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Abstract Resonance and wave-propagation problems are
known to be highly sensitive towards parameter variations.
This paper discusses topology optimization formulations
for creating designs that perform robustly under spatial
variations for acoustic cavity problems. For several struc-
tural problems, robust topology optimization methods have
already proven their worth. However, it is shown that direct
application of such methods is not suitable for the acoustic
problem under consideration. A new double filter approach
is suggested which makes robust optimization for spatial
variations possible. Its effect and limitations are discussed.
In addition, a known explicit penalization approach is con-
sidered for comparison. For near-uniform spatial variations
it is shown that highly robust designs can be obtained using
the double filter approach. It is finally demonstrated that
taking non-uniform variations into account further improves
the robustness of the designs.
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1 Introduction

It is widely known that solutions to interior acoustic prob-
lems in the medium to high frequency range are highly
sensitive to parameter variations (Jacobsen and Juhl 2013).
For high frequencies the problems are so sensitive that only
statistical methods are viable, e.g. statistical energy analysis
(Lyon and DeJONG 1998). In this paper we are interested
in deterministic solutions for the pressure field and thus
restrict ourselves to the low/medium frequency range. We
consider a 2D interior acoustics problem with reflecting
boundaries for single frequencies. We seek to minimize the
sound pressure in part of the domain utilizing interference
phenomena by placing material in the domain using topol-
ogy optimization (Bendsøe and Sigmund 2003). We base
our approach on the work by Dühring et al. (2008) where
the topology optimization formulation for interior acoustic
problems was presented. It was shown to be possible to sig-
nificantly reduce the sound pressure in a designated part of
the domain by placing material elsewhere. We demonstrate
that the pressure field is very sensitive to variations in the
geometry of the optimized design even at medium frequen-
cies. This is problematic from an application point of view
since it is likely impossible to manufacture or install the
designs exactly to specifications, leaving the designs useless
in real world applications.

We present a topology optimization based approach for
creating designs that maintain high performance under
substantial near-uniform and small non-uniform geomet-
ric variations. For problems in structural mechanics, heat
conduction (Wang et al. 2011b), and optics (Wang et al.
2011a; Elesin et al. 2012), it has been shown that using a
robust optimization approach leads to a significant improve-
ment in the robustness of the design’s performance under
spatial variations. We base our approach on the work by
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Wang et al. (2011b). Here the design is optimized for a
nominal, an eroded and a dilated realization simultane-
ously using a min/max formulation. The realizations are
obtained using continuous projection of smoothed design
variables. We demonstrate that applying the robust scheme
directly is insufficient for the present acoustic problem due
to unpredictable variations in the eroded and dilated designs,
making it impossible to perform meaningful robust opti-
mization. To alleviate the problem we present a double filter
which restricts design features to vary along their edges as
the projection level changes. This allows for optimization
of designs towards geometric variations. Promising results
for designs optimized under both near-uniform and non-
uniform geometric variations are presented. A related dou-
ble filter approach developed independently of the approach
presented in this paper is used in a structural mechanics
topology optimization formulation for creating coated struc-
tures (Clausen et al. 2015). Other papers have treated and
demonstrated the usefulness of topology optimization for
problems in acoustics e.g. Wadbro and Berggren (2006),
Lee and Kim (2009), Kook et al. (2012), and Wadbro
(2014) and for acoustic structure interaction, e.g. Yoon et al.
(2007) and Du and Olhoff (2007). The question of geomet-
ric robustness of the designs have, to our knowledge, not
been investigated elsewhere. As a final note it is stressed that
the optimization problems considered here are highly non-
convex. Hence small changes in problem or optimization
parameters may lead the optimization procedure to converge
to different robust designs.

2 Model problem

We seek to minimize the square of the average sound pres-
sure amplitude, |p̂|2, in the sub-domain �OP of the model
domain � ⊂ R

2. A small source domain P is used to excite
acoustic waves. The reduction in |p̂|2 is achieved by intro-
ducing solid material in a region �d replacing the acoustic
medium. �OP, �d and P are sub-domains of � and are
assumed to be non-intersecting. The boundary of�, denoted
δ�, is taken to be perfectly reflecting. Figure 1 shows the
domain configuration used, unless otherwise noted.

3 Physics model

Time-harmonic acoustic wave-propagation in an adiabatic
medium is governed by the Helmholtz equation,

∇ · (ρ(x)−1∇p̂(x)) + ω2κ(x)−1p̂(x) = 0, x ∈ �. (1)

Here ∇ denotes the spatial derivative, p̂ is the com-
plex sound pressure and ρ and κ are the density and bulk

Fig. 1 Illustration of the domain configuration, � = [0, 18] ×
[0, 9], �OP = [15, 17] × [1, 3] is the optimization domain, �d =
[0, 18] × [8, 9] is the design domain and P = [1.9, 2.1] × [1.9, 2.1]
denotes the region where an acoustic wave is exited

modulus of the medium, respectively. ω = 2πf is the angu-
lar frequency where f is denoted the excitation frequency.
The spatial dependence in (1) is suppressed in the follow-
ing for brevity. The perfectly reflecting boundaries and the
source are imposed using,

n · (ρ−1∇p̂) = 0, ∀ x ∈ δ�, (2)

n · (ρ−1∇p̂) = −iωU, ∀ x ∈ δP. (3)

Here n is the outward pointing normal vector to the
boundary in question and U is the vibrational velocity.

The material parameters of solid and air are chosen to
have a very large contrast between them. This justifies disre-
garding the structural problem of the solid material as it will
simply act as hard wall boundary conditions for the acoustic
waves. The material parameters have been chosen to match
those for atmospheric air and aluminum given by,

air: ρ1 = 1.204 kg m−3, κ1 = 141.921 · 103 N m−2. (4)

Al: ρ2 = 2643.0 kg m−3, κ2 = 6.87 · 1010 N m−2. (5)

We perform a rescaling of the parameters in the model,

(ρ̂, κ̂) =
{

(1, 1) air(
ρ2
ρ1

,
κ2
κ1

)
solid

, ω̂ = ω

c
, c =

√
κ1

ρ1
, (6)

where c is the speed of sound in the gas (acoustic medium).
By applying the rescaling (1), (2) and (3) becomes,

∇ · (ρ̂−1∇p̂) + ω̂2κ̂−1p̂ = 0, x ∈ �, (7)

n · (ρ̂−1∇p̂) = 0, ∀ x ∈ δ�, (8)

n · (ρ̂−1∇p̂) = −iω̂U
√

κ1ρ1, ∀ x ∈ δP. (9)

All results are reported using the sound pressure level,
abbreviated SPL, for a given, p̂, which is calculated as,

Lp̂ = 10 log10

( |p̂|2
pref

2

)
, pref,air = 20 μPa. (10)

pref is the material dependent reference pressure for air,
(Jacobsen and Juhl 2013).
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4 The optimization problem

Minimizing the average of |p̂|2 over �OP, is equivalent to
minimizing the average ofLp̂ over�OP, henceforth denoted
〈Lp̂〉�OP . The discrete problem of placing material in �d is
replaced by a continuous problem, see Dühring et al. (2008).
A design variable field, 0 ≤ ξ(x) ≤ 1, ∀ x ∈ �d, ξ(x) =
0 ∀ x ∈ �\�d, is introduced and a linear interpolation of the
inverse density and bulk modulus is used. This interpolation
is given by,

ρ̂(ξ)−1 = 1 + ξ

((
ρ2

ρ1

)−1

− 1

)
, (11)

κ̂(ξ)−1 = 1 + ξ

((
κ2

κ1

)−1

− 1

)
. (12)

The optimization problem may be stated as,

min
ξ

. : 	 = 1

AOP

∫
|p̂(ξ)|2d�OP, AOP =

∫
d�OP,

s.t. : 0 ≤ ξ(x) ≤ 1 ∀ x ∈ �d, (13)

Here	 denotes the objective. p̂(ξ) is obtained by solving
(7)-(9) for a given design variable field, ξ(x). Solving (13)
using the approach outlined in Sections 4–6 is in the rest of
the paper denoted as the standard approach.

