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Abstract This paper investigates topology design optimiza-
tion for maximizing critical buckling loads of thin-walled
structures using a moving iso-surface threshold (MIST) meth-
od. Formulation for maximizing linear buckling loads with
additional constraints on load-path continuity and lower
bound of eigenvalue is firstly presented. New physical re-
sponse functions are proposed and expressed in terms of the
strain energy densities determined in the two-steps of finite
element buckling analysis. A novel approach by introducing a
connectivity coefficient is developed to ensure continuity of
effective load-path in optimum topology. The lower bound of
eigenvalue is defined to eliminate spurious localized buckling
modes. The MIST algorithm and its interfaces with commer-
cial finite element (FE) software are given in detail. Numerical
results are presented for topology optimization of plate-like
structures to maximize critical buckling forces or displace-
ments considering in-plane and out-of-plane buckling respec-
tively. The FE analyses of the re-meshed final solid topologies
with and without void material reveal that the presence of the
void material has a significant effect on the out-of-plane
buckling loads and a minor influence on the in-plane buckling
loads.
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Physical response function

Nomenclature
[B] Strain–displacement matrix
[D] Elastic constant matrix
[K] Structural stiffness matrix
[Kσ] Structural geometric stiffness matrix

[k] Elemental stiffness matrix
[kσ] Elemental geometric stiffness matrix
[N] Shape function matrix
[u] Vector of physical displacements
[F] Vector denoting external loadings
{Y} Eigenvector
Φ Physical response function
Ω Design domain
λ1 The 1st order eigenvalue
λmin The lower bound of eigenvalue
k1 Generalized stiffness for the 1st order mode
kσ1 Generalized geometric stiffness for mode 1
Es Total strain energy in static analysis
Esd Strain energy density in static analysis
Eλ Total strain energy for the 1st order buckling mode
Eλd Strain energy density for buckling mode 1
Ne Total element number
Nn Total node number
t The level or threshold value of the iso-surface S
Ve Element volume with solid materials
V0 Structure volume with solid materials
Vf Volume fraction
xe Weighting factor ranging from 0 to 1
E Young’s modulus
ν Poisson’s ratio
e Subscript for the eth element

1 Introduction

Topology optimization has drawn much attention since 1980s
due to its importance and enormous potential applications in
practical structural design to meet specific structural perfor-
mance requirements (Bendsoe and Sigmund 2003; Rozvany
2009). Optimization for a structure to achieve maximum
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buckling load using a given amount of material represents one
of these important applications (Neves et al. 1995;
Manickarajah et al. 1998; Lund 2009; Lindgaard and Dahl
2013). A number of optimization methods have been used for
structural topology design considering buckling, e.g., a solid
isotropic material with penalisation (SIMP) method, (Bendsøe
and Triantafyllidis 1990; Neves et al. 1995; Sekimoto and
Noguchi 2001; Lindgaard and Dahl 2013), evolutionary struc-
tural optimization (ESO) (Manickarajah et al. 1998, 2000;
Rong et al. 2001) and a level set method (LSM)
(Kasaiezadeh et al. 2010; Zhao et al. 2011). In this paper, a
moving iso-surface threshold method (MIST) recently devel-
oped (Tong and Lin 2011; Vasista and Tong 2012) will be
used to address the following challenging issues in linear
buckling optimization.

Topology optimization considering structural buckling is
quite complicated and convergence is often relatively poor
(Neves et al. 2002; Bendsoe and Sigmund 2003; Rahmatalla
and Swan 2003; Bruyneel et al. 2008) owing to a number of
issues, e.g.: (a) omitting stress state variations in sensitivity
analysis, (b) spurious local buckling, (c) multiple mode
shapes, and (d) lack of effective load-path. Issues (a) and (b)
are mainly caused by the properties of a geometric stiffness
matrix (GSM) in buckling analysis and problems (c) and (d)
are typically observed in topology optimization involving
solving eigenvalue problems. In addition, the widely used
method of moving asymptotes (MMA)may encounter numer-
ical difficulties as it uses the current iterative values of an
objective function and its derivative (Browne et al. 2012); the
buckling load may be artificially overestimated owing to the
effects of low density materials (Zhou 2004).

In an iterative process of optimization, the buckling analy-
sis comprises of solving a static stress analysis and a general-
ized eigenvalue problem. Geometric stiffness matrix (GSM)
in the buckling analysis is a function of both design variables
and global displacements/stresses determined from the static
stress analysis. The global displacements or stresses are func-
tions of design variables, however, in the sensitivity analysis
of the GSM, their influences are often neglected, e.g., by
ignoring the terms containing their derivatives with respect
to the design variables, for the purpose of simplification in
coding and of reducing computational costs (Neves et al.
1995; Mateus et al. 1997; Bruyneel et al. 2008). In doing so,
the sensitivity analysis of buckling optimization is treated in
the same way as that of a free vibration problem, which has
been considered one of the error sources in a gradient-based
optimization method for buckling analysis (Neves et al. 1995;
Mateus et al. 1997; Bruyneel et al. 2008). As explicit sensi-
tivity analysis is not conducted in MIST (Tong and Lin 2011;
Vasista and Tong 2012), issue (a) is not involved in the
iterative processes.

The GSM may be positive definite or indefinite during
iterations. The indefinite GSM can result in negative

eigenvalue λ1 (Bendsoe and Sigmund 2003). In the optimiza-
tion to maximize buckling load, it is required that λ1>0.When
design variables representing material densities in a region are
too small, the mode shape corresponding to the 1st order
eigenvalue (λ1) may be localized in the region where the
elements have low density (Tenek and Hagiwara 1994; Ben-
Tal et al. 2000; Neves et al. 2002; Pedersen and Nielsen 2003).
This spurious localized mode can be eradicated by re-meshing
to remove the void elements with low density or by changing
the stiffness and/or stresses of the void elements (Tenek and
Hagiwara 1994; Ben-Tal et al. 2000; Neves et al. 2002;
Pedersen and Nielsen 2003), e.g., by reducing stress in the
elements with density lower than 10 % to an insignificant
value (e.g., 10−15) (Neves et al. 1995; Ben-Tal et al. 2000;
Pedersen 2000; Bruyneel et al. 2008). In the present algo-
rithm, the constraint of λ1>λmin>0 is introduced to enable the
use of only the mode shape corresponding to this constraint in
the construction of the response function and thus to allow
elimination of the spurious localized mode.

In an iterative process for eigenvalue analysis, repetitive
eigenvalues may appear. When eigenvalue λ1 is repeated, the
correct eigenvector may not be selected owing to multiple
eigenvectors, which leads to mode switching and subsequent-
ly slows down convergence or even causes iterative diver-
gence. A linear combination of eigenvalues or average-mean
eigenvalues can be used as an objective function to prevent the
mode switch in optimization to maximize a specific eigenval-
ue (Ma et al. 1995; Neves et al. 2002; Du and Olhoff 2007;
Niu et al. 2009). A mode tracking technique can also be used
(Eldred et al. 1995; Bruyneel et al. 2008) to monitor the mode
switch and it will be used in the present MIST computing.

In the MIST iteration, a moving iso-surface threshold level
is sought for the chosen response function and the prescribed
constraints to update weighting factors; MMA is not used in
the present algorithm.

