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Abstract Topology optimization has evolved rapidly since
the late 1980s. The optimization of the geometry and topol-
ogy of structures has a great impact on its performance,
and the last two decades have seen an exponential increase
in publications on structural optimization. This has mainly
been due to the success of material distribution methods,
originating in 1988, for generating optimal topologies of
structural elements. Previous methods suffered from math-
ematical complexity and a limited scope for applicability,
however with the advent of increased computational power
and new techniques topology optimization has grown into
a design tool used by industry. There are two main fields
in structural topology optimization, gradient based, where
mathematical models are derived to calculate the sensitivi-
ties of the design variables, and non gradient based, where
material is removed or included using a sensitivity function.
Both fields have been researched in great detail over the last
two decades, to the point where structural topology opti-
mization has been applied to real world structures. It is
the objective of this review paper to present an overview
of the developments in non gradient based structural topol-
ogy and shape optimization, with a focus on evolutionary
algorithms, which began as a non gradient method, but
have developed to incorporate gradient based techniques.
Starting with the early work and development of the popular
algorithms and focusing on the various applications. The
sensitivity functions for various optimization tasks are pre-
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sented and real world applications are analyzed. The article
concludes with new applications of topology optimization
and applications in various engineering fields.
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1 Introduction

1.1 Structural optimization

Structural optimization, in particular the layout optimiza-
tion, has been identified as the most challenging and eco-
nomically the most rewarding task in structural design
(Rozvany 1988). The pioneer of the theory of layout opti-
mization was the Australian inventor, engineer and mathe-
matician A. G. M. Michell in 1904 (Michell 1904). Michell
used the work of Maxwell (1872) to determine the first truss
solutions of least weight and developed a general theory for
deriving them. Michell structures are designed for only one
load case and depend on appropriate specification of strain
fields (Topping 1983). These structures are also statically
determinate and impractical, consisting of an infinite num-
ber of bars. Therefore this work was purely academic and
did not have any application.

Michell’s work was left untouched until the 1950s
where it was picked up by Hill (1950), Heyman (1951),
Heyman and Prager (1958), Foulkes (1954), Drucker and
Shield (1956), Livesley (1956), Prager (1956, 1958), Prager
and Shield (1959), Onat et al. (1957), and Hemp (1958).
Hill (1950) developed techniques for calculating the form
of slip lines. Slip lines are used to construct Hencky nets,
which are used to determine the strain field of a problem, a
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method employed by both Hemp (1958) and Prager (1958).
Drucker and Shield (1956) developed a condition that states
that the dissipation per unit volume must be constant. This
theory was applied to the design of circular sandwich plates
by Onat et al. (1957). Prager and Shield (1959) apply the
theory of constant volume dissipation to more general load-
ing cases. Prager (1956) used a minimum cost function
on the limiting plastic moments of beams to determine
optimum structures built from beams. Heyman (1951) and
Livesley (1956) and Heyman and Prager (1958) used a lin-
ear programming technique to determine the least limiting
plastic moment at a node, by applying hinges to each nodal
member. Foulkes (1954) was the first to give the condi-
tions for an optimal beam structure, expressed in terms of
its collapse mechanism.

The 1960s saw Chan (1960a, b), Dorn (1964), Hemp
(1964), Cox (1965), Richards and Chan (1966), and Kienzi
et al. (1968) add to the field of optimization. Chan (1960a
and b) developed techniques to determine suitable strain
fields via graphical construction, while Cox (1965) showed
several interesting examples of single-stress structures and
applications of Maxwell’s theorem. Richards and Chan
(1966) applied the method of Michell continua to plates,
noting the advantage of plates for like signed principal
stresses. Marcal and Prager (1964) give the optimization
of a beam using a volume cost function. This was gen-
eralized by Prager and Shield (1967) to arbitrary one and
two-dimensional plastic structures. Kienzi et al. (1968)
developed a program that uses the ‘simplex method’, a lin-
ear programming technique developed by Dantzig (1963),
to solve framework optimization problems. The simplex
method leads to a definite minimum value for volume; this
defines an optimum framework of least volume of mate-
rial designed according to the methods of plastic design.
This optimum design is statically determinate, i.e. there
are no more supporting joints than necessary to maintain
equilibrium, and so it is an elastic design as well as a plas-
tic one. Hemp and Chan (1966) developed a programme
that uses dual formulation to solve framework optimization
problems. The method is to cover the region of space in
which the required structure is allowed to lie by a closely
spaced rectangular grid of node points and allowing mem-
bers to lie along all segments joining node points. Cox
(1965) was first to show that the optimum structure of maxi-
mum stiffness for frameworks is identical with the structure
of least volume designed to carry the same load. However,
these works still suffered from the same impracticalities and
remained academic.

