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Abstract The paper concerns worst-case compliance opti-
mization by finding the structural topology with minimum
compliance for the loading due to the worst possible accel-
eration of the structure and attached non-structural masses.
A main novelty of the paper is that it is shown how this
min-max problem can be formulated as a non-linear semi-
definite programming (SDP) problem involving a small-size
constraint matrix and how this problem is solved numeri-
cally. Our SDP formulation is an extension of an eigenvalue
problem seen previously in the literature; however, multi-
ple eigenvalues naturally arise which makes the eigenvalue
problem non-smooth, whereas the SDP problem presented
in this paper provides a computationally tractable problem.
Optimized designs, where the uncertain loading is due to
acceleration of applied masses and the weight of the struc-
ture itself, are shown in two and three dimensions and we
show that these designs satisfy optimality conditions that are
also presented.
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1 Introduction

Inclusion of acceleration loads due to self-weight are essen-
tial when performing topology optimization for parts to be
used in the aircraft industry. An aircraft is subjected to accel-
erations in all directions; ranging from quite moderate in
a passenger aircraft to more extreme in a fighter due to
advanced maneuvers. We may for example think of appli-
cations such as a wing pylon with an external store, e.g. an
engine on a passenger aircraft or a weapon or external fuel
tank on a fighter aircraft. If we neglect aerodynamic loads,
the loads will be a function of the mass of the external store,
the self-weight of the pylon, and the accelerations that it is
subjected to. Other examples include structural parts inside
the fuselage and attachment brackets for electronic devices.
Common for these type of applications is that the direction
of the loading may vary in space.

1.1 Robust optimization

This paper deals with the problem of how to account for
such loadings, which may act in any direction, in a topol-
ogy optimization problem and particularly the difficulty that
optimized designs tend to be very sensitive to small pertur-
bations of the applied loads. Traditionally, this issue is dealt
with by optimizing under multiple load cases. The selection
of appropriate load cases, however, relies on the intuition
of engineers, and may result in large-scale problems. Most
importantly, this approach cannot guarantee that there does
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not exist a load case causing a structural collapse. Thus, it is
evident that there is a need for more systematic approaches
to obtain optimized structures that are robust with respect to
variations in the load. Development of such methods is the
topic of the field robust optimization (Ben-Tal et al. 2009).

There are essentially two different approaches to robust
optimization found in the literature: (i) the stochastic and (ii)
the deterministic, or worst-case. In the first approach, data,
such as applied loads, is assumed to be random but obey-
ing some known or partially known probability distribution.
The most common type of stochastic methods in structural
optimization is reliability-based design optimization, where
the probability of structural failure is quantified using so-
called reliability indices (Kharmanda et al. 2004) which
determines the formulation of a design optimization prob-
lem and is updated in an iterative process. In another class
of methods the idea is to convert the stochastic problem
into a ”standard” multiple load-case problem, the salient
point being that the loads and their relative importance
are determined by sampling from a continuous probability
distribution, (Christiansen et al. 2001; Dunning and Kim
2013).

The deterministic approach to robust optimization deals
with worst-case scenarios: structures are optimized to with-
stand the worst possible loads or manufacturing errors,
regardless of the probability of this happening. Worst-case
approaches are typically more conservative than stochas-
tic methods, as more restrictions are put on the optimal
designs. Further, deterministic methods are not dependent
on good statistical data and, most importantly, provide non-
probabilistic guarantees, ensuring with certainty that an
optimized structure will function as intended, rather than
simply that the probability of failure is low. This is clearly
desirable in situations where structural failure might cause
considerable economical damage or even loss of life. For
this reason, deterministic methods are most appropriate for
aircraft design.

Ben-Tal and Nemirovski (1997) considered deterministic
robust topology optimization of trusses with loads varying
in an uncertainty set and showed that the correspond-
ing optimization problem could be formulated as a linear
semi-definite program (SDP). This is very nice from a the-
oretical point of view, since linear SDPs are convex and can
be solved with algorithms having proven polynomial-time
complexity. However, SDPs with large matrix inequalities
are nevertheless beyond reach of current solvers; conse-
quently, numerical examples are generally of small size
(Ben-Tal and Nemirovski 1997; Achtziger and Kocvara
2007; Ohsaki et al. 1999).

Other researchers (Brittain et al. 2012; Cherkaev and
Cherkaev 2008; de Gournay et al. 2008; Takezawa et al.
2011) have studied formulations for robust topology opti-
mization involving generalized eigenvalues as objectives

or constraints. This way the complexity of SDPs with
large matrices can be avoided, but the price to pay is
the introduction of non-differentiability in the presence
of multiple eigenvalues. Unfortunately, multiple eigenval-
ues are likely to occur in worst-case compliance prob-
lems, so simply ignoring non-differentiability, as is often
done, is not satisfying. Therefore, de Gournay et al. (2008)
used an SDP approach involving matrices of small size
to calculate descent directions, rather than using gradi-
ents differentiated directly from the generalized eigenvalue
problem.

Another approach is to formulate the robust optimiza-
tion problem as a mathematical program with equilibrium
constraints (MPEC) (Kanno 2011). MPECs are, however,
difficult to solve numerically, and MPEC-formulations of
structural optimization problems will have a large number of
non-linear constraints and/or possibly require the evaluation
of second derivatives.