A solution of topology optimization for eigenvalue prob-
lems can be trivial (e.g., optimization to maximize eigenvalue
λ1 of a cantilever plate vibration can be achieved by directly
removing materials from the free edge.) or an obtained opti-
mal design lacks an effective load-path, particularly for plate
structures (Bendsoe and Sigmund 2003). In this case, artificial
reinforcements by specifying non-designable elements are
often introduced. In this study, both strain energy densities
in the static stress analysis and the eigenvalue analysis are
considered by introducing a connectivity coefficient to ensure
an effective load-path for optimal topology.

In the present study, linear buckling optimization will be
conducted to maximize critical buckling load factor for a thin-
walled structure subjected to either compressive forces or
prescribed compressive displacements. Section 2 provides
basic formulations for buckling optimization with new con-
straints on the load-path continuity and the lower bound of the
objective function. Section 3 presents the novel response
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functions, MIST algorithm (Tong and Lin 2011; Vasista and
Tong 2012) and implementation in MSC NASTRAN
(MSC.Software 2011). In Section 4, numerical results are
presented for optimization of in-plane and out-of-plane buck-
ling of a plate. In Section 5, influences of the soft materials on
the critical buckling loads are investigated.

2 Problem definitions of finite element based optimization
for buckling loads

2.1 Brief overview of MIST

MIST (Tong and Lin 2011; Vasista and Tong 2012) involves
sequentially finding approximate solutions for optimization

based on structural responses obtained in the previous itera-
tions, where features of SIMP, ESO and LSM are combined,
i.e., material representation in SIMP (Bendsoe and Kikuchi
1988; Zhou and Rozvany 1991; Rozvany et al. 1992), non-
explicit sensitivity analysis in ESO (Xie and Steven 1993;
Querin et al. 1998) and implicit boundary expression in LSM
(Sethian and Wiegmann 2000; Wang et al. 2003; Yamada
et al. 2010).

The topology optimization problem in MIST can be for-
mulated in a simple form as to find the optimum iso-surface
threshold t:

Maximize : J tð Þ ¼
Z
Ω

Φ uð ÞH t;Φ uð Þð ÞdΩ ð1aÞ

Subject to : Governing equations and boundary conditions for system response uZ
Ω

H t;Φ uð Þð ÞdΩ−V f V ≤0

ð1bÞ

where J is the objective function; u represents a spatial
response of the system, Φ(u) is a measure of system responses
in the design domain and is referred to as a response function;
Ω represents the design domain dependent of t, t denotes an
iso-surface threshold level, H(t,Φ(x))=1∀x∈{Φ(x)≥ t} or
H(t,Φ(x))=0∀x∈{Φ(x)< t} is the Heaviside function that
defines solid or void for every points in the design domain. This
means that a domain with Φ(u) function above the iso-surface
threshold level t is solid and that below it is void. V and Vf
represent the total volume of the design domain and the desired
volume fraction. Evidently, one of the key steps in MIST is to
choose an efficient and appropriate response function Φ(u).
When it properly selected, optimal topology for an objective
function can be obtained (Tong and Lin 2011).

In essence, the MIST algorithm finds solution of the above
problem in a nested iterative process. In each iteration, for a
response function Φ(u) calculated from the system response
using the design domain Ω(tk) of the previous iteration (or an
initial guess in case of the first iteration), an update tk+1 is first
calculated by making the material constraint in (1b) binding; a
subsequentΩ(tk+1) is determined and scaled by the move limit,
and then used to solve for an update in the system response
function via solving the governing equations. Details about the
MIST implementation will be discussed in Section 3.

2.2 Problem statement

Finite element analysis for structural buckling normally includes
two analysis steps (Cook et al. 2001): 1) static stress analysis
using equilibrium equations to generate stress distributions

caused by applied loadings; 2) mode analysis using eigenvalue
equations defined by the stiffness matrix and geometric stiffness
matrix (GSM) to find eigenvalues and eigenvectors. Critical
loads or displacements for structural buckling are obtained via
multiplying the obtained eigenvalues by the appropriate applied
loads or displacements.

When stiffness matrix and GSM are symmetrically-positive
definite, λ1>0 and it can be expressed as (Cook et al. 2001):

λ1 ¼ Y1f gT K½ � Y1f g
Y1f gT Kσ½ � Y1f g ¼ k1

kσ1
¼ 2

kσ1
Eλ ¼ 2k1

k2σ1
Eσ ð2Þ

where λ1 is the 1st order eigenvalue for structural buckling;
[K] is the stiffness matrix; [Y1] is the eigenvector for λ1; [Kσ]
is the geometric stiffness matrix (GSM), which relies on
geometry, element types and applied loadings (Cook et al.
2001); k1 and kσ1 are the generalized stiffness and geometric-
stiffness for the 1st order mode; Eλ and Eσ are the total strain
energies associated with the stiffness matrix and the GSM for
the 1st order mode. During buckling, energies Eλ and Eσ are
exchanged (Cook et al. 2001). In iterative processes, the GSM
will be not positive definite when localized tensile modes
appear (see Table 1 in Section 4.5). In buckling optimization,
it is meaningful only when kσ1>0.

Equation (2) can be used to establish relationships between
eigenvalue λ1 and physical response functions. In the existing
buckling optimization, a response function based on Eλ used
to maximize λ1 or that based on Eσ used to minimize (1/ λ1) is
normally used (Neves et al. 1995, 2002; Bendsoe and
Sigmund 2003). When an eigenvector is scaled to create a
unit value of the generalized stiffness (k1=1) or geometric
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stiffness (kσ1=1), relationships of eigenvalue λ1 and Eσ or Eλ
are directly established.

When the response function Eσ or Eλ is used for some
structural optimizations such as plate buckling optimization,
reinforcements by specifying solid elements are often used to
obtain optimal structural designs with effective load-path
(Neves et al. 1995; Bendsoe and Sigmund 2003; Pedersen
andNielsen 2003). It is noted that there is another part of strain
energy in finite element (FE) buckling analysis, i.e., strain
energy Es (=0.5{u}

T[K]{u}) in static stress analysis, which
may be used to model load-path continuity.

Based on (2), an expression of λ1 is given by:

λ1 ¼ 2

α1 þ α2

α1

kσ1

Z
Ω

EλddΩ þ α2k1
k2σ1

Z
Ω

EσddΩ

0
@

1
A

þ α3

Z
Ω

EλddΩ−Eλ

0
@

1
Aþ α4

Z
Ω

EsddΩ−Es

0
@

1
A ð3aÞ

where α1, α2, α3 and α4 are real numbers and α1+α2≠0,
which should be chosen by user. Apparently, the simplest case
is: α1=1 and α2=α3=α4=0; the Φ function for this case can
be used in optimization to maximize the buckling load of
plane structures. However, such a choice is not ideal for plate
buckling problems owing to creation of disjointed structural
components. Equation (3a) can be rewritten as:

λ1 ¼ 2α1

α1 þ α2ð Þkσ1 þ α3

� �Z
Ω

EλddΩ þ α4

Z
Ω

EsddΩ

þ 2α2

α1 þ α2

k1
k2σ1

Eσ− α3Eλ þ α4Esð Þ
" #

ð3bÞ

In an iterative process, the 3rd term on the right hand side
of (3b) is a real number calculated by the previous iterations. It
will not change shapes of the Φ function surface and can be
equal to zero for a special combination of α1, α2, α3 and α4.
Therefore, λ1 can be expressed as:

λ1 ¼
Z
Ω

2α1

α1 þ α2ð Þkσ1 þ α3

� �
Eλd þ α4Esd

� �
H t;Φð ÞdΩ ð3cÞ

Equation (3c) indicates that the response function can be
expressed by a linear combination of strain energy densities in
the two FEA steps. Selection of coefficients should ensure that
λ1>0. Equation (3c) can be rewritten as:

λ1 ¼ α4

Z
Ω

1−αð Þ
α

Eλd þ Esd

� �
H t;Φð ÞdΩ ð3dÞ

where

1−αð Þ
α

¼ 1

α4

2α1

α1 þ α2ð Þkσ1 þ α3

� �
ð3eÞ

It is worth noting that the terms in brackets of the last two
terms in (3a) are zero. This allows inclusion of the distribu-
tions of Eλd and Esd in the response function as in (3c), which
is demonstrated to be beneficial if chosen properly in terms of
finding practical optimum structural topologies and implicitly
optimizing the objective value.