5 The discrete problem

The domain �, governing PDE (7) and corresponding
boundary conditions (8)–(9) are discretized using the finite
element method (FEM). For the discretization Q4 elements
of equal size are used throughout � with a total ofN nodes
in the mesh. The linear basis function connected to node k

is denoted Nk . The discretization yields the linear system,

Sp̂ = (K(ρ̂) − ω̂2M(κ̂))p̂ = F. (14)

F stems from the boundary condition (9), and is given as,

Fk =
∑

i∈Nb,k

∫
δ�i

n · (ρ̂−1∇p̂)Nkd� (15)

HereNb,k denotes the boundary edges connected to node
k. K andM in (14) are given by,

Kij =
∫

ρ̂−1∇Ni∇Njd�, Mij =
∫

κ̂−1NiNjd�, (16)

where i ∈ {1, 2, ...,N }, j ∈ {1, 2, ...,N }. Neither M nor
K needs modifications to take the boundary conditions into
account. The solution to (7), p̂, is approximated by,

p̂ ≈
∑
k∈N

p̂kNk, (17)

where p̂k is the k’th entry in p̂, the solution of (14).

The design variable field, ξ(x), is discretized in a dis-
continuous manner using piecewise constant values in each
finite element.

5.1 Sensitivities

The sensitivities required for the topology optimization pro-
cedure are obtained using adjoint sensitivity analysis, see
Dühring et al. (2008) and references therein. They are,

d	

dξi

= ∂	

∂ξi

+ �
(

λT ∂S
∂ξi

p̂
)

. (18)

Here � denotes the real part, T denotes the transpose and
λ is obtained by solving,

STλ = −
(

∂	

∂p̂R

− i
∂	

∂p̂I

)T

, p̂ = p̂R + ip̂I , (19)

with the k’th entry in the right hand side given as,

(
∂	

∂p̂R

− i
∂	

∂p̂I

)
k

= 1

AOP

∫
2(p̂R − ip̂I )Nkd�OP. (20)

6 Filtering and projection strategy

A density filter is used for smoothing followed by a pro-
jection to ensure a 0/1-design, (Guest et al. 2004; Xu et al.
2010; Wang et al. 2011b). In the following ·̃ is used to
denote smoothed variables and ·̄ denotes projected vari-
ables. When multiple operations are applied to a variable
the symbols are ordered with the latest operation on top.
Equation (21) presents the discretized version of the applied
density filter (Bourdin 2001; Bruns and Tortorelli 2001),

ξ̃i =
∑

j∈Be,i
w(xi − xj )Aj ξj∑

j∈Be,i
w(xi − xj )Aj

. (21)

Aj is the area of the j ’th element, Be,i denotes the design
variables which are within a given filter radius R of design
variable i. Here xj is taken to be the average of the nodal
positions in element j . The filter function w is given by,

w(x) =
{

R − |x| ∀ |x| ≤ R ∧ x ∈ �d

0 otherwise
, (22)

where R is the aforementioned filter radius. To allow the
design to vary with projection level along the edge of �d

facing into the domain an extended filter area reaching out-
side of �d was used. In the extended filter area the design
variables are all identically zero. A dashed line is included
on all designs presented in figures to denote the edge
of �d.
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The projection operator used is the one suggested by
Wang et al. (2011b) and is given as,

ξ̄i = tanh(βη) + tanh(β(ξi − η))

tanh(βη) + tanh(β(1 − η))
, (23)

where β is a parameter used to control the sharpness of the
projection and η ∈ [ξmin, ξmax] defines the projection level.
η = 0.5 has been used as the target for the final (nomi-
nal) designs in all cases. When applying the density filter
and projection the pressure field will depend explicitly on

the filtered and projected variables, ¯̃
ξ . Hence the optimiza-

tion problem (13) and the sensitivities should be modified
accordingly.

6.1 Modification of sensitivities

Applying the smoothing (21) and projection (23) operations
on ξ requires the following sensitivity modifications,

d	

dξi

=
∑

h∈Be,i

∂ξ̃h

∂ξi

∂
¯̃
ξh

∂ξ̃h

d	

d ¯̃
ξh

, (24)

with,

∂ξ̃h

∂ξi

= w(xh − xi )Ai∑
j∈Ne,h

w(xh − xj )Aj

, (25)

∂
¯̃
ξh

∂ξ̃h

= β sech2(β(ξ̃h(x) − η))

tanh(βη) + tanh(β(1 − η))
, (26)

and d	

d ¯̃
ξh

given by (18).

6.2 β-continuation scheme

The projection step is used together with a continuation
scheme for β, see Guest et al. (2004), which gradually
increases the projection strength during the optimization
process. This scheme prevents that the optimization gets
stuck prematurely in a local minimum during the first itera-
tions due to the design being projected to 0/1 immediately.
A more conservative scheme than the one suggested by
Wang et al. (2011b) is used here, see algorithm 1. In the
present scheme β is only increased if 	 has not changed
significantly for nsc iterations.

7 Implementation, validation and parameter
choices

MATLAB was used for the implementation and the mini-
mization problems were solved using theMethod ofMoving
Asymptotes, MMA (Svanberg 1987). The MATLAB solver
was validated using the method of manufactured solutions
and through comparison with COMSOL MULTIPHYSICS
Version 4.3b’s acoustics module. COMSOL was also used
to validate the performance of selected final designs.

Table 1 lists the parameter values which have been used
in all numerical experiments unless stated otherwise.

8 Sample solution

An example of the effect on the pressure field of placing an
optimized design in �d is presented here. Figure 2i shows
the Lp̂-field for the excitation frequency f = 51.32 Hz in
an empty domain. Figure 2ii shows the Lp̂-field in the same
domain after a design optimized for this frequency using the
standard approach is introduced. It is clearly seen that the
minimization of Lp̂ in �OP is achieved by a combination of
two mechanisms. First a reduction of the overall sound pres-
sure in � from a maximum of 112 dB to 95 dB has occurred
and secondly nodal lines have been moved into �OP lead-
ing to a significant reduction of the average sound pressure
level in �OP, 〈Lp̂〉�OP .

〈Lp̂〉�OP , has been reduced from approximately 103 dB
for the empty domain to approximately 38.8 dB when the

Table 1 Parameters used in simulations

Parameter [Unit] Value

Nx [elements] 720

Ny [elements] 360

ξini ∀ x ∈ �d 0.15

R [elements] 20

U [ms ] 0.01

βinit 1

βmax 500

nsc 10

α 0.01

x�[m] × y� [m] [0, 18] × [0, 9]
x�d [m] × y�d [m] [0, 18] × [8, 9]
x�OP [m] × y�OP [m] [15, 17] × [1, 3]
xP [m] × yP [m] [1.9, 2.1] × [1.9, 2.1]

Nx,Ny : number of elements in the x− and y− direction. ξini: ini-
tial design variable value. R: filter radius. U : vibrational velocity.
βini, βmax: initial and final β-value. nsc: minimum iterations between
β increases. α: objective variation parameter. x•, y•: spatial extend of
the domain •
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Fig. 2 Pressure fields measured using Lp̂ at the excitation frequency
f = 51.32 Hz. The acoustic source and �OP are outlined using thin
black lines

optimized design is introduced. An important note here
is that the magnitude of the reduction in 〈Lp̂〉�OP clearly
depends on how the nodal lines of the field in the empty
room line up with�OP. In the present example a larger mag-
nitude of the reduction could possibly have been obtained
by moving �OP to [13.5, 15.5] × [1.3]. The magnitude of
the reduction is not the main interest of this study how-
ever. The fact that a significant reduction in sound pressure
may be obtained by introducing the design is of course
important. It is however the robustness of this reduction
towards variations in the design which is the concern in the
following.