The field of structural optimization remained strong in
the 1970s, Hemp (1973) published a book in which he gave
Michell’s theory for frameworks, beams, circular sandwich
plates and plates with inplane loading. Pope and Schmit
(1971) put limitations on both stress and displacement for

optimizing elastic designs. Charrett and Rozvany (1972)
extended the early work of Foulkes (1954) to multi-
component specific cost functions and multiple load con-
ditions. Michell’s early optimization theory was extended
to grillages, systems of beams, by Rozvany and Adidam
(1972). Prager also developed an interest in the topic and
teamed up with Rozvany to continue extending optimal lay-
out theory (Prager and Rozvany 1976). An early version of
perimeter control was first seen in grillage layout optimiza-
tion (Rozvany and Prager 1976), by enforcing a finite num-
ber of beams. It was noticed that the exact solutions of lay-
out theory usually contain an infinite number of intersecting
members with infinitesimal spacing, termed ’grillage-like
continua’ (Prager 1974). Rozvany and Prager (1979) devel-
oped optimal conditions for curved surface structures, con-
sisting of a system of intersecting arches, with given vertical
loads. The biggest advancement in the 1970s for the field of
structural optimization was the beginning of generalized or
variable topology shape optimization by Rossow and Tay-
lor (1973). Although a penalization factor of 1 was used,
therefore the optimum results did not result in a black-
white topology, Taylor’s intention was to obtain cavities in
the plate in some areas. Therefore this paper is considered
the first conceptualization of generalized shape optimization
(Rozvany 2001b).

The 1980s saw a drive for progress in generalized shape
optimization. Two key developments emerged from the
eighties. Firstly, Cheng and Olhoff (1981) found in an FE-
based optimization of solid plates that the optimal plate
design develops a system of ribs. Similarly, Kohn and Strang
(1983) found solid, porous and empty regions in plasti-
cally designed cross-sections for torsion. Rozvany et al.
(1982) investigated in great detail the densely ribbed nature
of plastically designed optimal solid plates. Secondly, opti-
mal microstructures for perforated plates were established
through various mathematical studies, the most popular
being rank-2 laminates (Lurie et al. 1982; Kohn and Strang
1986a; Avellaneda 1987). From these developments (Roz-
vany et al. 1987) derived the homogenized rigidity tensor
of rank-2 layered laminates for zero Poisson’s ratio and
determined optimal topologies for axisymmetric plates in
flexure (Rozvany et al. 1987).

The boundary variation method for shape optimization
dominated the literature in the 1980s. Boundary variation
can be implemented in a number of ways, Pironneau (1984)
employed mesh moving schemes where the design vari-
ables are the co-ordinates of the nodal points of a finite
element model (Pironneau 1984). Kikuchi et al. (1986)
showed the importance of ‘regularity’ of the finite element
model near the design boundary so as to yield a physi-
cally sound optimal shape (Kikuchi et al. 1986). Another
popular way to implement the boundary variation method
is to employ a boundary segment idea; this describes the
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boundary by a set of simple segments such as straight
lines, circular arcs, elliptic arcs and splines. The opti-
mum is then determined within this restricted definition of
the boundary. This method has been employed by Botkin
and Bennett (1985) and Braibant and Fleury (1984). The
mathematical foundation of boundary variation methods for
optimal shape design and design sensitivity analysis was
thoroughly investigated in the 1980s, for example, Simon
(1980), Zolesio (1981), Choi and Haug (1983), Rousse-
let and Haug (1983), Haug et al. (1986), and Choi and
Seong (1986) and Haber (1987). These methods could be
used for shape optimization under the assumption that the
initial topology is fixed during the iterative design optimiza-
tion. Thus, it is not possible to find the optimal topology
and optimal shape of the structure using these boundary
variation techniques. To do this shape optimization prob-
lems must be transformed to material distribution problems.
One method of doing this is the microstructure approach,
this was first demonstrated by Cheng and Olhoff (1981,
1982) on optimal thickness distribution for elastic plates.
This work led to a series of works on optimal design
problems with microstructures in the formulation of the
problem. For applications to plate problems see Bendsoe
(1986) and Gibiansky and Cherkaev (1984). For the opti-
mum design of torsion bars constructed from two dissimilar
materials see Goodman et al. (1986) and Kohn and Strang
(1986b). These studies concluded that laminated structures
give more efficient designs and therefore microstrucutres
have to be built in order to determine the strongest struc-
ture. Mathematically the introduction of microstructures to
the formulation of structural design problems is a relax-
ation of the variational problem that is formulated for the
design optimization, for examples of this see Kohn and
Strang (1986a) and Bonnetier and Vogelius (1986). For
more information on boundary variation methods the reader
is advised to seek out the surveys by Ding (1986) and
Haftka and Gandhi (1986).