On the basis of above discussions, finite element based buck-
ling optimization to maximize eigenvalue λ1 can be stated as:

Maximize : λ1 ð4aÞ

Subject to :

K xeð Þ½ � uf g ¼ Ff g
K xeð Þ½ �−λ Kσ xe; uð Þ½ �ð Þ Yf g ¼ 0

0 < λmin < λ1

load‐path continuity of topologyX
e¼1

Ne

xeV eð Þ≤ V f V

0 < xmin≤xe≤1

8>>>>>>>>>>><
>>>>>>>>>>>:

ð4bÞ

where {F} is the force vector; {u} is the displacement
vector in static analysis; {Y} denotes the eigenvector; λmin is
the lower bound of eigenvalue λ1; Ve is the element volume;
Ne is the element number; xe is the design variable for the eth

element ranging from 0 to 1, which characterizes the use of
material at an element level; and xmin its minimum value to
prevent matrix singularity.

In an iterative process, stiffness is assembled by: K½ � ¼ ∑
e¼1

Ne

xpe ke½ � where [ke] is the stiffness matrix for the eth element
with full solid materials; p is the penalty. In a two-dimensional

Table 1 Eigenvalues of a
column-beam (600×100×4;
α=0; Vf=0.5) at iterations 118–
121 when λmin is not specified

Eigenvalue order Iteration 118 Iteration 119 Iteration 120 Iteration 121

λ1 −2.09855 −2.09856 −2.09858 −2.09857
λ2 −3.03510 −3.03512 −3.03512 −3.03511
λ3 −3.73411 −3.73411 −3.73412 −3.73411
λ4 −3.73982 −3.73985 −3.73986 −3.73985
λ5 3.977548 3.977547 3.977547 3.977547

λ6 3.977555 3.977550 3.977566 3.977564

(λ6 - λ5)/ λ5 1.76×10−6 7.54×10−7 4.78×10−6 4.27×10−6
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design problem, p=3 for the applied forces. When a structure
is subjected to the enforced displacements {ud}, it is equiva-
lent to the case of an applied force {Fd}=[Kd(xe)]{ud}, where
[Kd(xe)] is the stiffness for {ud}. If p>1, {Fd} will be de-
creased by the penalty and the effect of {ud} will be inaccu-
rately accounted for. Therefore, p=1 is used for the enforced
displacements.

In (4b), the constraint of 0<λmin<λ1 is used to eliminate
the spurious local buckling mode shapes. λmin should be large
enough to prevent the spurious mode shape output in FEA but
smaller than the real 1st order eigenvalue that may appear in
iterations. In the present computation, λmin=10

−3, which is
around 0.001λ1. The constraint of load-path continuity is
realized by introducing a connectivity coefficient in the pres-
ent study to ensure that the structure with an optimum topol-
ogy has the load-bearing capacity.

3 Response function, algorithm and implementation
of MIST for buckling analysis

3.1 Formulation of the response function Φ

Based on (1)-(4), theΦ function for maximizing eigenvalue λ1
may be constructed by using nodal values of Eλd, Eσd or their
proper combination plus Esd to obtain effective load-
path. In the present computation, Eλd and Esd are used
to construct the Φ function as they can be directly obtained in
the two FEA steps. It can be derived by comparing (1b) and
(3d):

Φ ¼ 1−αð ÞEλd þ αEsd ¼ 1−αð ÞΦλ þ αΦs ð5Þ

where Φs and Φλ are the response functions for the static
stress analysis and the buckling analysis for mode 1 and they
are constructed by using the nodal values of strain energy
densities in the two steps; α is referred to as the connectivity
coefficient.

When α=0, the response function is the same as that used
in most of the existing literatures and when α is too large,
strain energy in static stress analysis will dominate iteration
process leading to topologies for non-buckling problems. On
the basis of (2), when an eigenvector for the 1st order mode is
scaled to result in kσ1=1, the strain energy in the eigenvalue
analysis step is given by: Eλ=λ/2 and that can also be
expressed as Eσ=kσ

2λ/2 when the eigenvector is scaled to
generate k1=1. In the present computation, the case of kσ1=1
is considered and thus the response function in (5) is used. In
MIST, nodal values of the physical response function are used
to construct the Φ function surface, which can be extracted
from values at Gaussian points or element centres, see
Appendix A.

The novel formulation (5) indicates that the response func-
tion associated to eigenvalue λ1 can be approximately
expressed as a linear combination of strain energy densities
based on Φs and Φλ functions. In the existing literatures on
topology optimization for buckling analysis, strain energy
density based on Φλ is mainly used, which is a special case
of (5) with no connectivity coefficient (α=0).

It is seen that the response function defined in (5) is directly
related to an objective function to maximize the critical load
where the connectivity coefficient is used to take into account
effective load-paths. Once the response function is selected,
buckling optimization can be conducted by using the MIST
algorithm as described in Section 3.2.

3.2 Basic algorithm

In MIST (Tong and Lin 2011; Vasista and Tong 2012),
iso-surface of the chosen response function Φ is sought
to define the structural boundary by meeting the volume
constraint and also minimizing or maximizing an objec-
tive function (Tong and Lin 2011; Vasista and Tong 2012).
The algorithm based on the finite element analysis can be
described as follows:

Step 1 Initialization
The initialization mainly includes two sets of input

data. One contains all necessary data for finite ele-
ment analysis in a design domain and the other re-
quires selection of initial values of the weighting
factors xe (e = 1, 2, …, Ne) for all elements with
reference to the volume constraint. This is similar to
element based material density variables used in
SIMP. A uniform material distribution is often as-
sumed as in (Tong and Lin 2011; Vasista and Tong
2012). Other initial parameters such as a volume
constraint, penalty, move limit and a filter radius are
also specified in this step.

Step 2 Finite element analysis
In finite element analysis (FEA), the material

properties for each element are calculated based on
initial or updated weighting factors by using an ap-
propriate material model in SIMP and the other input
data are not changed. An input data file for the FEA is
then created in the 1st iteration or modified in subse-
quent iterations by using the initial/updated
weighting factors and the other data required for
FEA. In the FEA input file, λmin (e.g., 10

−3) is spec-
ified. By using the initialized or updated input data
file, FEA can be conducted and an output data file
containing information on displacements, strains and
stresses is generated. In this paper, MSC NASTRAN
is used as an FEA solver. Interfaces and input/output
data files will be discussed in details in Section 3.3.
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Step 3 Construction of the Φ function

1) Nodal value calculation
The surface of the chosen Φ function for two-

dimensional analysis can be constructed by the cal-
culatedΦ values (as z coordinate) at nodes (located by
its x and y coordinates in Cartesian coordinate sys-
tem) by using the FEA results of the initial or previ-
ous iteration. In the FEA output data, physical re-
sponses, such as stress, strain and strain energy den-
sity, may be given at Gauss points, element centers or
nodes. If physical responses are output at nodes, they
are directly used to form the Φ function surface.
When the physical quantities are output at Gauss
points, the Φ function surface can be constructed by
evaluating their nodal values through averaging the
values at the surrounding Gauss points (Tong and Lin
2011; Vasista and Tong 2012). When the responses
are output at element centers, their node values can be
calculated by the 2nd order polynomial interpolation
and this method will be used in this paper.