9 Intermediate design variables

In order for the final designs to be meaningful for real world
application they must consist of design variables taking the
values 0 or 1, corresponding to no material or material at
each position in space. The projection operator presented
in (23) enforces a 0/1 design by projecting at the threshold
value η ∈ [ηmin, ηmax], ηmin ∈ [0, ηmax[, ηmax ∈ ]ηmax, 1].
As described in the introduction it is possible to use a vary-
ing projection level, η, to optimize the design towards worst
case spatial variations. However, as will be shown in the fol-
lowing there is no guarantee that this approach results in an
appropriately varying design. In this context appropriately
should be understood as follows: Firstly, when η is varied
all changes in the design features should only occur along
their edges. Secondly, all design features should change
near-uniformly in size if η is varied.

In this section it is shown that for the interior acous-
tic problem the design does not vary appropriately with
η and that this behavior increases significantly with fre-
quency. The issue has been found to exist independent of
discretization level and filter radius. Section 9.1 presents
the results of solving (13) for four excitation frequencies
using the standard approach. In Section 9.2 a min/max for-
mulation for the optimization problem is introduced which
will serve as the basis for creating designs that perform
robustly under geometric variations. The problem of the
inappropriately varying designs is shown to exist for both
approaches.

9.1 Optimizing using the standard approach

An initial attempt at obtaining highly performing designs
is made by solving (13) using filtering, (21) and projec-
tion (23). Results for four excitation frequencies, f ∈
{34.36 Hz, 51.32 Hz, 69.42 Hz, 206.3 Hz} are presented
below. These frequencies have been chosen to coincide with
resonances in the empty domain.

The smoothed design variables for the final designs are
shown in Fig. 3i while the final designs after projection at
η = 0.5 are shown in Fig. 3ii. The value for the objective
measured in SPL, 〈Lp̂〉�OPXX

with an empty design domain
ED, a full design domain FD (ξi = 1 ∀ i), and with the
optimized designs introduced OD, are shown in Table 2.
〈Lp̂〉�OPFD

is included to illustrate the benefit of creating an
optimized solution compared to simply attempting to move
away from the resonance by filling the design domain with
material.

Fig. 3 (i) Smoothed, ξ̃ , and (ii) physical, ¯̃
ξ , design variables for four

excitation frequencies, a) f = 34.36 Hz, b) f = 51.32 Hz, c) f =
69.42 Hz, d) f = 206.3 Hz. The standard approach has been used for
the optimization. The dashed line denote the edge of �d
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Table 2 Average sound pressure level in �OP at four different exci-
tation frequencies, for the cases: Empty design domain, 〈Lp̂〉�OPED

.
Design domain filled with material; 〈Lp̂〉�OPFD

. Optimized design
introduced, 〈Lp̂〉�OPOD

f [Hz] 〈Lp̂〉�OPED
[dB] 〈Lp̂〉�OPFD

[dB] 〈Lp̂〉�OPOD
[dB]

34.36 ≈ 114 ≈ 80.5 ≈ 64.4

51.32 ≈ 99.0 ≈ 59.0 ≈ 38.8

69.42 ≈ 127 ≈ 91.8 ≈ 46.1

206.3 ≈ 120 ≈ 116 ≈ 64.4

A significant reduction in sound pressure level from both
〈Lp̂〉�OPED

and 〈Lp̂〉�OPFD
to 〈Lp̂〉�OPOD

is observed for all
cases. By comparing 〈Lp̂〉�OPOD

to 〈Lp̂〉�OPFD
it is seen to

be clearly beneficial to create an optimized design. How-
ever if the performance of the designs is highly sensitive
to small spatial variations they lose much of their attrac-
tiveness. Hence it is important to be able to investigate the
design’s sensitivity to spatial variations. Considering the
smoothed design variables in Fig. 3i large areas of ξ̃ (x)
taking intermediate values can be seen. These intermediate
values make it impossible to establish a meaningful relation
between the projection level and the resulting variations in
the design. Figure 4 shows the smoothed design variables
projected at four η-values to clarify this point. It is seen that
the changes in the designs lack any uniformity in space and
that the topology changes in several cases as η is varied.
Thus the formulation needs a modification to remove the
problem if varying η is to be a useful measure of robustness
of 〈Lp̂〉�OP towards geometric variations.

9.2 Robust design

Next we introduce a min/max formulation where the objec-
tive is minimized for Nr ∈ N different realizations of the
projected design variables simultaneously1.

min
ξ

. : max
k

(
1

AOP

∫
|p̂(

¯̃
ξk)|2d�OP

)
,

s.t. : 0 ≤ ξ(x) ≤ 1 ∀ x ∈ �d ∧ k ∈ {1, 2, ...,Nr}. (27)

HereNr is the number of projection realizations used. In
the rest of the paper solving (27) instead of (13) is denoted
as the robust approach. The min/max formulation forms the
basis for creating designs which perform robustly under spa-
tial variations presented in a later section. Direct application
of the scheme, suggested for performing robust topology
optimization in Sigmund (2009), has been shown to perform

1The projection level for each realization may be taken to be constant
throughout �d or one may introduce a projection-field η(x) which is
allowed to vary throughout �d, as will be considered in Section 11.

Fig. 4 Projection of smoothed design variables for the four cases
shown in Fig. 3 at four η-values, a) η = 0.3, b) η = 0.4: c) η = 0.6,
d) η = 0.7

well for structural and heat problems Wang et al. (2011b)
and problems in optics Wang et al. (2011a) when creating
robust designs. As will be shown in the following this is not
the case for the acoustic cavity problem under consideration.

9.3 Optimization using the robust approach

By solving (27), with Nr = 3 using ηk ∈ {0.3, 0.5, 0.7}
new optimized designs have been found for the same four
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excitation frequencies. ηk = 0.5 corresponds to the desired
nominal design while ηk = 0.3 and ηk = 0.7 cor-
responds to dilated and eroded versions of the nominal
design respectively. The smoothed design variables and
the final designs projected at η = 0.5 are presented in
Fig. 5i and ii respectively. Figure 5i shows that the prob-
lem of large areas of non-systematically varying ξ̃ (x)-values
remains for the robust formulation. Again the problem is
seen to increase significantly with frequency. The reason
why the problem remains when using the robust approach
is believed to be the increasing non-convexity of the opti-
mization problem with increasing frequency, caused by the
increasing modal density. This leads to a high number of
local minima which allows the optimizer to shape the design
field such that a variation in η may result in unpredictable
variations in the design while still providing good perfor-
mance for the projected designs at the η-values used in the
optimization.