The boundary variation techniques are not straightfor-
ward to implement and usually require some method for
FEM-remeshing which is normally done several times dur-
ing an iterative optimization scheme. It is clear that these
early techniques suffered from complicated mathemati-
cal formulations restricting their implementation to real
structures and applications. Therefore leaving them as an
academic exercise only.

In the late 1980s two methods for structural optimi-
zation were introduced, the homogenization method by
Bendsoe and Kikuchi (1988) and the Solid Isotropic
Microstructure with Penalization Method (SIMP) by Bend-
soe (1989). The full SIMP algorithms was developed by
Zhou and Rozvany (1991) and Rozvany and Zhou (1991);
however, the term SIMP was not coined until 1992 by
Rozvany et al. (1992). These two methods revolutionized

the field of structural optimization, making it applicable to
real world problems, instead of just being an academic exer-
cise. This is where this review paper begins. Its purpose
is to analyze the developments made and the applications
of structural optimization, namely evolutionary algorithms.
The following section outlines the structure of the paper.

1.2 Layout of review paper

The present review is dedicated to the evolutionary topology
and shape optimization methods and there applications. This
area of research has been extremely active since the late
1980s due in-part to the publication of two papers (Bendsoe
and Kikuchi 1988; Bendsoe 1989). In recent years hun-
dreds of publications have emerged including a number of
books, for example, Bendsoe (1995), Xie and Steven (1997),
Hassani and Hinton (1999), Bendsoe and Sigmund (2003),
Huang and Xie (2010a), and Rozvany and Lewinski (2013).
The current comprehensive review articles on the topic
are Rozvany, Bendsoe and Kirsch review paper of 1995
(Rozvany et al. 1995). This review covers the early work
in the field. Eschenauer and Olhoff’s review paper in
2001 (Eschenauer and Olhoff 2001). This review cap-
tures the activity of the 1990s, however does not look
into the non gradient based methods with detail. It con-
centrates on topology optimization, not shape or topogra-
phy optimization. A lot of the European contribution has
been discussed, however not the full international contri-
bution. Rozvany’s review paper in 2001 (Rozvany 2001b),
focuses on computer aided topology optimization, such as
the homogenization and SIMP methods. Rozvany’s latest
review paper (Rozvany 2009), compares the popular estab-
lished methods used in topology optimization. Sigmund
and Maute’s comparative review paper in 2013 (Sigmund
and Maute 2013), aimed not to perform a comprehensive
review but to observe the trends and directions and to tie
these developments together (Sigmund and Maute 2013).
The authors categorize the ESO method as a ‘discrete
SIMP approach’ arguing that little difference exists between
the ESO and SIMP methods. The authors of this review
believe this view oversimplifies the theoretical formulation
of the ESO method, although the procedure may only differ
marginally the implementation allows for extra complex-
ity and computational efficiency, with possible reduction in
optimality of less than 1 % (Huang and Xie 2010a). Further-
more, SIMP is purely a gradient based method taking the
derivative of the sensitivity numbers, whereas evolutionary
algorithms rank the sensitivity numbers based on their mag-
nitudes. This allows for a more flexible objective function
and ease of implementation, which have greatly bene-
fited the application of topology optimization in fields
such as architecture, Felicetti (2009), and the manufactur-
ing, Kim et al. (2000b), industries. The most recent is the
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review paper by Deaton and Grandhi (2014), this review is
an update of Eschenaur and Olhoff’s review, highlighting
the advancements in topology optimization in continuum
structures from 2000 to 2012.

Section 2 of this review paper deals with the variety of
non gradient based algorithms, these are algorithms that
do not calculate the Jacobean or Hessian matrix for the
design variables. A brief discussion of the popular algo-
rithms is given, with references to other papers for more
detail.

Section 3 is devoted to the previous methods and devel-
opments of the evolutionary structural optimization algo-
rithm. A comprehensive review of the algorithm is given,
with the variety of applications and advances made. The
suggested shortcomings of the algorithm is also analyzed
followed by the recent developments to alleviate these
pitfalls.

Section 4 focuses on the various sensitivity functions that
have been developed for a variety of optimization prob-
lems. The earlier sensitivity functions and more recent are
given to further highlight the advancements in evolutionary
topological optimization.

Section 5 looks at the use of evolutionary algorithms
in shape optimization. This section is similar to Section 3,
however looking at shape optimization instead of structural
optimization. The developments and applications of shape
optimization are discussed.

Section 6 discusses the applications of evolutionary algo-
rithms to real world engineering problems. The develop-
ment of structural topology optimization has allowed such
tools to be used by architects and engineers in industry.
This section discusses the use of such tools in industry
applications.