As the 4-node isotropic elements are used, strain
energy density is a 2nd order polynomial function
with respect to coordinates x and y and thus the Φ
function is the 2nd order surface. Consider 3 adjacent
elements with the unit length in x direction. When the
strain energy densities are output at element centers
(x=0, ±1), values at the edge centers (x=±0.5, ±1.5)
can be calculated by using:

Φ ¼ Φ 0ð Þ þ 1

2
Φ 1ð Þ−Φ −1ð Þ½ �x

þ 1

2
Φ 1ð Þ þ Φ −1ð Þ½ �−Φ 0ð Þ

� �
x2 −1:5≤x≤1:5ð Þ

ð6aÞ
When element edges locate in themiddle of a design

domain, two or three values at one point are averaged.
By replacing x with y in (6a) and using the data of the
element edge centers, the nodal values can be obtained.

2) Filtering
Topology optimization can be mesh dependent

(Sigmund and Petersson 1998). To solve this issue,
filtering element sensitivity could be used for gradient-
based topology optimization (Sigmund and Petersson
1998; Bendsoe and Sigmund 2003). This method is
purely heuristic although it produces results similar to
the local gradient constrained method (Sigmund and
Petersson 1998; Bendsoe and Sigmund 2003) where
the sensitivity of a specific element is modified based on
a weighted average of the element sensitivities within a
fixed spatial neighbourhood or filtering radius. InMIST
(Tong and Lin 2011; Vasista and Tong 2012), the Φ

function can be filtered similarly by using (Vasista and
Tong 2012):

Φ j ¼

X
i¼1

Ni

wiΦi

X
i¼1

Nk

wi

wherewi ¼ 1−
r ji
rmin

ð6bÞ

where, rmin is the filter radius, rji is the distance
between nodes j and i; Ni is the node number in the
circle centered at node jwith a radius of rmin. In general,
rmin=(1.5~2.5)lwhere l is the element length (Sigmund
and Petersson 1998; Vasista and Tong 2012).

3) Normalization
To easily calculate the iso-surface threshold level t,

the Φ function will be normalized by:

Φ ¼ Φ−Φm

Φa
where

Φm ¼ 1

2
max Φf g þmin Φf g½ �;

Φa ¼ 1

2
max Φf g−min Φf g½ �

ð6cÞ

After normalization, −1≤ Φ ≤1.

Step 4 Update of weighting factors

1) Incremental direction of the weighting factors
For the cases of very flat or steep Φ function

surface, the level t can be difficult to find. In the
present computation, an efficient algorithm is devel-
oped: 1) tn (−1< tn<1) is simply calculated by
counting the node numbers for the prescribed volume
constraint; 2) tnmay be the iso-surface threshold level
to be found for the fine mesh and otherwise t is
calculated using an iterative bisection method by
considering the volume constraints (Tong and Lin
2011; Vasista and Tong 2012) in a range of (tn - ε)<
t<(tn+ε) (tolerance ε=0.01). Weighting factor xe
equal to 1 represents the use of solid material if all
of its nodal Φ values of the eth element are above the
iso-surface, and xe equal to or close to zero denotes
the use of void material if all nodal Φ values of this
element are below the iso-surface. When some nodal
Φ values of the eth element are above and the others
are below the iso-surface, its weighting factor is de-
fined as the fraction of the project area above the iso-
surface to the element total area. The project area is
the one enclosed by the boundary and element edges;
in the present computation, a curve of the boundary is
approximated by a straight line and the polygonal
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area is calculated. When the iso-surface level or
threshold value is found, weighting factors {xe}k are
obtained and incremental direction Δ{xe}k={xe}k
−{xe}k−1 at the kth iteration is determined.

2) Incremental magnitude of the weighting factors
Generally, {xe}k should not be directly used for

FEA at the next iterative step (Tong and Lin 2011;
Vasista and Tong 2012) owing to unstable or diver-
gent iterations and thus move limit is introduced to
reduce increments, similar to the move limit used in
optimality criteria (Bendsoe and Kikuchi 1988).
Constant or variable move limit may be used. In this
study, the dynamic move limit in (Vasista and Tong
2012) is used, where the move limit is halved when
the objective function starts to oscillate.

In an iterative process, the weighing factors xe (e=
1, 2,…,Ne) must be in the range of (0<xmin≤xe≤1) to
avoid possible numerical singularity (xe<xmin) and
unacceptable design (xe>1). Therefore, the updating
scheme for the weighting factors is defined as:

Δ xef gk ¼ xef g 1ð Þ
k − xef g k−1ð Þ ð7aÞ

xef g 2ð Þ
k ¼ xef g k−1ð Þ þ kmv Δxef gk ð7bÞ

xef g 3ð Þ
k ¼ max xef g 2ð Þ

k ; xmin

n o
and xef g 3ð Þ

k

¼ min xef g 2ð Þ
k ; 1

n o
ð7cÞ

where kmv is the move limit, 0<kmv≤1; {xe}k(3) are
the updated weighting factors used for the next itera-
tion. It is noted that, similar to SIMP, one element is
also depicted by one variable (xe) in MIST and the
design variables are updated by using (7a)-(7c).

In the SIMP, penalty (=3) greater than 1 is used to
penalize intermediate densities to obtain an almost black
and white design that can be easily manufactured. This
approach is also employed in the MIST. Although the
topology is represented by the implicit boundary or
intersection of the iso-surface and theΦ function surface
in the MIST element based design variables are used in
FEA and updated via (7a)-(7c).

Step 5 Convergence test
Convergence parameters may be defined in terms of

the changes in the weighting factors, objective function
and the response surface at element or overall domain
level. Theweighing factors {xe}, topology, eigenvalues,
the Φ function and iso-surface are tracked at each
iterative step. The iterative process may be deemed as
convergent when one or more parameters of these
physical quantities are less than tolerances. Setting the
convergent tolerances is normally problem-dependent

and the maximum iterative number (e.g., 200) can also
be set to avoid the iteration without ending. In the
present computations, both Δtk=|tk−tk−1|≤0.001 and
Δλ1

k=|λ1
k−λ1k−1|/λ1k≤0.1% are chosen as the conver-

gent criteria and 200 is the maximum iterative number.
When the convergence criteria are met, the iterations

terminate or otherwise go to Step 2.

3.3 Implementation in commercial FEA software

In this study, finite element analysis is conducted by using
NASTRAN. Interface with this FEA software allows auto-
matic generation or modification of the input data file for
NASTRAN and reading of the output data file from NAST
RAN. The details are given in Appendix B.

Strain energy densities at each element center in the two
steps can be directly read from the NASTRAN output file. By
using the 2nd order polynomial interpolation technique, their
nodal values can be found and then the Φ function are con-
structed by filtering (Vasista and Tong 2012) and normalizing
these data. By calculating the iso-surface threshold level t, the
weighting factors {xe}k

(1) can be obtained and the new
weighting factors {xe}k

(3) are calculated by using (7a)-(7c).
An iterative process continues by using the updated weighting
factors until convergence criteria are met.