This paper focuses on deterministic methods and a main
novelty of the paper is that we show how a worst-case
problem can be formulated and solved as an SDP with, in
contrast to Ben-Tal and Nemirovski (1997), a small matrix
inequality constraint so that it can be solved efficiently,
without introducing further approximations.

1.2 Optimization including self-weight

Topology optimization including self-weight was studied
by Bruyneel and Duysinx (2005), who noticed that for
design variables approaching the lower bound, the ratio
between the load and the (SIMP-based) stiffness becomes
infinite, leading to unbounded displacements and thus also
unbounded compliance. This causes the optimization to
converge to a design with intermediate design variable val-
ues. Bruyneel and Duysinx (2005) suggested a modified
SIMP-model, which was linear below a threshold value,
and the same modification was also used in Lee et al.
(2012). Whereas they report that no problems were experi-
enced due to the introduced non-differentiability, we prefer
a differentiable penalization function. Therefore, we sug-
gest a linear scaling, see (5) in Section 2.2, of the mass
matrix when the force vector is created, such that no loads
are applied in voids, allowing the optimization to con-
verge with values equal to the lower bound. To the authors’
knowledge, this is a new contribution to topology opti-
mization of self-weight loaded structures and the result of
this linear scaling is shown numerically in Fig. 1, where
the problem from Bruyneel and Duysinx (2005) and Lee
et al. (2012) is repeated using our (differentiable) scaling
of the mass matrix. As in Lee et al. (2012) the design
space, Fig. 1a, is meshed with 2048 elements (we use 4-
node quadrilaterals in this example) and the final structure
shall occupy 20 % of the design space and support its own
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Fig. 1 Re-calculation of the
arch structure example from
Bruyneel and Duysinx (2005).
a: Mesh and boundary
conditions, b: Black-and-white
optimized design obtained for
standard gravitational load

(a)
x

y

(b)

weight, subjected to gravitational acceleration. The mini-
mum compliance design, here obtained using MMA (Svan-
berg 1987), is shown in Fig. 1b; as can be seen we obtain a
black-and-white design without the ”erratic intermediate
density patterns” reported in Bruyneel and Duysinx (2005)
and Lee et al. (2012).

Following this introduction, Section 2 presents the struc-
tural model, describes the loading and derives the semi-
definite optimization problem. In Section 3 we derive
the optimality conditions and the numerical treatment of
the SDP-problem is discussed in Section 4, where we
also show how the displacements can be obtained and
present a method to obtain black-and-white designs. Gra-
dients are derived in Section 5, examples are shown
in Section 6 and conclusions are finally drawn in
Section 7.

2 Problem statement

2.1 Model

We use the standard framework for structural optimization
of linear elastic finite element discretized structures; i.e.,
there is a state problem of the type

K (x)u = F (x, r) , (1)

where K (x) ∈ S
n (the space of symmetric n × n matrices

with real entries), n being the number of degrees of freedom,
is the stiffness matrix; u ∈ R

n is the nodal displacement
vector; and F (x, r) ∈ R

n is the nodal force vector. Both
K (x) and F (x, r) are taken to depend on a design vari-
able vector x = (x1, . . . , xm)T. For notational simplicity,
we write the theory as if all elements belong to the design
domain; thus, there is one design variable for each finite
element and the structure consists of m such elements. The
nodal force vector also depends on an uncertainty vector r ,
to be described in Section 2.2.

To avoid mesh dependency and checkerboard patterns
(Sigmund and Petersson 1998) we use a filter to define a set
of filtered variables ρ = (ρ1, . . . , ρm)T, which are used to
calculate the stiffness and mass of the structure. The filtered
variables are therefore denoted physical variables. There are
different types of filters (Sigmund 2007) but a linear local

averaging design variable filter, suggested by Bruns and
Tortorelli (2001), can be written

ρi (x) =
m∑

j=1

�ijxj , i = 1, . . . , m. (2)

Here

�ij = ψij vj∑m
k=1ψikvk

, ψij = max

(
0, 1 − ||ei − ej ||

R

)
,

where vj is the volume of element j , ei denotes the position
vector of the geometric center of element i, R is the filter
radius and || · || is the Euclidean norm.

The design variables are restricted to the compact and
convex set

H =
{

x ∈ R
m | ε ≤ xi ≤ 1,

m∑

i=1

dviρi (x) = M

}
,

in which d is the constant density and M is the available
mass. The lower bound ε > 0, is introduced to maintain
positive definiteness of the stiffness matrix (Appendix B
provides a formulation allowing for a singular stiffness
matrix). The stiffness matrix is in a SIMP formulation
(Bendsøe 1989) written as follows:

K (x) =
m∑

i=1

(ρi (x))p K i , (3)

where K i is an expanded element stiffness matrix and p >

1 is a penalty exponent.