Section 7 presents the possible future developments of
evolutionary topology optimization, looking at the most
recent algorithms and applications.

Section 8, finally, presents the conclusions of this
article.

2 Non gradient based algorithms

In the literature there are several non gradient based
algorithms that have been applied to structural optimiza-
tion. Such methods include Genetic Algorithms (GAs)
Balamurugan et al. (2008, 2011), Jain and Saxena (2010),
Madeira et al. (2010), Wang and Tai (2005), Zhou (2010),
Wang et al. (2006), Guest and Genut (2010), Bureerat and
Limtragool (2006), Manan et al. (2010), Artificial Immune
Algorithms (Luh and Chueh 2004), Ant Colonies (Kaveh
et al. 2008; Luh and Lin 2009), Particle Swarms (Luh
et al. 2011), Simulated Annealing (Shim and Manoochehri
1997), Harmony Search (Lee and Geem 2004), Differential

Evolution Schemes (Wu and Tseng 2010), Bacterial For-
aging (Georgiou et al. 2014) and many others. For further
non gradient based algorithms the reader is referred to the
book written by Yang (2010). The aforementioned meth-
ods have been directly applied to topology optimization,
their binary nature intuitively lends itself to the determina-
tion of solid/void material, however they have not experi-
enced significant acceptance. This can be partly attributed
to the fact that it is difficult to ensure structural con-
nectivity because of the stochastic search procedure and
partly due to the excessive computation power required.
Despite these shortcomings one technique that began as
a non gradient based algorithm, the Evolutionary Struc-
tural Optimization (ESO) method, has gained widespread
popularity among researches in structural optimization and
practitioners in engineering and architecture (Huang and
Xie 2010c). ESO has been used for a wide range of
applications and well over one hundred publications and
thousands of citations have been produced by researchers
from around the world. For these reasons the authors have
decided to focus on the ESO technique in this review
paper.

The idea of having a continuously evolving design,
that slowly improves until it reaches the optimum, is best
seen in nature. Over time all living things have evolved
to become better suited for survival. This idea was first
used by Xie and Steven (1993) for structural optimiza-
tion in 1993 and is known as Evolutionary Structural
Optimization (ESO). Thus moving away from the tradi-
tional mathematical programming techniques originating
from Rozvany in the early 1970s (Rozvany 1972a, b) and
then Prager in the late 1970s and early 1980s (Prager and
Rozvany 1977a, b).

The concept behind ESO is that by slowly removing inef-
ficient material from a structure, the shape of the structure
evolves towards an optimum (Xie and Steven 1997). The
idea of element removal has been tried by other researchers,
prior to 1993, including (Maier 1973; Rodriguez-Velazquez
and Seireg 1985), Schnack (1978, 1988), Schnack et al.
(1988), Schnack and Iancu (1989, 1991, 1993) and
Atrek (1989), these studies however did not result in a
generalized method. The design domain is constructed
by the finite element method. The criteria for determin-
ing the inefficient material in a structure is varied and
depends on the types of design constraints, this will be
discussed in detail in Section 4. An initial rejection rate
(RR) is set at the beginning of the optimization, material
that fall below this rejection rate is periodically removed,
until a steady-state is reached. At this point the rejec-
tion rate is updated, and the process is repeated. The
optimization is completed once a certain criteria, i.e. vol-
ume fraction, minimum stress level, etc., has been met.
Evolutionary algorithms are known to be robust, versatile
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and capable of solving global optimization problems
(Tanskanen 2002).

3 Previous methods and developments

The early methods of the ESO technique were initially
applied to natural structures, such as bones, to show that
the optimum topology and shape of such structures are
achieved over time, by following an evolutionary path (Xie
and Steven 1993). Xie and Steven give the example of a
metal implant for a broken bone (Xie and Steven 1993).
After the repair the bone diminishes as calcium is absorbed
in the bloodstream. It is shown that if any local bone
does not have sufficient stress applied that part diminishes,
these results were mirrored in the optimization. These early
evolutionary techniques only removed inefficient material,
therefore the initial model used an over sized structure,
that slowly was reduced. The early methods also used what
is called a fully stressed structure (Gallagher 1977), this
method attempts to only use structural components that
are subjected to their maximum allowable stress. There-
fore the design criteria is the von Mises stress of each
component. The ESO technique has been integrated into
interactive computer programs, some to note are ESFD
developed by Hinton and Sienz (1995) and Evolve97 by
Xie and Steven (1997).