4 Numerical results and discussion

By using the present formulation for buckling analysis and
MIST, topology optimization will be presented for a plate
subjected to uniformly-distributed force and enforced dis-
placement as shown in Fig. 1a and a column-beam subjected
to force(s) in Fig. 1b. The material properties and thickness for

(a)

(b) 

Fig. 1 Samples for buckling analysis (a) a clamped plate subjected to the
distributed force or enforced displacement; (b) a column-beam subjected
to concentrated force P or F
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the two structures are: E=70 (GPa), ν=0.3 and t=4 (mm). The
column-beam structure deforms in-plane only and plane stress
state is assumed. In all computations, λmin=10

−3 is specified.

4.1 MIST Implementation

In the present computations of Sections 4.1 and 4.2, uniformly
distributed loading is applied to the right end of a plate (a=
400 mm, b=200 mm) and the resultant force is P=4 (kN). It is
noted that magnitude of the applied loading affects increment
magnitude in an iterative process. When eigenvalue λ1 is
found, the critical load is given by Pcr=λ1P.

Figures 2, 3 and 4 illustrate iterative processes of topology
optimization usingMIST to maximize buckling loading of the
plate in Fig. 1a. In the present computation using NASTRAN,
4-node isotropic shell element CQUAD4 is used, which is
based on the 1st order shear deformation theory. The mesh
scheme of (80×40) is used for Figs. 2, 3 and 4. The
connectivity coefficient and the volume constraint are α=0.1
and Vf=0.5.

Figure 2a-d show the Φ function surface and the threshold
iso-surface at iterations 1, 10, 30 and 200. Figure 3a-d show
topologies at these iterative steps and Fig. 3d is the optimal
topology for the maximum critical buckling load. Figure 3b-d
show that topology at iteration 30 is very close to that at
iteration 200.

In the iterative computations, eigenvalues versus iteration
are plotted in Fig. 4, which indicates that the 1st –5th order
eigenvalues are convergent. At iteration 1, 10, 30 and 60~200,
the 1st order eigenvalue is 0.611, 3.62, 4.42 and 4.42. It is seen
that the converged eigenvalue is reached at the 60th iterative
step and the converged value is 90.4 % as large as that of this
plate with full solid material. It is noted that the 1st order
eigenvalue of this solid plate computed by the FEA with a
mesh of (40×80) using NASTRAN is 4.885. This example
shows that a 50 % reduction in material use yields decrease of
10 % in buckling load.

4.2 Influences of mesh and connectivity coefficients

Figures 2, 3 and 4 show that the present formulations and
algorithms are capable of conducting topology optimization to
maximize eigenvalue λ1 for plate buckling. In this section,
influences of meshes and connectivity coefficients on the
maximum eigenvalue λ1 of the plate will be investigated to
further verify effectiveness of the present formulation and
MIST for buckling analysis.

4.2.1 Optimal topologies and eigenvalues for different meshes

In Section 4.1, 4-node isoparametric shell elements are used
and the mesh scheme is (80×40). When meshes using the
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Fig. 2 The Φ function surface
and the iso-value surface to
maximize λ1 at iterations 1, 10, 30
and 200
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same 4-node element are (40×20), (60×30), (100×50) and
(120×60), the optimal topologies are obtained as in Fig. 5a-d.
Curves of eigenvalue versus iteration for these cases are
almost the same that of Fig. 4 and thus are not given.

When there is no material removal in this plate, the eigen-
values (λ1) for 5 mesh schemes of (40×20)–(120×60) are:
4.894, 4.888, 4.885, 4.884 and 4.883. It can be deemed that
the convergent eigenvalue is achieved by using the mesh of
(80×40) whose eigenvalue λ1 is 0.04% larger than that for the
mesh of (120×60). In the iterative process to maximize λ1
with α=0.1 and Vf=0.5, the converged values of eigenvalue
λ1 are 4.535, 4.491, 4.423, 4.507 and 4.456 for the 5 mesh
schemes, respectively; the difference between meshes (80×

40) and (120×60) is 0.74 %. Therefore, the mesh scheme of
(80×40) will be used for the plate with a size of (400×200×
4 mm3) in the subsequent computations.

4.2.2 Optimal topologies for different connectivity coefficients

In the present computation for plate buckling analysis, strain
energy densities in the two steps of FEA are considered. The
strain energy density for eigenvalue analysis is used to estab-
lish relationships between eigenvalue and the response func-
tion and the strain energy for the static stress analysis is used
for connecting isolated parts to form optimal designs with
effective load-path.

In conventional topology optimization for buckling analy-
sis of plate and shell structures, non-designable elements or
reinforcements are often specified to obtain load-path conti-
nuity designs. In this paper, the Φ function in terms of strain
energy densities in the two steps is derived and the reinforce-
ment strategy is not used. In the present formulations, roles
and influences of the strain energy density in static stress
analysis are reflected by connectivity coefficient α.
Applicable ranges of connectivity coefficients will be studied
for volume constraints of Vf=0.75 and 0.5 as follows.

Figure 6 illustrates the converged 1st order eigenvalue
versus connectivity coefficient when the volume constraints
are equal to 0.5 and 0.75, respectively. When different con-
nectivity coefficients are selected, optimal topologies to max-
imize the 1st order eigenvalue may also be different, as plotted
in Figs. 7 and 8.

(a) Iteration = 1  (b) Iteration = 10 

(c) Iteration = 30    (d) Iteration = 200 
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Fig. 3 Topologies to maximize λ1 at iterations 1, 10, 30 and 200 (mesh: 80×40)
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Fig. 4 Eigenvalue versus iteration for a fixed-clamped plate subjected to
uniformly distributed compressive forces in buckling optimization (mesh:
80×40)
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Figure 7a-d illustrate optimal topologies of the plate with
Vf=0.5 for α=0.04, 0.18, 0.19 and 0.21. When α=0.04~0.18,
patterns of the topology are similar as shown in Fig. 7a and b.
The topology is changed whenα≥0.19 and larger eigenvalues
(λ1=4.71–4.73) are obtained when α=0.192~0.21. When α<
0.04, the obtained topology lacks effective load-path and
when α>0.21, it is a static stress dominated problem.
Figure 7e is the material distribution at iteration 100 when

α=0, where there exist regions with many grey elements (xe~
0.08); the iteration is divergent due to lack of the effective
load-path and localized modes. Figure 7f shows the topology
when α=0.8; when α=0.6 and 1, almost the same topology
and buckling factor as those in Fig. 7f are obtained in the
present computations. In this case, optimization is dominated
by strain energy density in static analysis and thus the buck-
ling factor is much lower than that shown in Fig. 7a-d. This
indicates importance of the connectivity coefficient for load-
path continuity of topology.

Figure 8 illustrates optimal topologies of the plate with Vf=
0.75 for α=0.001~0.6. When α varies from 0.001 to 0.25,
hole areas in the plate middle region of Fig. 8a decreases and
those in the top and bottom edges increases; the optimal
topology in Fig. 8a varies to a similar one in Fig. 8b. In a
range of α=0.3~0.6, topologies are shown in Fig. 8c-f.
Although optimal topologies look quite different for these
connectivity coefficients, the converged 1st order eigenvalues
are almost the same (λ1=4.85~4.96) with the maximum dif-
ference of 2.39 %. Similarly, when α<0.001, there is no load-
path continuity and the problem becomes static stress domi-
nated when α>0.6.