2.2 Uncertain loading

Due to the intended application to aircraft design, we
include mass acceleration forces in the force vector
F (x, r). In the aircraft industry, the acceleration is usually
expressed as multiples of the magnitude of the accelera-
tion of gravity g, and the maximum acceleration factors, nx ,
ny (and nz), in the x-, y- (and z)-directions, respectively,
are generally of different magnitude. Thus, for example,
in 2D we may have an elliptical loading region expressed
by different accelerations gnx and gny , as visualized in
Fig. 2.
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Fig. 2 Visualization of admissible accelerations in 2D

The maximum acceleration factors are placed on the
diagonal of a diagonal matrix N ∈ S

s , where s denotes the
number of spatial dimensions. The mass acceleration forces
can then be written as

F (x, r) = B (x)T r =
m

A
i=1

g
[
q (ρi (x)) M i + Mext

i

]
GiNr,

(4)

where A is an assembly operator; M i ∈ S
shi , where hi

is the number of element nodes, is the mass matrix for
element i; Mext

i ∈ S
shi is a matrix representing external,

non-structural, masses; and Gi = (I . . . I )T ∈ R
shi×s ,

where I ∈ S
s is the identity matrix. The linear scaling

q (ρi (x)) = ρi (x) − ε

1 − ε
, (5)

of the mass matrix is, as discussed in the introduction,
intended to bound the ratio between stiffness and force;
without introducing non-differentiable functions, such as
that in Bruyneel and Duysinx (2005). By subtracting the
lower bound ε in the nominator, we make sure that there
are no applied loads, due to self-weight, in voids, and q(ρi)

becomes 1 when ρi = 1.
Finally, uncertainty is accounted for by letting r vary in

the unit ball T = {r ∈ R
s | ||r|| ≤ 1}. This implies that the

(nodal) loads vary synchronously, which is the case under
acceleration loads.

The extension to multiple load cases, with one r for each
load case, is straightforward and an extension to handle
both fixed and uncertain loads simultaneously is possible,
Thore et al. (2015) (de Gournay et al. (2008) also treats
this type of loading). Further, the methods in this paper also
apply to variations of external nodal loads if B, instead of
being formulated as in (4), is a constant matrix with the
maximum nodal loads in the x-, y- and z-directions.

2.3 Calculation of the worst-case compliance

The compliance can be written

C(x, r) = 1

2
F (x, r)Tu,

where F (x, r) = B(x)Tr and, from (1), u (x, r) =
K (x)−1 F (x, r), assuming K (x) is non-singular (see
Appendix B for a derivation where K (x) may be singular).
The worst-case compliance is then

P (x) = max
r∈T

C(x, r) = max
r∈T

1

2
F (x, r)Tu(x, r)

= max
r∈T

1

2
rTH (x)r,

where the notation

H (x) = B(x)K(x)−1B(x)T (6)

was used in the last equality. Since H (x) ∈ S
s is posi-

tive semi-definite, the last problem is one of maximizing
an upper semi-continuous, convex function over a con-
vex, compact set. This implies that the maximum value is
taken at extreme points of the feasible set T (Rockafeller
1972, Corollary 32.3.1). Since the extreme points of T are
{r ∈ R

s | ||r|| = 1} (Hiriart-Urruty and Lemarchal 1993, p.
110) we have

P (x) = max
||r||=1

1

2
rTH (x)r. (7)

Using the Rayleigh-Ritz theorem (Horn and Johnson
1985, Theorem 4.2.2) we see that the optimal value equals
the maximum eigenvalue of 1

2H (x). Thus, (7) may be
written

P (x) = 1

2
λ1 (H (x)) , (8)

where λ1 (H (x)) is the largest eigenvalue of H (x).

2.4 Optimization problem

We are now interested in the problem

min
x∈H

P (x) . (9)

A main drawback or this formulation is that if λ1(H (x))

is a multiple eigenvalue, only directional derivatives exist,
resulting in a non-smooth problem. Directional derivatives
may be obtained following Seyranian et al. (1994), Peder-
sen and Nielsen (2003) or Overton (1992, Theorem 4). In
Pedersen and Nielsen (2003), the directional derivative is
used in place of partial derivatives and in Overton (1992)
and Seyranian et al. (1994) specialized algorithms are used.
A further elevation of this difficulty is that for many prob-
lems the optima is likely to occur at a point of multiple
eigenvalues. The analysis of Pataki (1998) indicates that
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given a sufficiently large feasible set H this is the case. This
is also shown numerically in Fig. 6.

In order to find a computationally tractable problem
that is equivalent to (9), we use a reformulation. First, the
min-max problem (9) is rephrased in a so-called bound
formulation. Recalling (8), this leads to the optimization
problem

min
z∈R, x∈H

z

subject to λ1 (H (x)) ≤ z.

Then, it can be shown, Appendix A, that this problem is
equivalent to the following semi-definite program:

min
z∈R, x∈H

z

subject to zI − H (x) � 0,
(10)

where “� 0” means positive semi-definite. This problem
has a small matrix inequality constraint of size s × s, and is
the non-linear SDP-problem that we treat numerically.