Results of projecting the smoothed design variables pre-
sented in Fig. 5i at different η-values are shown in Fig. 6.
The results for the design optimized for f = 34.36 Hz
seen in Fig. 6 show that using Nr = 3 instead of a sin-
gle realization appears to have mitigated the problem of the
unpredictable variations in the final design as η is varied.
However, the figure clearly illustrates that for f ≥ 51.32
Hz the problem of unpredictably varying designs with pro-
jection level remains. By comparing Figs. 5ii and 3ii it is
seen that the designs for the lowest frequency f = 34.36 Hz
are very similar indicating that this design is robust towards
variations in its geometry.

Fig. 5 (i) Smoothed and (ii) projected design variables for the four
excitation frequencies, a) f = 34.36 Hz, b) f = 51.32 Hz, c) f =
69.42 Hz, d) f = 206.3 Hz, obtained using the robust approach given
in (27) with a smoothing and projection step

Fig. 6 Projection of smoothed design variables for the four cases pre-
sented in Fig. 5i at different η-values: a) η = 0.3, b) η = 0.4,
c) η = 0.6, d) η = 0.7

10 Limiting the variations in ξ̃

This section presents two different methods for control-
ling the variation of the smoothed design variable field,
ξ̃ along with results of numerical experiments showing
the benefits and limitations of the approaches. The first
method is a new double filter approach. The second method,
included for comparison, is a well known explicit penal-
ization method (Bendsøe and Sigmund 2003) which here
is applied to the filtered field, ξ̃ , instead of the physical
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design variables. Both methods allow the enforcement of a
near 0/1 ξ̃ -field with intermediate values only near feature
edges.

10.1 The double filter approach

The double filter approach consists of applying the den-
sity filter and projection introduced in Section 6 a second

time on the already filtered and projected variables ¯̃
ξ(x). In

order to distinguish the two filter steps a subscript 1 and
2 are introduced to denote the first and second filter step
respectively. The application of the double filter effectively
solves the problem of the uncontrolled changes in the final
smoothed design variables as will be demonstrated in the
following.

The double filter approach introduces three additional
parameters. These are a second filter radius R2, a second
projection strength β2 and a second projection level η2. For
all simulations done in the context of this paper, the param-
eters have been chosen to depend in a trivial manner on the
parameters of the first filtering step effectively eliminating
them. The second filter radius and projection strength have
been chosen as R2 = 1

2R1 and β2 = 1
2β1 respectively.

Regarding the projection level, η2 = η1 has been chosen for
the standard approach while for the robust approach it is no
longer η1 that varies across realizations but instead η2. For
the robust approach the first projection level has been cho-
sen as η1 = min

k
η2,k . These choices have worked well for

all investigated cases.
Due to the β-continuation scheme the double filter works

very similarly to the single filter in the beginning of the
optimization process. This is because the projection for low
values of β is close to inactive. Thus the second filter only
further smooths the design variables without introducing
other restrictions on the optimization. As β1 increases the
first smoothing and projection step will produce a near 0/1
design. The second smoothing step then smooths the design
along its edges while the second projection step controls
the amount of material added/removed from each edge. For
high β2-values this gives control on how much the size of
each feature in the design is changed as the projection level
is varied. The amount of material removed in the projection
step is controlled by η2 together with R2. The relationship
between η2 and the change in the size of the design fea-
tures is analyzed for a 1D case in Schevenels et al. (2011).
Here a lower bound is found which shows a nearly linear
relationship for η2 ∈ [0.3, 0.7]. Based on this analysis it
is suggested to limit η2 to this, or a shorter, interval cen-
tered at 0.5 to ensure that for β1 � 1 all changes in the
design will occur along its edges in a predictable near-
uniform manner as the second projection level is varied. If
features appear/disappear or agglomerate/separate as η2 is

varied they do so in a predictable fashion in contrast to what
was observed with the single filter approach.

The choice of R2 relative to R1 is important. If R2 is cho-
sen too large compared to R1 the functionality of the double
filter is lost for the following reason. The first smoothing
operation creates a functional dependence between design

variables which are less than R1 apart. Thus the field
¯̃
ξ may

in some sense be seen as a coarser version of the original
design field. Filtering a second time with a large radius R2

can therefore be seen as functionally equivalent to smooth-
ing only a single time on the unfiltered design variables.
Thus unpredictable variations in the design with projection
level may be observed if R2 is chosen to large. From our
experimentation for the acoustic cavity problem it has been
found that choosing R2 such that R2 ≤ R1

2 works well
for all investigated cases. Choosing R2 ≥ R1 has been
found to destroy the effect of the double filter in several
cases.

The choice of β2 controls the sharpness of the second
projection. Just as for the single filter, if β2 is chosen with to
high initial value, it will force the optimizer to converge to
a suboptimal local minimum since the design variable field
is forced immediately towards 0/1.

The application of the double filter in 1D using high β-
values in both projection steps is sketched in Fig. 7.

Fig. 7 Sketch of the double filter applied to a function, ξ(x) in 1D
(with β1 � 1, β2 � 1). Two different projection levels are used for
the second projection. S(·) denotes smoothing and P(·) denotes pro-
jection. a ξ(x), b S1(ξ(x)), c P1(S1(ξ(x))), d S2(P1(S1(ξ(x)))), e
P2,1(S2(P1(S1(ξ(x))))), f P2,2(S2(P1(S1(ξ(x)))))
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For β1 � 1, β2 � 1 the sensitivity d	

d
¯̃̄̃
ξi

is zero unless

ξi lie within the filter radius of the edge of a design fea-
ture. This effectively turns the optimization problem into a
shape optimization problem at high β-values. Thus initially
when the projection strength is low the design is free to form
without any restrictions on its topology while in the final
part of the optimization design features are only allowed to
change shape or disappear. To ease the referencing of the
design variables at different stages in the filtering process
each stage will henceforth be denoted as S, PS, SPS and
PSPS respectively. The S and P are short for, S: Smoothing,
and P: Projecting. The ordering of the letters corresponds to
the order of the application of the operators read from right
to left.

A final note of importance is that the double filter
approach does not guarantee a length scale in the design and
therefore not a fixed topology across all projection levels.
However in most practically considered cases a length scale
was found to be present.

10.1.1 Sensitivities

Applying the density filter and projection on ¯̃
ξ is oper-

ationally identical to applying the same operations on ξ .
Therefore the sensitivity modifications are straightforward2.
The sensitivities for the double filter are given by,

d	

dξi

=
∑

h∈Be,i

∂ξ̃h

∂ξi

∂
¯̃
ξh

∂ξ̃h

�	h, i ∈ {1, 2, ..., N}, (28)

�	h =
∑

j∈Be,h

∂
˜̃̄
ξj

∂
¯̃
ξh

∂
¯̃̄̃
ξj

∂
˜̃̄
ξj

d	

d
¯̃̄̃
ξj

, h ∈ {1, 2, ..., N}. (29)

While these expressions may look formidable, the com-
putational requirements for calculating the sensitivities are
only twice of those for the single filter which is very cheap
compared to solving the FEM problem and the optimization
problem.

10.2 Double filtered standard approach

The double filter has been used with the standard approach
replacing the single filter. Results for the four excitation fre-
quencies are presented here. The SPS variables and final
designs (PSPS variables, projected at η2 = 0.5) are shown
in Fig. 8i and ii, respectively.

Figure 8i clearly shows that the SPS-variables only
change along design feature edges. Hence the problem of
unpredictably varying intermediate design variable values

2The interested reader may find a derivation of the new sensitivities in
Appendix.