Following the early development of the ESO method on
single loaded structures, the method was further applied to
multiple load case structures by Xie and Steven (1994a)
and Steven et al. (1995). This development allows the ESO
method to be used on more realistic structures, since most

structures in a real environment are subjected to multiple
load cases. One of the most significant early examples was
the application of the evolutionary procedure to the bicycle
frame, see Fig. 1a, the final model currently hangs outside
the Lawrence Hargrave Professor’s office at the University
of Sydney, see Fig. 1b. This method was further applied to
frame structures by Manickarajah et al. (2000).

The next development of the ESO method was to opti-
mize a structure for resonance (Xie and Steven 1994b),
instead of looking for a fully stressed design. This is an
extension from the previous ESO methods to eigenvalue
problems. The evolutionary algorithms began to adopt gra-
dient based techniques, such as the sensitivity number of
the eigenvalue problem, to determine which elements to
remove; however, elements were still explicitly defined as
existent or absent, resulting in structures free of intermedi-
ate densities. Xie and Steven developed an ESO technique
to optimize the shape and topology of a general struc-
ture that maximized or minimized the natural frequency.
This allowed excessive vibrations due to resonance to be
avoided. This method was further developed by Xie and
Steven to include keeping a chosen natural frequency con-
stant, maximizing the gap between two natural frequencies
and multiple frequency constraints (Xie and Steven 1996).
This allowed the ESO method to be applied to dynamic
problems. Some examples can be found in Zhao et al. (1995,
1996). More recently the ’soft-kill’ penalty based BESO
method was applied to frequency optimization by (Huang
et al. 2010).

The element strain energy based criterion was first uti-
lized for optimization using the ESO method by Chu et
al. (1996, 1997, 1999). They showed a method using the

Fig. 1 ESO for Multiple Load
Case
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ESO technique that would minimize the weight of the
structure while satisfying stiffness requirements. The pro-
cess is to determine the sensitivity of each element on
the stiffness of the overall structure and then remove the
elements which make the least change in the stiffness of
the structure. Querin applied this approach to nonlinear
problems where material and geometric nonlinearities are
considered (Querin et al. 1996). Liang moved away from
a heuristic approach, creating an element removal criterion
based on a sensitivity number (Liang et al. 2000a).

For a slender member the load carrying capacity is often
determined by its buckling load. Optimum structural design
for buckling can be achieved by moving material from the
strongest locations to the weakest, such that the final design
will have a higher buckling load than that of the initial
design of the same weight. Optimization against buck-
ling for columns, frames, and plates was first implemented
using the ESO technique by Manickarajah et al. (1995) and
Manickarajah and Xie (1998).

Other load conditions such as thermal stresses were
incorporated into the ESO technique by Li et al. (1997,
2000). A fully stressed design under thermal loading con-
ditions was developed. This work was further developed
to include optimization for a structure with as even a tem-
perature or flux distribution as possible (Li et al. 1999b).
Research involving optimization under heat loads using
the ESO technique was applied to conducting fields to
reduce the temperature at a specific position, by varying
the conducting material distribution in other regions (Li
et al. 2004). Thermoelasticity was investigated using the
ESO technique by Li et al. (2001c). Patel et al. solved
extremal conductivity microstructures by employing the
ESO technique (Patil et al. 2008). Heat conducting struc-
tures with design dependent heat loads were optimized
using the BESO technique by Gao et al. (2008). Ansola et al.
developed a BESO technique for the design of thermal com-
pliant actuators under a uniform temperature distribution
and non-uniform heating including conduction and convec-
tion (Ansola et al. 2010, 2012). For a good paper on the
application of the ESO technique on different physical field
problems the reader should see Steven et al. (2000).

The elastic contact problemwas solved by Li et al. (1998)
where the contact profile of several separate bodies is opti-
mized to reduce the maximum contact stress. This method
was extended to three-dimensional contact surfaces, where
contact profiles are iteratively and slowly modified based
on the relative levels of contact stress (Li et al. 2001d).
Contact constraints in beam/truss structures were devel-
oped using the ESO technique (Li et al. 2003a). Work on
multiple contact constraints was also considered by Li et
al. (2003b, 2005), where the example of a washer shows that
this method is effective for design problems consisting of
single- or multiple-contact regions in mechanical systems.

The early ESO methods are limited by only removing
material from the structure, the consequence of this is that
the initial model must be significantly over-designed and
that if structure is prematurely removed it cannot be recov-
ered. To overcome this an improved model of the early ESO
techniques was developed by Querin et al. (1998) known as
bi-directional ESO (BESO). This technique allows elements
to be readmitted to the structure. BESO was further devel-
oped to include stiffness optimization (Yang et al. 1999). A
further extension of this method to three-dimensional struc-
tures can be found in Young et al. (1999). A reverse method
to the original ESO algorithm was proposed, whereby the
structure evolves from the base which is the minimum
structural form required to carry the load regardless of the
magnitude of the stress levels (Querin et al. 2000a). The
addition of a perimeter constraint to the BESO technique
was developed by Yang et al. (2003). Kim et al. intro-
duced cavity control techniques into BESO (Kim et al.
2000a, 2002a). Along with these developments, fixed grids
were introduced, to reduce the computational time (Kim
et al. 2000b, 2002b). The optimality of the bi-directional
ESO method was validated by Querin et al. (2000b).