3 Optimality conditions

Let y = (x, z) and introduce the Lagrangian

L(y; μ, γ , Z) = z + μ(cTx − M)

+
m∑

i=1

(γi(xi − 1) + γi+m(ε − xi))

+tr ([H (x) − zI ]Z) ,

where Z ∈ S
s , μ and γ are multipliers, tr(A) denotes the

trace of A and c defines the left hand side of the mass con-
straint in H. The first-order necessary optimality conditions
for (10) are then obtained from Bonnans and Shapiro (2000,
Theorem 3.9), and reads: If y is an optimal solution to (10),
then there exists μ, γ , Z such that

∇L(y; μ, γ , Z) = 0, (11a)

tr([H (x) − zI ]Z) = 0, (11b)

γi(xi − 1) = 0, i = 1, . . . , m, (11c)

γi+m(ε − xi) = 0, i = 1, . . . , m, (11d)

γi ≥ 0, i = 1, . . . , 2m, (11e)

Z � 0. (11f)

The necessity of the optimality conditions hinges on
some constraint qualification being satisfied; here we
use the Robinson’s constraint qualification (Bonnans and
Shapiro 2000, p. 67). We now introduce the notations ∇h(y)

and ∇gi(y) for derivatives with respect to y of, respectively,
the mass constraint and the i:th box constraint in H. Then,
utilizing Corollary 2.101 in Bonnans and Shapiro (2000) we

find that Robinson’s constraint qualification holds for (10)
if and only if there exists w ∈ Rm+1 such that

∇h(x)Tw = 0
m+1∑

k=1

wk

∂[zI − H (x)]
∂yk

≺ 0 if zI − H (x) = 0 (12)

∇gi(x)Tw < 0, ∀i ∈ I (x),

where “≺ 0” means negative definite, I (x) ⊂ {1, . . . , 2m}
denotes the index set of active inequalities at x and the con-
dition zI − H (x) = 0 means that the matrix inequality
constraint is active.

In order to verify that a solution y satisfies the first-order
optimality conditions, we need to find a w that satisfies (12),
and if such a w exist we proceed to find a Z that satis-
fies (11a), (11b) and (11f). We may for example solve for
Z in the overdetermined linear system obtained from (11a)
and (11b). Finally, we check that (11c) – (11f) are satisfied
within some numerical tolerance.

4 Numerical treatment

4.1 Implementation

The algorithms presented in this paper are implemented and
solved in a Matlab based FE- and optimization program.
The models are first pre-processed in a commercial pro-
gram (Altair Engineering 2014) where geometry, mesh and
boundary conditions etc. are defined and written to an indata
file. The Matlab program then reads the indata file and
solves the FE- and optimization problem and post-processes
the result.

The semi-definite programming problem is treated using
the open-source code fminsdp (Thore 2013) which reformu-
lates (10) into a non-linear optimization problem (NLP) that
is solved using the interior-point-solver IPOPT (Wächter
and Biegler 2006).

4.2 Evaluating the matrix constraint

To avoid explicitly forming K (x)−1, the matrix constraint
function in (10) is evaluated by solving

K (x) R = B (x)T , (13)

where R = R (x) ∈ R
n×s is solved for at the same cost

as solving (1) for s load cases. Given R (x) then, H (x) =
B (x) R (x).
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4.3 Methods to solve the semi-definite program

The matrix inequality constraint in (10) is of small size (s ×
s) but non-linear in x. Therefore, specialized methods must
be used. Examples include the following:

– The Cholesky factorization method, see Ertel et al.
(2008) and Thore (2013). (A “nested” Cholesky method
is suggested in Burer et al. (2002))

– The LDL-factorzation method due to Fletcher (1985);
see also Bogani et al. (2009), Vanderbei and Benson
(2000), and Benson and Vanderbei (2003).

– PENNON or PENLAB, see Kočvara and Stingl (2003).
– The ”feasible direction method” suggested by

Aroztegui et al. (2014).

The Cholesky method has the advantage that it immedi-
ately leads to a standard, smooth, NLP formulation. The
same is almost true for the LDL-factorzation method, but
extra care is required to make sure that certain nonlin-
ear inequalities are not violated in the solution process,
making it more difficult to use with standard NLP-solvers.
PENNON (and its open-source version PENLAB), which
implements an augmented Lagrangian-type method, has the
drawback that it requires computation of the Hessian of
the Lagrangian, something which is prohibitively costly
for large-scale nested problems. The benchmarks used to
demonstrate the feasible direction method in Aroztegui et al.
(2014) are too small to be able to tell whether the algo-
rithm will be efficient in practice, but the implementation
described used a dense quasi-Newton approximation for the
Hessian, and this is not feasible for large-scale problems.

In fminsdp the Cholesky factorization method is used
to handle the matrix inequality constraint. The Cholesky
factorization method is based on the fact that a symmet-
ric matrix A � 0 if and only if A = LLT, where L is a
Cholesky factor of A; see Thore (2013) for further details.
Therefore, to obtain solutions to (10) we solve the following
“standard” NLP:

min
z∈R, x∈H,L∈Ls+

z

subject to zI − H (x) = LLT,

(14)

where Ls+ denotes the set of lower triangular matrices with
non-negative diagonal entries and, at a feasible point, L is a
Cholesky factor of zI − H (x).