Fig. 8 (i) SPS and (ii) PSPS design variables for the four excitation
frequencies, a) f = 34.36 Hz, b) f = 51.32 Hz, c) f = 69.42 Hz, d)
f = 206.3 Hz. The standard approach with the double filter has been
used for the optimization

has been resolved. Comparing the designs in Fig. 8ii to those
in Fig. 3ii it is seen that for f ∈ {69.42 Hz, 206.3 Hz} both
the topology and overall appearance of the designs have
changed. These changes may be attributed to the additional
restrictions on the optimization imposed by the double fil-
ter and the fact that many local minima exist for the model
problems.

10.2.1 Sensitivity to design variations

Using the double filter it is now meaningful to investigate
the sensitivity of the designs towards near-uniform spa-
tial variations by varying the projection level η2. This has
been done for η2 ∈ [0.1, 0.9] which corresponds to a large
near-uniform variation of approximately ±0.1 meter (≈ ±4
elements for the chosen discretization) for each design fea-
ture. 〈Lp̂〉�OP(η2) (scaled by 〈Lp̂〉�OPED

) for each of the
four excitation frequencies is shown in Fig. 9i. A dashed line
showing 〈Lp̂〉�OPFD

(scaled by 〈Lp̂〉�OPED
) corresponding to

the average sound pressure level in �OP when simply filling
the entire design domain with material has been included.
The interested reader may use the value of 〈Lp̂〉�OPED

from
Table 2 to obtain values in db SPL.

By considering 〈Lp̂〉�OP(η2 = 0.5) it can be seen that
a significant reduction in SPL is obtained for all excitation
frequencies for the nominal designs. A reduction between
40 and 70 percent is observed across the four frequencies.
The design for f = 34.36 Hz is observed to be highly robust
with increases of only a few percent for large variations in
projection level. For this low frequency the observed behav-
ior is exactly what is expected since the wavelength is much
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Fig. 9 〈Lp̂〉�OP/〈Lp̂〉�OPED
as a

function of projection level. (i)
and (ii):
〈Lp̂〉�OP (η2)/〈Lp̂〉�OPED

is
denoted by the thin black line.
The performance of the nominal
design (η2 = 0.5) is denoted by
◦. For comparison,
〈Lp̂〉�OPFD

/〈Lp̂〉�OPED
is

denoted by a thick dashed black
line. (ii): The realisations of η2
for which the design has been
optimized are denoted with *

longer than the design variations. Thus the variations are
not expected to have much influence on the pressure-field.
If one considers the three higher frequencies a different
picture starts to emerge however. As a first example con-
sider the case of f = 69.42 Hz. Here an increase from
η = 0.5 to η = 0.55 corresponding to a near-uniform
decrease in feature size of approximately Vu ≈ −1 cm
causes the relative performance improvement to deteriorate
by more than 17 percent. As a second example consider
the design optimized for f = 206.3 Hz. Here a deterio-
ration of ≈ 24 percent is observed for variations in η2 of
about 0.05. Such large deteriorations in performance under
small near-uniform variations are troublesome, especially
considering that the scale is relative dB. What is observed
from Fig. 8 is that the designs become increasingly sensi-
tive towards small near-uniform geometric variations with
increasing frequency. This high sensitivity towards spatial
variations creates an interest in investigating a robust design
approach.

10.3 Double filtered robust approach

In order to investigate whether it is possible to obtain
robust designs for all four excitation frequencies the robust
approach with the double filter is used. The resulting SPS-
and PSPS-variables for the nominal design are presented
in Fig. 10. It is again observed that intermediate values of
the SPS-variables are only found along the edges of design
features. The design for f = 34.36 Hz resembles the
one optimized for a single projection level while the three

designs for the higher excitation frequencies are very differ-
ent in both shape and topology. This agrees with the lack of
robustness observed in Fig. 9i. Figure 11 shows projections
of the SPS-variable at η2 ∈ {0.3, 0.4, 0.6, 0.7}. From here
it is clearly seen that PSPS-variables now vary in a spatially
near-uniform manner with projection level.

Fig. 10 (i) SPS and (ii) PSPS design variables for the four excitation
frequencies, a) f = 34.36 Hz, b) f = 51.32 Hz, c) f = 69.42 Hz,
d) f = 206.3 Hz. The designs has been obtained using the robust
approach with the double filter using three realizations for the second
projection, η2 ∈ {0.3, 0.5, 0.7}
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Fig. 11 Projection of SPS design variables at four different η2-values,
a) η2 = 0.3, b) η2 = 0.4, c) η2 = 0.6, d) η2 = 0.7 for the four
designs shown in Fig. 10i

10.3.1 Sensitivity to design variations

Figure 9ii shows the variation in 〈Lp̂〉�OP(η2)/〈Lp̂〉�OPFD
with η2 for the four designs presented in Fig. 10ii. All the
designs are seen to perform robustly for large variations
of η2 when compared to the results seen in Fig. 9i. For
the case with f = 34.36 Hz almost no change in perfor-
mance is observed compared to Fig. 9i. For f = 51.32 Hz
the robustness of the performance is seen to have improved

for a large η2-interval. Here the robust design maintain a
performance improvement of 60 percent or more for η2 ∈
[0.3, 0.7] compared to 〈Lp̂〉�OPFD

. For f = 69.42 Hz oscil-
lations of up to 14 percent in performance improvement
are observed. These are large fluctuations, however the per-
formance increase for all η2 ∈ [0.22, 0.78] is more than
55 percent, which compared to the performance observed
in Fig. 9i is a significant improvement in robustness. For
f = 206.3 Hz oscillations of up to 10 percent are seen for
η2 ∈ [0.3, 0.7] however the performance improvement stays
above 33 percent which is good compared to the non-robust
case if perturbations of η2 of 0.05 or more is considered.
Another important note is that the performance increase for
the robust designs for the three lowest frequencies for all
η2 ∈ [0.3, 0.7] are very close to the level of the nominal
design obtained using the standard approach. Thus optimiz-
ing the designs for robustness under near-uniform variations
does not significantly reduce the obtained performance for
the nominal designs.

10.4 The penalization approach

A well known way of restricting the number of ξ -variables
taking intermediate values is to penalize the design field
explicitly (Bendsøe and Sigmund 2003). The penalization
can be done by either adding an artificial penalization term,
	p, to the objective or introducing an additional constraint.
Here we consider penalizing the filtered design variables,
ξ̃ , as suggested by Borrvall and Petersson (2001). The
penalization term given in (30) is used.

	p(x) = α	p

∫
ξ̃ (x)(1− ξ̃ (x))d�d

/ ∫
d�d, α	p > 0.

(30)

The sensitivities of (30) with respect to ξ̃ are trivial
to calculate. The value of 	p(x) is zero in areas with
ξ̃ = 0 or ξ̃ = 1 while it assumes its maximum value for
ξ̃ = 1

2 . For sufficiently high values of α	p the approach
forces the smoothed design variables towards 0/1 which
will ensure narrow ranges of intermediate values for the
smoothed design variables. This leads to near-uniform vari-
ations in the design along the edges of design features when
the projection level is varied. While this attribute is appeal-
ing one significant problem exists: The choice of α	p . If
α	p is chosen too large the penalization term will domi-
nate the optimization which will result in poorly performing
designs. If α	p is chosen too small, however, the penaliza-
tion will not be effective and therefore the listed benefits
are lost.

Designs obtained using the robust formulation where the
penalization term has been added to the objective using
α	p = 6 · 10−2 are presented here. This choice of α	p
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Fig. 12 (i) Smoothed and (ii) projected design variables for the four
excitation frequencies, a) f = 34.36 Hz, b) f = 51.32 Hz, c) f =
69.42 Hz, d) f = 206.3 Hz, obtained with the robust approach with
three realizations and the penalisation term added to 	 using α	p =
6 · 10−2

illustrates both good and bad performance of the approach
distributed over the four excitation frequencies. A filter
range of R = 20 has been used. The resulting designs are
presented in Fig. 12.