Although the 1st order eigenvalues given by different
topologies are almost the same when α=0.3~0.6, the higher
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Fig. 5 Optimal topologies of a fixed-clamped plate obtained by using mesh schemes of (40×20)~(120×60) for maximizing buckling loading
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order eigenvalues can be different, as shown in Fig. 9. The
1st–3rd order eigenvalues for these connectivity coefficients
are plotted in Fig. 9a-d. It is seen that the 3rd order eigenvalue
given in Fig. 9b, c) or (d) is much higher than that in Fig. 9a.
The convergent eigenvalues are also observed in the four
figures.

These examples show that in addition to ensuring the load-
path continuity, connectivity coefficient α has a remarkable
effect in enhancing the critical buckling load of the optimized
structure. When α=0.21 for Vf=0.5, the critical load is

reduced by 3.2%.Whenα=0.3~0.6 for Vf=0.75, the buckling
load hardly decreases.

The coefficients α1, α2, α3 and α4 introduced in (3a)-(3c)
are difficult to determine as these coefficients can have differ-
ent combinations and thus a trial-and-error method is used.
The present numerical results for plate buckling analysis show
that: 1) 0<α<1; 2) whenα<αmin (= 0.04 for Fig. 7), load-path
is discontinuity; α>αmax (= 0.21 for Fig. 7), it degenerates to
an in-plane compliance problem; 3) a range [αmin,αmax] of the
effective value increases with a volume fraction Vf; 4) the

α = 0.04; λ1 = 3.16 α = 0.18; λ1 = 4.54 
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Fig. 7 Optimal topologies for different coefficients when Vf=0.5
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maximum buckling factor (λ1) increases with α when α ⊂
[αmin,αmax] as shown in Fig. 6, which could be understood as
the in-plane compliance enhances the effective load-path.

4.3 Topology for plate buckling subjected to enforced
displacement

In Sections 4.1 and 4.2, the plate is subjected to uniformly
distributed load. In this section, optimal designs for a plate in
Fig. 1a subjected to the enforced displacement will be studied.

In optimization to maximize eigenvalue λ1 of a plate subjected
to an enforcement displacement, penalty should be 1 (p=1 and
xmin=10

−9).
Similar to Figs. 6 7, 8 and 9, different topologies and

eigenvalues can be obtained for different volume constraints
and connectivity coefficients when an enforced displacement
is applied to the plate right edge. Figures 10 and 11 illustrate
optimal topologies and eigenvalues of the plate subjected to
the enforced displacement of −0.2 (mm) for the cases of (Vf=
0.5; α=0.4) and (Vf=0.75; α=0.15), respectively.
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It is seen that the optimal topology in Fig. 10a is similar to
that in Fig. 5d but the design in Fig. 10a is symmetrical about
x=200 mm. The symmetrical design is also found in Fig. 11a
(Vf=0.75 and α=0.15). Figures 10b and 11b indicate that the
converged eigenvalues are achieved in these iterative process-
es and eigenvalues (λ1) of the optimal designs are significantly
increased.

4.4 Optimal buckling design for a relatively-narrow plate
and column-beam

By using MIST and the present formulation, optimal designs
to maximize buckling forces of relatively-narrow plates and a
column-beam shown in Fig. 1b are further investigated; the
structure dimensions considered are a=400 and 600 mm, b=
100 mm, t=4 mm and the mesh schemes used are (160×40)
and (240×40) for both the plate and column-beam. In the
column beam as shown in Fig. 1b, two loading cases with
one force (P) and two forces (F) are considered.

Optimal topologies and the converged eigenvalue λ1 for
these structures are summarized in Fig. 12. In Fig. 12a, c and
e, the structure dimensions are 400×100×4 mm3 and those of
Fig. 12b, d and f are 600×100×4 mm3. Figure 12a and b are
the optimal topologies for considering the out-of-plane buck-
ling of the plate structures, and the optimal designs for con-
sidering in-plane buckling of the same structures are illustrat-
ed in Fig. 12c-f. In Fig. 12c and e, two concentrated forces (F)
are applied and one force P is applied for the structure in
Fig. 12d and f as shown in Fig. 1b. The applied resultant force
for Fig. 12a-f are 2, 0.8, 60, 30, 60 and 30 (kN), respectively.
As λmin=0.001 is used as the constraint, the applied loads are
chosen so that 0.1<λ1<10 in the present computations.

Figure 12a and b are the optimal topologies of the plate
buckling, where α=0.5 are used for both plates. It is observed
that the obtained optimal topologies are similar to those of the
plate (400×200×4 mm3; α<0.3) in Fig. 8. It is interesting that
the critical buckling load of a plate with 75 % material is
almost the same as that the full solid plate.
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Figure 12c-f are for the in-plane buckling of the same
structures behaving like a column-beam, where the connec-
tivity coefficient α is not used for Fig. 12c and d and small α
values are chosen for Fig. 12e and f. It is seen that, in the
optimization involving in-plane buckling of the column-
beam, use of the connectivity coefficient may not be necessary
as its influence on the buckling load appears to be negligible
for the examples considered. However, the connectivity coef-
ficient used for in-plane buckling of the column-beam appar-
ently yields different optimal topologies with enhanced load-
path. It is also noted in these numerical examples that the
connectivity coefficient may improve convergence rate as the
occurrence of mode switching appears to be reduced.

In buckling optimization and other eigenvalue problems
for plate structures, user defined reinforcements are often used
as non-design domains to create acceptable load-paths
(Bendsoe and Sigmund 2003; Niu et al. 2009). It is evident
that the present proposed connectivity coefficient can also be
effective to serve the purpose of ensuring load-path continuity.

By comparing with the optimal designs in (Bendsoe and
Sigmund 2003), the optimal topology in Fig. 12c and d
correlate with those obtained by SIMP without reinforcement,
and Fig. 12e agrees with that using the reinforcement
(Bendsoe and Sigmund 2003). This further confirms the effect
of the connectivity coefficient. To the best knowledge of the
authors, similar optimal designs for buckling plates obtained
in this paper have not been found in open literatures.

It should be pointed out that the assumptions are used in
linear buckling analysis, such as 1) small deflection and 2)
linear-elastic material; therefore, the applicability is limited to
the structures satisfying these conditions.

4.5 Spurious local buckling, mode switch

In the present algorithm, the constraint of (0<λmin<λ) is intro-
duced and used (λmin=0.001) for the present examples. To
illustrate the effects of removing this constraint, Table 1 lists
the computed eigenvalues λ1 -λ6 at iterations 118–121 for the
column-beam (600×100×4;α=0;Vf=0.5, see Fig. 12d) subject-
ed to forceP. Evidently, λ1 -λ4 in these iterations are negative and
their associated modes are spurious local eigen modes, and the
iterative process will become divergent. However, these spurious
local buckling modes can be effectively excluded by the intro-
duced constraint (in all the present computations, λmin=0.001 is
used) to achieve a well-behaved convergence.