4.4 Calculating the displacements

The nodal displacements are not obtained explicitly when
solving problem (10), but are often required or convenient to
have for plotting or calculating compliance etc. Obviously,
since the load (4) depends on r ∈ T , there is no unique
displacement associated to an optimal design x. However, it

may be of interest to calculate the displacement u ∈ R
n that

is associated to the worst-case compliance. To that end we
note that (7) shows that the r ∈ T that achieves the worst-
case compliance is the unit length eigenvector of H (x) that
is associated with the maximum eigenvalue, if it is unique.
Once this r ∈ T is established the corresponding u can be
calculated by combining (1) and (4) into

K (x) u = B (x)T r ⇔ u = R (x) r,

where the last expression follows from (13).
If the maximum eigenvalue of H (x) is not unique we

may use any linear combination of the eigenvectors corre-
sponding to the multiple eigenvalues and obtain one (of sev-
eral possible) r , and corresponding u, giving the worst-case
compliance.

4.5 Obtaining a black-and-white design

A drawback of using the design variable filter (2) is that
a transition layer of elements with intermediate design
variable values remain between elements representing the
structure (black) and those representing holes (white). One
way, suggested in the literature, to avoid this problem is to
use a Heaviside projection filter (Guest et al. 2004) where a
curvature parameter is increased successively until a black-
and-white solution is obtained. The Heaviside filter has been
proven to work well for the traditional minimum compli-
ance problem, but we have experienced difficulties on other
problem formulations where the discontinuity due to the
parameter update has caused convergence problems. There-
fore, we use instead a strategy where the problem is solved
in two steps: first, the optimization problem is solved until
convergence using the design variable filter (2); then all
design variables that are at the upper or lower bound (or
actually within the distance ε from these bounds) are fixed
and only the design variables with intermediate values are
allowed to vary in a second optimization, where no filter
is used. The set of design variables which are allowed to
change is thus smaller in the second step and the design is
sufficiently constrained so that no new structural compo-
nents will be created and no structural components will be
removed.

The design obtained after solving (10) in the first step
is denoted ρopt, and the design variables in the second
optimization step are denoted x̂ ∈ Ĥ, where

Ĥ =
{
x̂ ∈ R

m | ε ≤ x̂i ≤ 1 if 2ε < ρ
opt
i < 1 − ε,

else x̂i = ρ
opt
i ,

m∑

i=1

dviρ̂i (x) = M

}
.

The initial design in the second optimization step is x̂ =
ρopt, and since no filter is used ρ̂ = x̂.
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Obvious drawbacks of the proposed two-step strategy are
that additional iterations are required and that it is not pos-
sible to use filters that are much larger than the average
element size; if the transition layer consists of several ele-
ments we may obtain checkerboard patterns in the second
step.

Interior-point methods such as IPOPT are known to be
difficult to warm-start, i.e. to re-start from a given solution,
which is the case in the second optimization step. How-
ever, by keeping the Lagrangian multipliers associated with
the constraints and using these as starting values in the
next optimization step together with a small initial value
for the barrier parameter (see the documentation included
in the IPOPT installation package (IPOPT 2014) for fur-
ther details) we have not experienced any difficulties with
convergence.

5 Gradient calculation

The solver IPOPT uses gradient data in order to iteratively
change the design variables towards an optimum design.
As we use fminsdp to solve (10), we do not need to treat
the auxiliary variables related to the Cholesky factors that
fminsdp uses to solve (14), but it is sufficient to provide
gradients to the left hand side of the constraint in (10). The
gradient with respect to z is straightforward and the gradient
with respect to design variable xi reads

∂H (x)

∂xi

=
m∑

j=1

∂H (x)

∂ρj

∂ρj (x)

∂xi

(15)

=
m∑

j=1

∂H (x)

∂ρj

�ji,

where �ji was defined in (2). The derivative with respect to
the physical variable ρj is calculated as

∂H (x)

∂ρj

= ∂B (x)

∂ρj

R (x) + B (x)
∂R (x)

∂ρj

, (16)

where ∂R (x) /∂ρj is obtained from (13) as

∂R (x)

∂ρj

= K−1 (x)

(
∂BT (x)

∂ρj

− ∂K (x)

∂ρj

R (x)

)
. (17)

Thus, using (16) and (17), (15) can now be written

∂H (x)

∂xi

=
m∑

j=1

(
∂B (x)

∂ρj

R (x) + RT (x)
∂BT (x)

∂ρj

−RT (x)
∂K (x)

∂ρj

R (x)

)
�ji,

where, recalling (4),

∂BT (x)

∂ρj

=
m

A
i=1

g
1

1 − ε
M iGiN ,

and ∂K (x) /∂ρj = pρ
p−1
j Kj follows from (3).

6 Examples

6.1 Parameter settings and material

In this section we show four examples, all solved using the
SDP-problem (10), and each showing different challenges.
All designs shown satisfy the constraint qualification (12)
and the optimality conditions (11), where we check numer-
ically that the infinity norm of the equality conditions is
below 10−8.