Rozvany and Zhou examined the ESO/BESO technique
in 2001, Zhou and Rozvany (2001), and concluded that both
methods are not able to always guarantee an optimal design.
As a result, a large number of solutions generated during the
optimization process have to be compared to generate the
optimal solution (Rozvany 2009). Secondly, Sigmund and
Petersson pointed out that the ESO/BESO procedure cannot
easily be extended to other constraints such as displace-
ment (Sigmund and Petersson 1998). Following the early
criticism from Rozvany and Zhou; Zhu, Zhang and Qiu
developed a BESO method where an element replaceable
method is proposed for better representing the element sta-
tus (Zhu et al. 2007). Huang and Xie proposed a new version
of the BESO technique that is proven to produce convergent
solutions (Huang and Xie 2007b; 2008a). The improvement
involved increasing the accuracy of the elemental sensitiv-
ity numbers by using its historical information. In addition
Edwards et al. compared the ESO and SIMP methods in
support of the ESO technique (Edwards et al. 2007).

The extension of the ESO method to include multi-
criteria design problems was first achieved by Proos et
al. (2001a, b). They used a weighting method to optimize
simultaneously, the maximization of the first mode of natu-
ral frequency and the minimization of the mean compliance
of the structure. Maximum stiffness with minimum stress
was first developed by Steven et al. (2002). Kim et al. devel-
oped a combined static/dynamic objective parameter for
use in the ESO technique for thermal stress and frequency
criteria (Kim et al. 2006).

Checkerboarding, the repetition of material and void ele-
ments in a structure, is a common issue in optimization
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algorithms. Li et al. (2001b) developed a simple algorithm
to alleviate these numerical difficulties in the ESO method.
Another issue associated with optimization is whether the
solution is a ‘global’ or a ‘local’ optimum. To solve this
problem Liang et al. introduced performance based meth-
ods where an ESO type element removal technique is
performed and the optimal solution is determined from
iteration histories (Liang et al. 2001; Liang and Steven
2002).

The literature has shown significant developments in the
ESO procedure since the idea was brought to fruition in
1992 (Xie and Steven 1992). However a lot of the recent
developments have come out of the criticism of the algo-
rithms ability to find the optimum solution efficiently and
effectively (Rozvany and Querin 2002; Zhou and Rozvany
2001; Sigmund and Petersson 1998; Rozvany 2009, 2001a).
This lead to the development of a ‘soft-kill’ ESO/BESO
technique (Deaton and Grandhi 2014). The idea, first intro-
duced by Rozvany and Querin (2002), does not completely
remove inefficient elements. Doing this allows for the com-
putations to re-admit material to be based directly on the
void elements, as opposed to the surrounding elements.
Rozvany labeled this technique the Sequential Element
Rejection and Admission (SERA) method (Rozvany and
Querin 2002).

More recent developments to stabilize the convergence
of the ESO/BESO method have been made by Huang
and Xie (2007b) and Huang and Burry (2006). Here a
modified BESO is proposed where the nodal sensitivity
numbers, instead of the element sensitivity, are used for
compliance minimization. A mesh dependency filter is
used, similar to the filter schemes that were introduced
by Sigmund (1997), Sigmund and Petersson (1998), and
Sigmund (2001) for the SIMP method, to produce sta-
ble convergence to mesh independent and checkerboard
free solutions. A similar penalized density measure to the
SIMP model, developed by Bendsoe (1989), Bendsoe and
Sigmund (2003), Rietz (2001), Zhou and Rozvany (1991),
and Bendsoe and Sigmund (1999), was employed in the
ESO technique independently by both Zhu et al. (2007)
and Huang and Xie (2009). Huang and Xie demonstrated
that the previous ’hard-kill’ BESO methods are a special
case of the ’soft-kill’ penalty based BESO methods with
a infinite penalty (Huang and Xie 2009). The ’soft-kill’
BESO method was extended by Huang and Xie to include
local displacement constraints (Huang and Xie 2010b, c).
Abolbashari and Keshavarzmanesh investigated the sensi-
tivity of the initial and evolutionary rejection ratio on the
optimum structure of the ESO technique on 2D and 3D
structures (Abolbashari and Keshavarzmanesh 2006). They
found that the evolutionary rejection ratio had a bigger
impact on the final design, this emphasizes the slow nature
of the evolution process.