From the figure it is seen that at the three lower excitation
frequencies near 0/1 ξ̃ variables with smoothed edges along
design features are obtained. Meanwhile for f = 206.3 Hz
this property is seen to have disappeared. Figure 13 shows
the design obtained for f = 206.3 Hz projected at the four
different η-values. The design is seen to change topology
and vary non-uniformly. Hence the design has not been opti-
mized for near-uniform spatial variations as intended due
to a too weak penalization. Another worrying result is the
design obtained for the excitation frequency f = 51.32
Hz. Here the choice of α	p = 6 · 10−2 turns out to be too
restrictive causing the optimization algorithm to get stuck
in a local minimum with a poor performance. The perfor-
mance obtained with this design is 〈Lp̂〉�OP≈ 56 dB for the

Fig. 13 Smoothed design variables presented in Fig. 12i for the fre-
quency, f = 206.3 Hz projected at, a) η = 0.3, b) η = 0.4,
c) η = 0.6, d) η = 0.7

nominal design which is more than 19 dB worse than the
performance of the design obtained using the double filter
approach, as may be deduced from Fig. 9ii combined with
〈Lp̂〉�OPED

from Table 2.
These examples illustrate the main problem with the

penalization approach. That is, the correct choice of α	p

depends on the parameters of the problem in a non-obvious
way which makes experimentation necessary for each exci-
tation frequency. On the other hand the examples also illus-
trate that if α	p is chosen correctly the approach may work
well. For the excitation frequencies studied here results sim-
ilar to those obtained using the double filter approach are
obtained if α	p is chosen correctly.

11 Non-uniform design variations

We have demonstrated that using the robust approach with
the double filter it is possible to create designs which are
highly robust towards near-uniform geometric variations. In
real applications however, during the production, installa-
tion and use of a given design it is more likely that small
non-uniform errors are introduced. An interesting ques-
tion now becomes whether small non-uniform variations
(NUVs) cause significant deteriorations in performance for
designs optimized for near-uniform variations. A natural
extension of this question is to investigate whether it is pos-
sible to create designs that are more robust towards NUVs.
In this section we demonstrate that by using the robust
approach with the double filter it is possible to consider non-
uniform variations in the optimization. We present results
showing that the performance of designs optimized for near-
uniform variations may deteriorate significantly under small
NUVs. Then we show that it is possible to obtain designs
that maintain a more robust performance under both non-
uniform and near-uniform variations by including samples
of the NUVs in the optimization process.

When taking NUVs into account during the optimization
process a high number of realizations is needed in order to
assure that the space of possible perturbations is covered. In
this case the computational resources required for the stan-
dard FEM approach become a limiting factor. Therefore a
hybrid finite element and wave based method (FE-WBM)
was implemented, in order to reduce the cost of model-
ing the non-design domain, and used to obtain the results
presented in the following. The wave based method was pro-
posed by Desmet (1998) and the hybrid FE-WBM by Hal
et al. (2003). The hybrid FE-WBM has just recently been
applied to topology optimization by Goo et al. (2014). The
strength of the hybrid method is that it is possible to signifi-
cantly reduce the number of degrees of freedom used in the
parts of the simulation domain where the model parameters
are homogeneous.
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The hybrid method is applied by discretizing the non-
design domain �WBM = �\�d using a set of wave basis
functions which are themselves solutions to the Helmholtz
equation. This reduces the number of degrees of freedom
needed in �WBM significantly. The design domain �d is
still discretized exactly as described in Section 5. Finally the
two domains are coupled by introducing a set of coupling
degrees of freedom along the interface between the �WBM

and �d. Since �d is discretized as described in Section 5 the
parametrization of ξ(x), the formulation of the optimization
problem, the application of the smoothing and projection
operators and the interpretation of the design domain does
not change in any way.

By applying the hybrid method to the present problem
where the ratio of the full model domain to the design
domain is approximately �d ≈ 0.1� the computational
time was reduced by approximately a factor of ten. We
emphasize that other than a reduction in computational time
the application of the hybrid FE-WBM method does not
change the optimization problem in any way and as such
all results may be replicated using pure FEM if sufficient
computational resources are available. The reported perfor-
mance of all the designs obtained using the hybrid method
was acquired using a pure FEM discretization.

A slightly different model problem, illustrated in Fig. 14,
was considered in the following. Here the vibrational source
was moved to one of the outer domain boundaries and was
imposed using (3) keeping U = 0.01, hence modeling a
vibrating piston set in the wall. The movement of the source
was done solely due to implementation choices made for
the WBM-FEM hybrid method which required placing the
source on the domain boundary.

It is possible to model NUVs in many ways. One way
is to consider random non-uniform variations as was done
for structural and heat conduction problems by Schevenels
et al. (2011) and Lazarov et al. (2012). In the present

Fig. 14 Illustration of the modified model problem domain. �OP ∈
[15.5, 16.5] × [1.5, 2.5] is the optimization domain, �d ∈ [0, 18] ×
[8, 9] is the design domain and P ∈ 0 × [1.3, 1.7] denotes the region
where an acoustic excitation is imposed

Fig. 15 Samples of the non-uniformly varying projection field for a)
B = 2, C = 4

5π , b) B = 2, C = 6
5π , c) B = 4, C = 6

5π , d)
B = 8, C = 8

5π

case we consider only one type of non-random variation.
Namely sinusoidal variations in one spatial direction and
no variation in the other. This is only a small subset of
all possible NUVs but it works for illustrating the desired
points. The NUVs are included in the optimization process
by introducing a variable projection field, η(x), (Schevenels
et al. 2011). This field replaces the constant projection level
η, leading to varying projection levels across the domain.
When using the double filter approach it is η2 which is
replaced with the varying projection field. The NUVs in the
projection level have been modeled as,

η2(x) = ηmin + (ηmax − ηmin) · P(A · cos(Bx + C)). (31)

Here P is the normal cumulative distribution function
with unit standard deviation and unit mean. ηmax ∈ ]ηmin, 1]
and ηmin ∈ [0, ηmax[ are the maximum and minimum pro-
jection values, respectively. B and C were allowed to vary
while A was kept fixed. Samples of the projection field for
different B and C are shown in Fig. 15.

For the results presented here the following values have
been used for the non-uniformly varying projection field:
A = 6, B ∈ {2, 4, 8}, C ∈ [0, 2π ], ηmin = 0.4 and
ηmax = 0.6. The optimizations were initialized with the
material fraction ξini = 0.5 ∀ x ∈ �d and a filter radius of
R = 16 was used.

11.1 Imposing NUV on robust designs

In the following the two excitation frequencies, f ∈
{69.42, 206.3} Hz are considered. Optimized designs were
created using the robust approach with the double filter
and three realizations of the second projection at η2 ∈
{0.3, 0.5, 0.7}. The designs are presented in Fig. 16.

Fig. 16 Nominal designs optimized using uniform variations for the
excitations frequencies a) f = 69.42 Hz, and b) f = 206.3 Hz
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Fig. 17 Non-uniform variations in the design optimized for f =
69.42 Hz. a)Design. b)-d)Difference between the nominal design and
the non-uniformly perturbed designs. White shows removed material
and black shows added material

The designs were subjected to small non-uniform varia-
tions given by (31). Figure 17 shows representative exam-
ples of the non-uniform changes in the design optimized for
f = 69.42 Hz when the variations are imposed. In the sub
figures b)-d) the white areas denote removed material while
the black areas denote added material.