As λmin (=10
−3) is chosen in the present computation, λ5

and λ6 of Table 1 are output as λ1 and λ2. Figure 13a-c
illustrated the Φ function and iso-value surfaces at iterations
118, 119 and 121, and the curve of the eigenvalue versus
iteration is plotted in Fig. 13d. By conducting finite element
analysis using the input material data {xe} obtained in itera-
tions 118–121 and examining the 1st and 2nd mode shapes, it
is found that the 2nd mode shape at iteration 119 is almost the
same as the 1st mode shape at iterations 118, 120 and 121.
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 (a) λ1 = 4.78 (4.79); α = 0.5; Vf λ1 = 5.26 (5.26); α = 0.5; Vf  = 0.75 

 (c) λ1 = 4.47 (4.55); α = 0; Vf λ1 = 3.98 (5.22); α = 0; Vf  = 0.5 

 (e) λ1 = 4.46 (4.55); α = 0.001; Vf λ1 = 4.04 (5.22); α = 0.0001; Vf  = 0.5 
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Fig. 12 Optimal topologies and
converged eigenvalues of a
relatively-narrow plate and
column-beam (values in brackets
are eigenvalues of corresponding
full solid structures)
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Therefore, the 2ndmode shape at iteration 119 could be output
in the FEA as the 1st mode shape, namely, the first two modes
are switched for the calculation of the Φ function.

Similar to the case for the in-plane buckling of column-beam
optimization, we now consider the optimization involving out-
of-plane buckling of the plate (400×200×4; α=0.10; Vf=0.75;
mesh: 120×60; see Fig. 5d) subjected to the distributed load. For
this case, Fig. 14 illustrates the Φ function and iso-value surfaces
at iterations 32–35. It is apparent that the Φ functions for itera-
tions 32, 34 and 35 resemble each other, whereas that for iteration
33 is completely different. By considering the buckling shapes of
a plate with full solid material, it is easy to identify that the Φ
function shown in Fig. 14b is related to the 2nd buckling mode.
Thismeans that at iteration 33 the 2ndmode shape is output from
the FEA rather than the 1st one due to mode switch.

By referring to the weighting factor update approach de-
fined in (7a)-(7c), random occurrence of mode switch can
slow down convergence as the weighting factors Δ{xe}k

(1)

are incorrectly calculated at the kth step. Additional iterations
are thereafter needed to remove the effect of the incorrectly
assessed variations in weighting factors. Frequent occurrence
of mode switch can lead to divergence.

Figures 13 and 14 also indicate that mode switch may be
identified possibly by comparing mode shapes for repetitive
eigenvalues. However, in the present study, mode switch was
identified but no treatment was implemented due to occasional
occurrence of mode switches in all examples considered. For
example, by ignoring the negative eigenvalues and relabeling the
positive ones in Table 1, it is noted that: when (λ2 - λ1)/ λ1≤

7.54×10−7, mode switch may occur (see iteration 119); when
(λ2 - λ1)/ λ1≥1.76×10−6, mode switch may not take place (see
iteration 118, 120 and 121). As NASTRAN has up to 8 effective
digits, only eigenvalues with identical first seven effective digits
are considered repetitive. For the meshing schemes and material
updating model used, repetitive eigenvalues or mode switches
occur only occasionally, and they hardly affect iterative conver-
gence (see Fig. 13d as an example).

In the present computations, two methods have been used
to track mode switch: 1) record the Φ function and iso-level
surfaces as shown in Fig. 13a-c, and 2) calculateΔtk=|tk−tk−1|
andΔλ1

k=|λ1
k−λ1k− 1|/λk. Method 1) can be used to identify the

mode switch after iterative processes. Method 2) can be used
in iterations: after iterationNλ, ifΔtk>εt andΔλk>ελ, the data
of mode 2 are extracted and used to construct the Φ function,
where εt and ελ are the tolerances. This method has been
tested in the present computation but is not efficient. The
difficulties are determination of Nλ, εt and ελ; this method
may also be invalid for the multi-modal problems. It is noted
that influences of mode switch in the present algorithm de-
pends on increment ({xe}k

(3)−{xe}k−1); when it is small, the
mode switch slows down the convergent rate only.

5 Effects of soft material

It should be pointed out that the obtained optimal designs
contain both solid materials and soft materials (void elements)
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Fig. 13 The Φ function and iso-
value surfaces at iterations 118,
119 and 121, eigenvalue versus
iteration for the column-beam
(600×100×4; α=0; Vf=0.5)
subjected to force P
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with very small Young’s modulus (10−9E). It is well known
that the effects of these soft materials can be ignored for static
analysis cases. However, influences of soft materials on ei-
genvalue problems, in particular involving buckling, are not
well documented.

To study the effects of soft material on buckling related
optimum results, let us consider the FEA for five cases: (1)
optimal topology with only solid material and clear boundary
formed using additional triangular elements as shown in
Fig. 15a, (2) completely re-meshed topology with only solid
material by modelling boundary using spline functions (see
Fig. 15b); (3) the topology with solid and grey materials but
with no void material (xmin

3 =10−9) or elements deleted (see
Fig. 15c), (4) the optimal topology with solid, grey and soft
material as used in iterations (same as Section 4), and (5) the
structure with solid material for entire design domain. In all
these FEA computations, λmin was not specified and spurious
local mode was not observed as shown in Tables 2 and 3,
which list the first five eigenvalues for the plate and column-
beam examples for the five FEA cases.

Table 2 lists the eigenvalues for the plate (400×100×4; α=
0.5;Vf=0.75) for the five FEA cases. The eigenvalues of cases
(1)-(2) are the same and slightly less than those of case (3)
(3.13 % for λ1), which indicates that the topology with clear
boundary may be a better choice as it is easy to be fabricated.
However, the critical loads for these cases are around 13–15%
lower than those for cases (4) and (5). That is, the inclusion of

the soft material can significantly increase the plate buckling
load as given in case (4).

Table 3 gives eigenvalues of a column-beam (400×100×4;
α=0.001; Vf=0.75) for the five FEA cases. Evidently, buck-
ling factors computed for the five cases are almost the same.
This result shows that the inclusion and removal of the soft
material part hardly affect the buckling load of a column-beam
structure and the critical load using 75 % material volume is
about 98 % of that for the full solid structure over the entire
design domain.

It is evident that the effects of soft material on buckling
optimization are complicated, particularly for plate
structures. In optimization for plate structures, thickness
may be used as a design variable (Cheng and Olhoff
1981; Bendsoe and Sigmund 2003) or use stiffening ribs
with the base thickness (Zhou 2004) to reduce effects of
soft material. Alternatively, plate structures with soft
material may also be considered in practical structural
design and manufacturing.

One of the challenges in optimization for linear buckling
structures is considerable effects of soft materials on eigen-
values (Neves et al. 1995; Zhou 2004), particularly for plate
structures based on our numerical results. It is known that the
0–1 material model does not accurately depict optimization
for plate structures due to the cubic dependence of stiffness on
plate thickness (Bendsoe and Sigmund 2003). In linear buck-
ling analysis, the geometric stiffness matrix is computed on
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Fig. 14 The Φ function and iso-
value surfaces at iterations 32–35
for the plate (400×200×4; α=
0.10; Vf=0.75; mesh: 120×60)
subjected to uniformly-distributed
force
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the basis of stress distributions obtained in the static analysis
for an in-plane problem. It is believed that inaccurate stress
distributions and poor description of stiffness in plate elements
with low density materials using the 0–1 material model
overestimate the buckling load factor.