Structures with a non-linearity are not easily optimized
by ’soft-kill’ methods due to low density elements creating
numerical difficulty. Huang and Xie first applied BESO to
structures with both material and geometric non-linearities,
initially using the traditional BESO technique (Huang and
Xie 2007a) followed by the improved ’hard-kill’ method
with filtering (Huang and Xie 2008b).

The ESO/BESO technique was first modified for design
dependent loads by Yang et al. (2005). The sensitivity num-
ber was modified to show that the BESO procedure can be
used for transmissible loads, surface loading and self weight
body loads. Another modified sensitivity number for self
weight body loads was proposed by Ansola et al. (2006).
More recently Huang and Xie proposed a formulation for
self weight loading using the soft-kill penalty-based BESO
method (Huang and Xie 2011).

Finally, there has been some work on reliability-based
topology optimization (RBTO) utilizing ESO/BESO meth-
ods. Kim et al. was first to use ESO for use in first-order
reliability methods (Kim et al. 2007). More recently the
improved ’hard-kill’ BESO along with a response surface
method was used for RBTO by Eom et al. (2011). Cho
et al. extended these methods to include stiffness, applied
load and dimensions for multi-objective problems, using
BESO and the performance measure approach (Cho et al.
2011).

4 Sensitivity functions and optimization criteria

Over the past three decades structural topology optimization
has matured to a level where multiple objectives, such as
frequency and buckling, can be considered in the optimiza-
tion algorithm. For example vibration response is a crucial
design consideration for structures subjected to dynamic
loads. It is advantageous to keep the natural frequency of
the structure away from any driving frequencies that may
be applied to the structure. Also, structures with a high fun-
damental frequency result in a stiff design, which is good
for static loads (Krog and Olhoff 1999). Designers have
got it wrong in the past, the most famous example being
the Tacoma Narrows bridge in 1940, which collapsed due
to resonance (von Karman 2005). The problem being the
frequency of the wind gust differing little from the natural
modes and frequencies of the bridge deck (Blevins 2001).
This section outlines the sensitivity functions and optimiza-
tion criteria used for structural topology optimization of
evolutionary algorithms.

4.1 Stress optimization

The first objectives of structural topology optimization
methods was the minimization of stress, where for the
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evolutionary methods the sensitivity function for stress min-
imization is the von Mises stress. For the original evolution-
ary structural optimization technique the sensitivity function
for stress minimization is defined by:

σvm
remove = RRσvm

max (1)

where RR is the rejection ratio of the iteration (Section 2).
Elements with a von Mises stress that fall below σvm

remove are
removed. Li et al. (1999c) and McKeown (1997) showed
that such a fully stressed design is equivalent to that of the
stiffness criterion, i.e. it cannot always minimize the highest
stress in the structure.

4.2 Stiffness optimization

The mean compliance, the inverse measure of the overall
stiffness of a structure, is used for optimizing structures with
stiffness constraints. The mean compliance is defined as the
total strain energy of the structure or the external work done
by the applied loads. The sensitivity function for the mean
compliance is defined as Huang and Xie (2010a):

αe
i = 1

2
uTi Kiui (2)

where ui is the displacement vector of the ith element and
Ki is the stiffness matrix of the ith element. The sensitiv-
ity function indicates the increase in mean compliance as
a result of the removal of the ith element. The increase
in mean compliance due to the removal of the ith element
is equal to the elemental strain energy of the ith element.
Therefore, the elements with the lowest strain energy are
removed. Li et al. (1999c) showed that structures that are
designed for maximum stiffness result in similar topolo-
gies to structures that are designed for minimum stress.
Papadrakakis et al. (1996) compare resulting topologies
using different objective functions for stress and stiffness
optimization.

4.3 Stiffness optimization with multiple materials

An extension of the previous section is to optimize struc-
tures composed of multiple materials with a stiffness con-
straint. To interpolate the material properties between two
neighboring phases, Ej and Ej+1, the interpolation method
devised by Bendsoe and Sigmund is used (Bendsoe and
Sigmund 1999).

E(xij ) = x
p
ijEj + (1 − x

p
ij )Ej+1 (3)

where p is the penalty exponent. Therefore the sensitivity
number is defined by:

αij = 1

2
x

p−1
ij

(
uT

i K
j
i ui − uT

i K
j+1
i ui

)
(4)

where K
j
i and K

j+1
i are the element stiffness matrices cal-

culated using Ej and Ej+1 respectively. Note that the sen-
sitivity number αij is defined in the entire design domain,
however it is only used for making adjustments between
materials j and j + 1. The sensitivity number for the
’soft-kill’ BESO method can be written as:

αij =

⎧⎪⎨
⎪⎩

1
2

[
1 − Ej+1

Ej

]
uT

i K
j
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2
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2xp
minEj +(1−x

p
min)Ej+1

uT
i K

j+1
i ui for materials = j + 1, . . . , n

(5)

where K
j+1
i is found using the material interpolation

method (3) to calculate the elastic modulus. For the ’hard-
kill’ BESO method the penalty number is set to infinity
giving:

αij =
{

1
2

[
1 − Ej+1

Ej

]
uT

i K
j
i ui for materials = 1, . . . , j

0 for materials = j + 1, . . . , n

(6)

The optimization problem is converged when the volume
fractions for all the materials are met.