The same parameter settings are used in all examples:
the SIMP-penalization exponent is p = 3, the lower bound
of the design variables, representing void, is chosen as
ε = 0.001 and the initial design is a uniform distribution
satisfying the mass constraint, unless otherwise is speci-
fied in the text. The thickness of the 2D domains is 1 mm
and the design material is an aluminum with Young’s mod-
ulus 71000 MPa, Poisson’s ratio 0.33 and density 2.8 ×
10−9 tonne/mm3. The figures displaying optimized designs
show the design variables in the final design, where black
is material and white represents void. Recalling Section 4.5,
no filter is used in the final iteration, and thus x = ρ.
The maximum acceleration factors nx , ny and nz enter-
ing N in (4) are in this section presented as the vector
a = {nx, ny, nz}.

Fig. 3 Self weight arch. a:
Mesh and boundary conditions,
b: Optimized design for the
maximum acceleration vector
a = {1, 1, 0}

(a)

x

y

(b)
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Fig. 4 L-shaped beam. a:
Mesh, boundary conditions and
point mass, b: Robust optimized
design for the maximum
acceleration vector
a = {10, 5, 0}, c: Non-robust
design obtained for two load
cases with maximum
acceleration vectors
a = {0, 5, 0} and a = {10, 0, 0}

(a)
x

y

(b) (c)

6.2 Example 1 - Self weight arch

As a first example we look at the self weight arch, pre-
viously used in self-weight loaded problems by Bruyneel
and Duysinx (2005) and Lee et al. (2012). The same
example was also used in the introduction, Fig. 1, where
we optimized for a standard gravitational acceleration,
a = {0, −1, 0}.

The design domain in Fig. 3a, now discretized with
eight-node quadrilateral elements, is supported at the lower
corners and has no other loading than its own weight. The
dimensions are 2000 × 1000 mm and the available mass is
chosen to be 33 % of the mass of the entire design domain.
The physical relevance of this problem may be questioned
– a structure which is not supposed to carry any external
load appears to be of no use – but it serves as an interesting
academic example.

We now seek a design where the compliance is mini-
mized for the worst possible acceleration, and which has
lower or equal compliance for all other possible directions.
Thus, we allow the acceleration to act with the same magni-
tude in any direction in the xy-plane, so a = {1, 1, 0}, and
we obtain the design shown in Fig. 3b. Compared to the sin-
gle load case design in Fig. 1b, the worst-case compliance
design has a higher compliance for that specific load case,
but it is much stiffer for an acceleration in, for example, the
x-direction.

6.3 Example 2 - L-shaped beam

The second example is an L-shaped beam, meshed with
6400 eight-node quadrilateral elements as shown in Fig. 4a,
where also boundary conditions and a point mass, illus-
trated as a black circle, are shown. The point mass has the
same mass as the final structure, which is constrained to
33 % of the mass of the entire design domain, which has
outer dimensions 200 × 200 mm. In this example we use
an elliptical loading region with a higher acceleration in the
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Fig. 5 Convergence history of the eigenvalues of H for the design in
Fig. 4b, the eigenvalues are multiple from iteration 20
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Fig. 6 Compliance as a function
of θ in (18) for the optimized
designs in Fig. 4b and c
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x-direction, a = {10, 5, 0}. The optimized design, Fig. 4b,
does not use the entire height of the design domain as this
is not beneficial for acceleration in the x-direction. Further,

we find that, because self-weight is considered, much mate-
rial is placed close to the fixed boundary, and obviously, the
structure connects the external mass to the fixed boundary.

Fig. 7 Circular domain. a:
Mesh, boundary conditions and
point mass, b: Optimized design
for a point mass with the same
mass as the structure, c:
Optimized design for a point
mass much heavier than the
structure, d: Same problem as
(b) but with another starting
point, e: Same problem as (c)
but with another starting point

(a)
x

y

(b) (c)

(d) (e)
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(a) (b)

(c) (d)

Fig. 8 Hemisphere. a: Mesh, boundary conditions and point mass, b, c, d: Optimized design, isometric view, top view and side view

In order to compare the robust design with a con-
ventional, non-robust, design we also solve a minimum
weighted compliance problem, with the same mass con-
straint as for the robust design. The most probable choice of
load cases from an engineering point-of-view would be to
use two load cases, a = {0, 5, 0} and a = {10, 0, 0}, which
is what we have used to obtain the design in Fig. 4c. The
compliance for the robust and the non-robust multiple load
case designs is compared in Section 6.3.1.

To highlight the fact that multiple eigenvalues are
present, not only at the solution but also in most iteration
steps towards the solution, we have calculated1 the two

1Note that the eigenvalues are not calculated explicitly in our for-
mulation, it is done here as an additional step in order to create the
plot.

eigenvalues of H and created the plot in Fig. 5. The eigen-
values are distinct in the first iterations, but from iteration
20 and onwards we have multiple eigenvalues.

6.3.1 Compliance for other accelerations

In order to see what the compliance for different accel-
eration loads is, we calculate and plot the compliance of
the final designs due to the force in (4), with the vector r

varying as

r = (cos θ, sin θ)T, (18)

for angles θ ∈ [0, 2π ], where θ = 0 gives a vector par-
allel to the x-axis. The result is seen in Fig. 6. What is
interesting to note is that the optimized robust design has
approximately the same compliance for all possible loads
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defined by (4). The difference between the maximum and
the minimum compliance is on the order of 10−8 %. This
suggests that, unless there are geometric restrictions, the
robust optimization will result in designs which have the
same compliance in all directions. This strengthens the argu-
ments in Section 2.4 and motivates the use of SDP compared
to solving the eigenvalue problem (9) directly.