It is seen that the non-uniform variations are small (2.5
cm - 5 cm in terms of the model dimensions). Neverthe-
less a significant reduction in performance is observed.
Figure 18 shows 〈Lp̂〉�OP(η2)/〈Lp̂〉�OPED

for varying pro-
jection level, η ∈ [0.3, 0.7] overlaid with a graph of
〈Lp̂〉�OP(η2,k(x))/〈Lp̂〉�OPED

for 80 different realizations of
the non-uniform variations with A = 6, B ∈ {2, 4, 8, 16}
and C uniformly distributed at 20 points in [0, 2π [.

Fig. 18 〈Lp̂〉�OP/〈Lp̂〉�OPED
for designs in Fig. 16 exposed to near-

uniform, 	UV(η2), and non-uniform, 	NUV(η2,k(x)), spatial varia-
tions. The performance at the three realization for which the designs
were optimized, 	ξk , are marked

Fig. 19 Nominal designs optimized using non-uniform variations for
a) f = 69.42 Hz, and b) f = 206.3 Hz

Figure 18 clearly shows the lack of robustness of the
designs towards non-uniform variations. The observed per-
formance deteriorations are less significant than what was
seen by comparing designs optimized using the robust
approach and using the standard approach under near-
uniform variations, however they are clearly still significant.
Compared to the nominal designs (η2 = 0.5) a deterio-
ration of up to 15 % is seen for the design optimized at
f = 69.42 Hz and up to 9 % for the design optimized at
f = 206.3 Hz. Considering comparable near-uniform vari-
ations (η2 ∈ [0.4, 0.6]) we only observe deteriorations of
5 % and 1 % respectively.

11.2 Optimizing for NUV

In order to reduce the observed deterioration in performance
under non-uniform variations a new optimization was per-
formed using the robust approach with the double filter.
Here non-uniform variations were included in the realiza-
tions. A total of 18 realizations were used. Three used the
constant projection levels η2 ∈ {0.3, 0.5, 0.7}. The remain-
ing fifteen realizations used the variable projection level

Fig. 20 〈Lp̂〉�OP/〈Lp̂〉�OPED
for the designs in Fig. 19 exposed to

near-uniform, 	UV,NUV(η2), and non-uniform, 	NUV,NUV(η2,k(x)),
variations. For easy comparison the data from Fig. 18 is plotted in light
gray
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Fig. 21 (i) SPS and (ii) PSPS design variables obtained using the
robust approach with different filter radii and six realizations of the
uniform projection level at η2,k ∈ {0.3, 0.38, 0.46, 0.54, 0.62, 0.7} for
the excitation frequency f = 69.42 Hz, discretized using (nx, ny) =
(720, 360) finite elements. SPS-variables (i). a) R1 = 10 (i). b)
R1 = 20 (i). c) R1 = 40 (i). d) R1 = 60. (ii) PSPS-variables projected
at η2 = 0.5 for designs in (i)

given by (31) with all combinations of B ∈ {2, 4, 8} and

C ∈
{
2
5π, 4

5π, 6
5π, 8

5π, 2π
}
. Figure 19 show the designs

resulting from the optimizations.
The performance of the designs under both near-uniform

and non-uniform variations have been investigated in the
same manner as in the previous section. The results are
presented in Fig. 20.

From Fig. 20 it is immediately observed that the designs
optimized for the non-uniform variations are more robust
under non-uniform variations than the designs only opti-
mized for uniform variations. Considering first the design
for f = 69.42 Hz. Here the ratio of 〈Lp̂〉�OP/〈Lp̂〉�OPED
for all variations in η2 within [0.4, 0.6] is now under 45 %

compared to the earlier design’s 50 %. Thus an improve-
ment in worst case performance of 5 %. The trade off
is a decrease in performance of the nominal design by
approximately 4 % compared to the earlier design. Con-
sider now the design optimized for f = 206.3 Hz. This
design is seen to perform highly robustly under both near-
uniform and non-uniform variations with a maximum of 2%
variation in performance. The deterioration in performance
of the nominal design compared to the earlier design is only
1 % while the worst case performance is now below 64 %
compared to the earlier 71 %. Hence a 7 % better worst case
performance.

A thorough study of the performance of the designs in
Fig. 19 with more than 2500 realizations for uniformly
distributed value of B ∈ [2, .., 16] and C ∈ [0, 2π ] was per-
formed to assure the correctness of the conclusions drawn
above. This test did not reveal any results that contradict our
conclusions for the presented cases.

12 Varying the filter radius

This section investigates the behavior of the double filter
approach for varying filter radius. We consider the model
problem in Fig. 14 and take the excitation frequency to
be, f = 69.42 Hz. We optimize using the doubly fil-
tered robust approach for four different filter radii R1 ∈
{10, 20, 40, 60} elements, R2 = 1

2R1 and near-uniform
variations. We use six realizations for the projection level,
η2,k ∈ {0.3, 0.38, 0.46, 0.54, 0.62, 0.7}. The remaining
parameters are set at the values given in Table 1. The rea-
son for using six realizations for η2,k instead of three as in
the earlier cases is that it we found that for R1 ∈ {40, 60}
three realization for the second projection level are not
enough to obtain a high performance across all values of
η2 ∈ [0.3, 0.7]. This finding is sensible since increas-
ing R1 while keeping the variation in η2 fixed leads to an
increased spatial variation in the design. Figure 21 presents

Fig. 22 〈Lp̂〉�OP/〈Lp̂〉�OPED
as a function of projection level for

designs presented in Fig. 21, obtained using the double filtered robust
approach, under uniform erosion/dilation. 〈Lp̂〉�OP (η2)/〈Lp̂〉�OPED

is
denoted by the thin black line. The performance of the nominal design

(η2 = 0.5) is denoted by ◦. For comparison, 〈Lp̂〉�OPFD
/〈Lp̂〉�OPED

is
denoted by a thick dashed black line. The realizations of η2 for which
the design has been optimized are denoted with *
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the final SPS- and SPSP-variables for the four different
cases.

It is seen that the double filter performs as expected
for all filter radii, in the sense that it produces SPS-

variables which consists of areas of material (
¯̄̃
ξ(x) = 1)

with smoothed edges. Figure 22 shows the performance of
each of the four designs under near-uniform erosion/dilation
performed by varying η2 in the interval [0.1, 0.9].

It is observed that the performance is similar in terms of
the reduction in dB SPL for all four cases inside the interval
of optimization.

