and (3) the minimum thick-
ness. Specific values are listed in Table 3, from which we
can see that the optimal blank shape with the VBHF tra-
jectory achieves an improvement over the reference blank
in all aspects. Thus, the optimal blank shape with the op-
timal VBHF trajectory is beneficial for the material saving,
and both the minimum thickness and the thickness distri-
bution are also improved. Figure 13 shows a comparison
between the reference and the optimal blank shape, from
which the earing using the optimal blank shape can be seen
to be drastically reduced. The results shown in Table 3 and
Fig. 13 therefore confirm that the proposed approach is
valid.

Finally, the accuracy of the response surfaces is shown in
Fig. 14, from which it can be seen that a highly accurate
response surface can also be obtained by this method.

Based on the numerical results, the experiments using a
servo press (H1F200, Komatsu Industry Corp.) are carried
out. The photos of punch and blank holder are shown in
Fig. 15. Points A and B shown in Fig. 11 is used for the
experiments. It can be found from Fig. 13 that the optimal
blank shape is not qualitatively different and the same blank
shape is used in the experiments. In addition, an expert
commented that the blank holder will be injured if the optimal
blank obtained from the numerical result is directly used in the
experiment. Based on his suggestion, the blank shape

considering the tolerance of 5 mm is used, which is shown
in Fig. 16. The VBHF trajectory and the product through the
experiments are shown in Figs. 17 and 18, respectively. In
both figures, the solid line and the dashed line represent the
VBHF trajectory in the experiments and in the numerical sim-
ulation, respectively. It is found from the experimental results
that no tearing/wrinkling can be observed. The validity of the
proposed approach is confirmed through the numerical and
experimental results.

5 Concluding remarks

Blank shape in deep drawing has a direct influence onmaterial
saving and product quality, and it is important to determine the
optimal blank shape. In this paper, the blank shape design is
formulated as a multi-objective optimization in which two
objective functions are considered: The first being the area
above the target contour, while the other is the area below
the target contour. Tearing and wrinkling are taken as the
design constraints, and are evaluated using the forming limit
diagram. In addition, variable blank holder force is adopted
for improving the product quality. Thus, both the blank shape
and the variable blank holder force trajectory are determined
simultaneously in this paper. Sheet forming simulation is so
numerically intensive that the sequential approximate optimi-
zation with the radial basis function network is adopted. The
pareto-frontier is identified with a small number of simulation
runs, and we can find that the pareto-frontier is disconnected.
Compared against a reference blank shape, the earing pro-
duced using the optimal blank shape with the variable blank
holder force is drastically reduced. The numerical result
indicates that there are two kinds of VBHF trajectories
for the successful sheet forming whereas the optimal
blank is qualitatively same. Based on the numerical re-
sults, the experiments using servo press is carried out.
No tearing/wrinkling can be observed through the ex-
periments, and the validity of the proposed approach is
then confirmed.
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