For the non-robust, multiple load case design in Fig. 4c
we find that the maximum compliance is not attained for
any of the two angles (θ = 0 and θ = π/2) correspond-
ing to the applied loads, implying that this is not a robust
design.

6.4 Example 3 - Circular domain

A circular design domain with radius 10 mm is discretized
with a rotationally symmetric mesh consisting of second
order triangular and quadrilateral elements. The circle is
fixed at the outer boundary and has a point mass in the
center as shown in Fig. 7a. The filter radius is chosen as
R = 1 mm and the allowable mass is 40 % of the mass of the
entire design domain. Two different sizes of the point mass
are used: Fig. 7b shows the optimized design when the point
mass has the same mass as the final structure and Fig. 7c
shows the optimized design when the point mass is 1000
times heavier than the structure. When the non-structural
mass is much heavier than the structure, the design has
a quite even thickness of the four structural members in
order to minimize the displacement of the non-structural
mass, whereas we find that more material is placed close to
the fixed boundary when the structural- and non-structural
masses are equal.

Because of the rotational symmetry, there exist several
designs, differing only by a rotation, with the same perfor-
mance. Thus, there exists several local optima, and if we
start from the uniform design design xi = 0.35, instead of
xi = 0.40, we obtain the same, but rotated, designs seen in
Fig. 7d and e.

6.5 Example 4 - Hemisphere

In this example we have modelled a hemisphere with radius
200 mm and filled it with a linear tetrahedral mesh, result-
ing in 327493 elements. All nodes on the flat surface are
fixed in all directions and a point mass is applied as shown
in Fig. 8a. The point mass is 10 times heavier than the final
structure which is constrained to 5 % of the mass of the
entire design domain. The maximum possible acceleration
is the same in all directions, hence a = {1, 1, 1}. The opti-
mized design, Figs. 8b, c and d, is a tripod structure; i.e., a
structure with three equally sized legs with 120 degree angle
between them.

7 Conclusions

The proposed SDP-formulation provides a computationally
tractable form of worst-case compliance topology optimiza-
tion problems, previously solved with eigenvalue formu-
lations which are non-smooth when multiple eigenvalues
occur. The formulation of the SDP-problem, with a small
matrix inequality constraint, makes the problem computa-
tionally efficient and, even though an infinite number of
load cases are taken into account, the computational cost
is similar to that of solving a standard compliance min-
imization problem with the same number of load cases
as there are spatial dimensions. The presented scaling of
the mass matrix (Section 2.2) allows us to optimize self-
weight loaded structures with a SIMP-formulation without
introducing non-differentiable functions. The method for
obtaining a black-and-white design (Section 4.5), while still
avoiding mesh dependency by limiting the smallest size of
structural members, has proven to work very well for the
presented examples, in which the final designs are almost
completely black-and-white. Finally, necessary first-order
optimality conditions are derived and checked numerically,
providing confidence in that we have found locally optimal
designs.

Acknowledgments This research was supported in part by NFFP
Grant No. 2013-01221, which is funded by the Swedish Armed Forces,
the Swedish Defence Materiel Administration and the Swedish Gov-
ernmental Agency for Innovation Systems, and in part by the Swedish
Foundation for Strategic Research, Grant No. AM13-0029.

Appendix A: Equivalence between bounded
eigenvalue and SDP

Proposition 1 Let H ∈ S
s and λ1(H ) = max

i=1,...,s
λi(H ).

Then

λ1(H ) ≤ z, ⇔ H − zI � 0.

Proof “H − zI � 0” means that

yT(H − zI )y ≤ 0 ∀y ∈ R
s ⇔

(αv)T(H − zI )(αv) ≤ 0 ∀(α, v) ∈ R
s+1 : ||v|| = 1 ⇔

α2vT(H − zI )v ≤ 0 ∀(α, v) ∈ R
s+1 : ||v|| = 1 ⇔

vT(H − zI )v ≤ 0 ∀v ∈ R
s : ||v|| = 1 ⇔

vTHv ≤ z ∀v ∈ R
s : ||v|| = 1 ⇔

λ1(H ) = max
||v||=1

vTHv ≤ z,

where the equality to the left in the last line follows from the
Rayleigh-Ritz theorem (Horn and Johnson 1985, Theorem
4.2.2).
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Appendix B: Worst-case compliance
and optimization problem for a singular
stiffness matrix

For a singular stiffness matrix K (x) the compliance is still
a well-defined function and can be expressed as

C(x, r) = − inf
v∈Rn

�(v, x, r),

where

�(v, x, r) = 1

2
vTK (x) v − rTB (x) v,

is the total potential energy for a general nodal displacement
v. (See Klarbring (2015) for a recent general discussion of
compliance minimization.)

The worst-case compliance is defined as

P (x) = sup
r∈T

C(x, r). (19)

By straightforward manipulations we get2

P (x) = − inf
r∈T

(
inf

v∈Rn
�(v, x, r)

)

= − inf
v∈Rn

(
inf
r∈T

�(v, x, r)

)

= − inf
v∈Rn

(
1

2
vTK (x) v + inf

r∈T

(−rTB (x) v
))

= − inf
v∈Rn

(
1

2
vTK (x) v − sup

r∈T

rTB (x) v

)
.