13 Conclusions

We considered the minimization of sound pressure in part
of a 2D domain for an acoustic cavity problem by placing
material in another part of the domain using topology opti-
mization. We showed that the direct application of a stan-
dard technique for robust topology optimization encounters
a problem of uncontrollable intermediate design variables
making it unusable. A novel double filter was introduced
and it was shown to alleviate the problem thus allowing for
the application of the robust optimization approach. It was
demonstrated that small near-uniform geometric variations
can cause significant deteriorations in the performance of
designs optimized using the standard approach. Applying
the robust approach with the double filter and optimizing
for near-uniform geometric variations was shown to create
highly robust designs under large near-uniform variations
for all investigated frequencies. It was then demonstrated
that imposing small non-uniform variations on designs opti-
mized for near-uniform variations could lead to smaller but
still significant deteriorations in performance. Finally it was
shown to be possible to obtain designs which performed
robustly under both near-uniform and selected non-uniform
geometric variations by taking both types of variations into
account during the optimization process. The proposed dou-
ble filter approach is useful for highly shape sensitive opti-
mization problems as demonstrated here. For less sensitive
problems standard single filter approaches may be suffi-
cient. When solving the acoustic cavity problem considered
in this paper for a wider frequency band instead of for a
single frequency (or narrow frequency band) the extreme
sensitivity disappears and the problem may be solved using
the single filter approach, see Appendix.
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Appendix

Derivation of sensitivities for the double filter

The sensitivities, d	
dξi

, for the double filter may be derived as
follows:

1. Apply the chain rule for calculating the sensitivities.

d	

dξi

=
∑

j,k,l,h

∂ξ̃l

∂ξi

∂
¯̃
ξh

∂ξ̃l

∂
˜̃̄
ξk

∂
¯̃
ξh

∂
¯̃̄̃
ξj

∂
˜̃̄
ξk

d	

d
¯̃̄̃
ξj

. (32)

2. Eliminate two sums using the fact that ∂
¯̃
ξh

∂ξ̃l
= 0 ∀ l �= h

and that
∂

¯̃̄̃
ξj

∂
˜̃̄
ξk

= 0 ∀ k �= j due to the locality of (23).

d	

dξi

=
∑
j

∑
h

∂ξ̃h

∂ξi

∂
¯̃
ξh

∂ξ̃h

∂
˜̃̄
ξj

∂
¯̃
ξh

∂
¯̃̄̃
ξj

∂
˜̃̄
ξj

d	

d
¯̃̄̃
ξj

i ∈ {1, 2, ..., N}.

(33)

3. Utilize that ξ̃h only depends on the design variables ξi

within the density filter radius reducing the sum over h

significantly. The same argument applied to
˜̃̄
ξj and ¯̃

ξh

reduces the sum over j . The set of indices for the depen-
dent variables are denoted, Be,i and Be,h respectively.
The sensitivities now take the form,

d	

dξi

=
∑

j∈Be,h

∑
h∈Be,i

∂ξ̃h

∂ξi

∂
¯̃
ξh

∂ξ̃h

∂
˜̃̄
ξj

∂
¯̃
ξh

∂
¯̃̄̃
ξj

∂
˜̃̄
ξj

d	

d
¯̃̄̃
ξj

. (34)

4. Rewriting the expression gives,

d	

dξi

=
∑

h∈Be,i

∂ξ̃h

∂ξi

∂
¯̃
ξh

∂ξ̃h

⎡
⎢⎣ ∑

j∈Be,h

∂
˜̃̄
ξj

∂
¯̃
ξh

∂
¯̃̄̃
ξj

∂
˜̃̄
ξj

d	

d
¯̃̄̃
ξj

⎤
⎥⎦ . (35)

5. For a given h the expression in the bracket in (35) only
depends on j . Thus we may define,

�	h =
∑

j∈Be,h

∂
˜̃̄
ξj

∂
¯̃
ξh

∂
¯̃̄̃
ξj

∂
˜̃̄
ξj

d	

d
¯̃̄̃
ξj

, h ∈ {1, 2, ..., N}. (36)

This illustrates that the application of the double filter
simply corresponds to applying the single filter twice.

�

Application of robust approach for frequency bands

Single frequency problems have been the focus of the
paper due to the high sensitivity in the performance of the
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optimized designs under geometric variations. In this
section we provide an example showing the method applied
for a band of frequencies as well. As will be demonstrated,
this problem is far less sensitive towards geometric varia-
tions in the design. A requirement for considering optimiza-
tion for a band of frequencies for the cavity problem is that a
small amount of damping is added to the model problem to
avoid problems caused by resonances in the frequency band
of interest. The need for damping has nothing to do with
the double filter or the robust approach and must be added
regardless of the optimization strategy. Mass proportional
damping is introduced by adding the term “αdamp i ω̂p̂” to
(7) where αdamp = 0.01 is the damping factor.

In the following we consider the model problem pre-
sented in Fig. 14 and seek to minimize the mean of the
average sound pressure in �OP over a 1/3 octave frequency
band, fb ≈ [61.85, 77.92] Hz, centered at, fc = 62.5 Hz.
The objective function may thus be stated as,

	(ξ) = 1

Ni

Ni∑
i=1

1

AOP

∫
|p̂(

¯̃̄̃
ξ, fi)|2d�OP, (37)

where fi are the frequencies optimized for and Ni is the
number of frequencies. An optimization is performed using
the standard approach with the double filter and the sec-
ond projection at η2 = 0.5. For comparison an optimization
is performed using the robust approach with double fil-
tering and five realizations of the second projection level,
η2 ∈ {0.3, 0.4, 0.5, 0.6, 0.7}. For both cases we use Ni =
20 and consider equidistant frequencies in fb including
both endpoints. For the PDE problem we use a pure FEM
discretization with Nx = 216, Ny = 108 elements.
A filter range of R1 = 5 elements is used. Figure 23
shows the resulting SPS and SPSP variables for the two
optimizations.

Fig. 23 (i) SPS and (ii) PSPS design variables obtained using the a)
standard and b) robust approach for the 1/3 octave frequency band
optimization

Fig. 24 〈Lp̂〉�OP,fb/〈Lp̂〉�OPED,fb
for the designs in Fig. 23 under

near-uniform variations imposed by varying η2. The performance of
the designs is seen to be almost constant under the prescribed uniform
variations

Figure 24 shows the mean of the average sound pres-
sure level in �OP over the 1/3 octave frequency band,
〈Lp̂〉�OP,fb , scaled by the same quantity in �OP for the
empty cavity, 〈Lp̂〉�OPED ,fb ≈ 89.79 dB, as a function of
projection level η2, for both the standard and the robust
approach. The mean over the frequency is calculated using
100 equidistant frequencies in fb. This variation in projec-
tion level corresponds to a near-uniform erosion/dilation of
1 element or approximately 8 cm in the design. The pre-
sented results have been evaluated with the same amount of
damping as the one used in the optimization.

From the figure it is clearly observed that both the stan-
dard and robust approach produce results which do not
show any significant sensitivity towards uniform erosion or
dilation of the design. It is noted that the robust approach
produces a design with better performance. This is likely
due to the additional restrictions on the optimization when
using the robust approach which eliminates the local mini-
mum trapping the optimization performed with the standard
approach.

An investigation of the sensitivity of the performance
under non-uniform geometric variations for the design opti-
mized using the standard approach is also performed. Here
it is shown that, just as for the uniform geometric pertur-
bations, the sensitivity drops significantly when considering
a band of frequencies compared to a single frequency.
Twenty five non-uniform geometric variations are applied as
described in Section 11 usingA = 6, B ∈ {2, 3.5, 5, 6.5, 8},
C ∈ 2π · {1, 2, 3, 4, 5}, ηmin = 0.3, ηmax = 0.7. Figure
25i show the sensitivity of the performance under the
twenty five non-uniform geometric variations for the aver-
age response over fb while Fig. 25ii show the performance
sensitivity under the same twenty five non-uniform geo-
metric variations for the single frequency fs = 70.15
Hz.
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Fig. 25 Scaled performance for the design in Fig. 23. a) under non-
uniform variations imposed through η2(x). The performance of the
design is seen to be less sensitive for a frequency band (i) then for a
single frequency (ii). The red line marks the performance of the nom-
inal design while the black line with circles mark the performance for
the perturbed design

From the figure it is clearly seen that the average
response over fb is far less sensitive to geometric perturba-
tions than when only considering fs .
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