6 Conclusions

Novel formulation of buckling optimization is defined in (4a)
and (4b) where a connectivity coefficient is introduced to
ensure the effective load-path and the lower bound of eigen-
value is used to eliminate the spurious modes. MIST is used to
study structural topology optimization considering linear

buckling, which is demonstrated to be effective and
practical. Based on the present numerical results, the
following salient points can be drawn: (a) the selected
response functions in terms of the strain energy densi-
ties of both static stress and eigenvalue analyses are
simple and effective; (b) the proposed method of intro-
ducing an connectivity coefficient is practical and en-
sures appropriate load-path continuity; (c) MIST method
avoids direct sensitivity analysis and thus the error source of
omitting static stress state in sensitivity analysis; (d) void
materials or elements have a considerable effect on the out-
of-plane buckling loads and a marginal effect on the in-plane
buckling loads; (e) the spurious localized mode can be erad-
icated by specifying the minimum eigenvalue constraint in the
present computation.

Table 2 Eigenvalues of a plate (400×100×4; α=0.5; Vf=0.75) with
and without soft material

Eigenvalue order Case (1) Case (2) Case (3) Case (4) Case (5)

λ1 4.04 4.04 4.17 4.78 4.79

λ2 6.38 6.38 6.80 9.81 9.80

λ3 13.0 13.0 13.8 19.3 19.3

λ4 17.3 17.3 19.3 29.3 29.3

λ5 18.3 18.3 20.5 39.4 38.8

λ1/ λ10 (%) 84.5 84.5 87.2 99.8 100

λ10: 1st order eigenvalue of the plate with full solid material

Table 3 Eigenvalues of a column-beam (400×100×4; α=0.001; Vf=
0.75) with and without soft material

Eigenvalue order Case (1) Case (2) Case (3) Case (4) Case (5)

λ1 4.47 4.51 4.46 4.46 4.55

λ2 4.70 4.76 4.70 4.70 4.73

λ3 5.51 5.53 5.44 5.44 5.99

λ4 11.3 11.2 11.3 11.3 11.4

λ5 11.4 11.3 11.4 11.4 11.5

λ1/ λ10 (%) 98.3 99.2 97.9 97.9 100

λ10: 1st order eigenvalue of the column-beam with full solid material

Fig. 15 Finite element meshes
for Cases (1), (2) and (3)
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Appendix A. Calculation of strain energy density
and construction of the Φ function

In MIST, the Φ function is constructed by its nodal
values, which can be extracted from elemental data.
The strain energy density in static stress analysis and
that in buckling analysis for mode 1 in the eth element
can be calculated by:

Esd ¼ 1

2
σe
s

� �T
εes

� � ¼ 1

2
ues

� �T
B½ �T D½ � B½ � ues

� � ðA1Þ

Eλd ¼ 1

2
σe
λ1

n oT
εeλ1

n o

¼ 1

2kσ1
Ye

1

� �T
B½ �T D½ � B½ � Ye

1

� � ðA2Þ

where {σs
e} and {εs

e} are the stress and strain in the static

analysis; σe
λ1

n o
and εeλ1

n o
are those in buckling analysis for

the 1st order mode; [B] and [D] are the strain–displace-
ment and elastic constant matrices. The strain energy
densities at Gaussian points can be determined for ele-
ment by element by using (A1) and (A2), and then the
Φ function surface can be constructed by evaluating
their nodal values through averaging the values at the
surrounding Gaussian points as in (Tong and Lin 2011;
Vasista and Tong 2012) or using other stress or strain
recovery techniques.

As an alternative approach, the element-based average
strain energy densities for the eth element at static and buck-
ling analyses can be calculated by:

Ee
sd ¼

1

2Ve
ues

� �T
ke½ � ues

� �
e ¼ 1; 2; …;Neð Þ ðA3Þ

Ee
λ ¼ 1

2kσ1Ve
Ye

i

� �T
ke½ � Ye

i

� �
e ¼ 1; 2; …;Neð Þ

ðA4Þ

where [ke] is the stiffness matrix of the eth element. The
nodal values of strain energy densities can be found by using
2nd order polynomial interpolation over adjacent three ele-
ments. This alternative approach may be handy as some
commercial FEA software can output data of strain energy
densities at element centres or even at element nodes.
Therefore, the Φ function surface is formed by connecting
its nodal values and it will be further normalized to a range
[−1, 1] to avoid dealing with too small or large numerals in the
present computations.

Appendix B. Interfaces of MISTwith MSC NASTRAN

B.1 Create FEA input file

Data input file ‘eigen.bdf for NASTRAN is created in the 1st
iteration and then modified by using updated element weight
factors in the subsequent iterations. In the created/modified
input file, the following statements should be included in
Sections ‘Global Case Control’ and ‘Bulk Data’:

Global Case Control:
Subcase 1
TITLE=static analysis
ESE(THRESH=1.E-32)=ALL
Subcase 2
TITLE=buckling analysis
ESE(THRESH=1.E-96)=ALL
Bulk Data:
EIGRL,1, 1.E-3,,10, 0,,,MAX
ESE statement used to directly extract elemental strain

energies and their densities at each element centre. Very small
threshold values are set so that the energy densities at all
elements can be output. In the bulk data entry EIGRL, 1.0E-
3 or the reasonable positive value must be entered in the 3rd
column for satisfying the constraint of 0<λmin<λ1 to elimi-
nate the spurious local buckling mode.

B.2 Read strain energy densities from the FEA output file

The following function can be used to read the strain energy
density at element center in static analysis the 1st order mode
from NASTRAN output file ‘eigen.f06’.

fid=fopen(‘eigen.f06’,‘r’);
Block=1;
while (~feof(fid))
InputTextS=textscan(fid,‘%s’,1,‘delim-

iter’,‘\n’);
SS=cell2mat(InputTextS{1,1});
SS1=‘SUBCASE 1 * TOTAL ENERGY OF ALL

ELEMENTS IN SET’;
SS2=‘E I G E N V A L U E A N A L Y S I S S U M M A R Y

(READ ODULE)’;
TFS1=strncmp(SS,SS1,30);
TFS2=strncmp(SS,SS2,30);
if TFS1
InputTextS=textscan(fid,‘%s’,2,‘delim-

iter’,‘\n’);
HeaderLines{Block,1}=InputTextS{1};
NumCols=4;
FormatString=repmat(‘%f’,1,NumCols);
InputTextS=textscan(fid,FormatString,

46);
Data{Block,:}=cell2mat(InputTextS);
[NumRows,NumCols]=size(Data{Block});
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Block=Block+1;
elseif TFS2
break;
end
end
ESES0=cell2mat(Data);
ESES0(:,1:3)=[];
ESES(1:Ne, :)=ESES0(1:Ne);
fclose(fid);
The following function can be used to read the strain

energy density at element center in buckling analysis for the
1st order mode from NASTRAN output file ‘eigen.f06’.

fid=fopen(‘eigen.f06’,‘r’);
Block=1;
while (~feof(fid))
InputText=textscan(fid,‘%s’,1,‘delim-

iter’,‘\n’);
S=cell2mat(InputText{1,1});
S1=‘MODE 1 * TOTAL ENERGY OFALL ELEMENTS IN

SET’;
S2=‘MODE 2 * TOTAL ENERGY OFALL ELEMENTS IN

SET’;
TF1=strncmp(S,S1,30);
TF2=strncmp(S,S2,30);
if TF1
InputText=textscan(fid,‘%s’,2,‘delim-

iter’,‘\n’);
HeaderLines{Block,1}=InputText{1};
NumCols=4;
FormatString=repmat(‘%f’,1,NumCols);
InputText=textscan(fid,FormatString,

45);
Data{Block,:}=cell2mat(InputText);
[NumRows,NumCols]=size(Data{Block});
Block=Block+1;
elseif TF2
break;
end
end
ESEG=cell2mat(Data);
ESEG(:,1:3)=[];
fclose(fid);
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