The inner maximization problem is solved by noting that

rTB (x) v ≤ |rTB (x) v| ≤ ||r|| ||B (x) v|| ≤ ||B (x) v||,
using the Cauchy-Schwarz inequality and the fact that
||r|| ≤ 1 for r ∈ T . Equality holds for r =
B (x) v/||B (x) v||, so we have

sup
r∈T

rTB (x) v = sup
||r||=1

rTB (x) v = ||B (x) v||, (20)

where the first equality follows from Rockafeller (1972,
Corollary 32.3.1). Substitution in (19) yields

P (x) = − inf
v∈Rn

(
1

2
vTK (x) v − ||B (x) v||

)

= sup
v∈Rn

(
||B (x) v|| − 1

2
vTK (x) v

)
. (21)

We are now interested in essentially the equivalent prob-
lem to (9), i.e.,

min
x∈H

P (x) ,

but now without requiring a non-singular stiffness matrix.
As for (9) we rephrase it into a bound formulation, which,

2Here we use infx
[

infu f (x, u)
] = infu

[
infx f (x, u)

]
and

supx f (x) = − infx [−f (x)], for x and u varying over arbitrary sets.

using (21), leads to the following optimization problem:

min
z∈R, x∈H

z

subject to ||B (x) v|| − 1
2vTK (x) v ≤ 1

2z, ∀v ∈ R
n.

(22)

This is a semi-infinite problem since it has a finite number
of variables, but an infinite number of constraints. However,
it can be shown by the following theorem that this problem
is equivalent to a semi-definite program.

Theorem
(

zI B

BT K

)
� 0 ⇔ −1

2
vTKv + ||Bv|| ≤ 1

2
z, ∀v ∈ R

n.

Proof The proof resembles that of Lemma 2.2 in Ben-Tal
and Nemirovski (1997).

Since the matrix is positive semi-definite,

(−τ u)

(
zI B

BT K

)( −τ

u

)
≥ 0 ∀ (τ , u) ∈ R

s+n ⇔
zτTτ + uTKu − 2uTBTτ ≥ 0 ∀ (τ , u) ∈ R

s+n ⇔
zλ2 + uTKu − 2uTBTτ ≥ 0 ∀(τ , u, λ)

∈ R
s+n+1 : ||τ ||2 = λ2.

Now let u = λy and τ = λκ . Then the last inequality is
equivalent to

zλ2 + λ2yTKy − 2λ2yTBTκ ≥ 0 ∀ (κ, y, λ)

∈ R
s+n+1 : ||κ ||2 = 1 ⇔

z + yTKy − 2yTBTκ ≥ 0 ∀ (κ, y)

∈ R
n+s : ||κ ||2 = 1.

The latter holds in particular for κ = arg max||κ||=1y
TBTκ ,

for which yTBTκ = ||By||, see (20). The last inequality is
thus equivalent to

z + yTKy − 2||By|| ≥ 0 ∀y ∈ R
n ⇔

−yTKy + 2||By|| ≤ z ∀y ∈ R
n ⇔

−1

2
yTKy + ||By|| ≤ 1

2
z ∀y ∈ R

n.

Using this theorem, the semi-infinite optimization prob-
lem (22) can be formulated as the semi-definite program

min
z∈R, x∈H

z

subject to

(
zI B (x)

B (x)T K (x)

)
� 0.

(23)
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This problem is convex if B and K are linear in x and does
not require K to be non-singular. Unfortunately, currently
available solvers for semi-definite programs are not suit-
able for matrix inequalities with large matrices (see however
Bogani et al. (2009) and Stingl et al. (2009)).

For the special case of a non-singular stiffness matrix, we
note two interesting results obtained from (23):

1. We may use the Schur-complement theorem (Boyd and
Vandenberghe (2004, p. 560-561), Horn and Johnson
(1985, Theorem 7.7.6)) and (6) to rewrite (23) into (10)
derived in Section 2.4.

2. We may also obtain the generalized eigenvalue formu-
lation proposed by Brittain et al. (2012). To start with,
it is straightforward to show that
(

zI B

BT K

)
� 0 ⇔

(
K BT

B zI

)
� 0.

Then assuming z > 0 and applying the Schur-
complement theorem to the right side of the equivalence
one finds that this inequality is equivalent, in turn, to

K − z−1BTB � 0 ⇔
xT

(
K − z−1BTB

)
x ≥ 0 ∀x ∈ R

n ⇔

z ≥ xTBTBx

xTKx
∀x ∈ R

n ⇔

z = max
||x||=1

xTBTBx

xTKx
= μ1(K, BTB),

where μ1(·, ·) is the largest generalized eigenvalue
of a given matrix pencil. The last step in the above
chain of equivalences follows from Theorem 2.4 in
Hestnes(1975, Chapter 2). Problem (23) can now be
replaced by

min
x∈H

μ1(K(x),B(x)TB(x)),

which is similar to the generalized eigenvalue formula-
tion found in Brittain et al. (2012).
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