4.4 Displacement constraints

It is often required that the maximum displacement of a
structure or the displacement at a specific location be within
a prescribed limit. To find the change in displacement at a
specific point, j , due to the removal of an element, i, we
introduce a unit load vector, Fj, in which only the j th com-
ponent is equal to unity and all the others are equal to zero.
The sensitivity function for the displacement constraint can
then by calculated by:

αij = uijKiui (7)

where uij is the ith element displacement vector due to the
unit load, j , and ui is the ith displacement vector. This
sensitivity function gives the change in the specified dis-
placement component uj due to the removal of the ith

element. To minimize the change in displacement due to
element removal the elements with αij closest to zero are
removed. Kocvara (1997) develop a bi-level programming
method for the topology optimization of a truss structure
with a linear displacement constraint.
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4.5 Frequency optimization

A structure’s response to a dynamic loading is heavily
dependent on the first few natural frequencies of the struc-
ture. Frequency optimization of structures is the second
most common optimization criteria, after compliance min-
imization, due to dynamic stability. A good survey paper
by Grandhi (1993) on frequency optimization, before the
ESO method, covers most of the early developments in this
area. The early ESO methods, where inefficient material
was simply removed such that no intermediate material was
present (i.e. 0-1 solution), solved the following eigenvalue
problem for its sensitivity function (Xie and Steven 1997):

(K − ω2
nM)un = 0 (8)

where K is the global stiffness matrix,M is the global mass
matrix, ωn is the nth natural frequency and un is the eigen-
vector related to the nth natural frequency. The sensitivity
function is then defined by:

αi
n = 1

mn

ui
T

n (ω2
nM

i − Ki)uin (9)

wheremn is the modal mass corresponding to the nth natural
frequency. This sensitivity function gives the change in ω2

n

as a result of the removal of the ith element.
More recent ESO methods use a ‘soft-kill’ algorithm

where the material is not completely removed, but applies a
material interpolation scheme similar to the SIMP method.
It has been demonstrated that these ‘soft-kill’ methods
are unsuitable for frequency optimization due to artificial
localized modes in low density regions (Pederesen 2000).
However, Huang et al. (2009) developed a new ’soft-kill’
BESO method for frequency optimization. The sensitivity
function was determined by:
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(10)

The main problem is that the extremely high ratio
between mass and stiffness for small values of xi with
penalty exponents, p, greater than 1 causes artificial local-
ized vibration modes in the low density regions (Du and
Olhoff 2007). A material interpolation scheme that keeps
the ratio between mass and stiffness constant when xi =
xmin is given by:

ρ(xi) = xiρ
0 (11)

E(xi) =
[

xmin − x
p
min

1 − x
p
min

(
1 − x

p
i

) + x
p
i

]
E0 (0 < xmin ≤ xi ≤ 1)

(12)

where ρ0 and E0 are the density and stiffness for solid
material.

4.6 Optimization for buckling

With the development of high strength materials, many
structural elements are becoming thinner making themmore
susceptible to buckling. Optimum structural design against
buckling is achieved by shifting material from the strongest
locations to the weakest. This allows the final design to
have a much higher buckling load, but with the same weight
as the initial design. In spite of the extensive work per-
formed in structural optimization, only a small amount of
this work has been directed towards buckling optimization.
The first being (Keller 1960) presenting the shape of the
strongest column with simply supported ends. Tadjbakhsh
and Keller (1962) extended this to several other bound-
ary conditions. Simitses et al. (1973) use the finite element
procedure to optimize the shape of columns. This work is
extended by Szyszkowski and Watson (1988) to include
the optimization of frames (Szyszkowski et al. 1989).
Pandey and Sherbourne (1992) extend the classic solution
by Keller (1960) to a simply supported plate. Manickara-
jah et al. (1995) developed the ESO technique for buckling
optimization.

The linear buckling behavior of a structure is determined
by the following eigenvalue problem:

([K] + λn

[
Kg

]) {un} = 0 (13)

where [K] is the global stiffness matrix,
[
Kg

]
is the global

stress/geometric stiffness matrix, λn is the nth eigenvalue
and {un} is the corresponding eigenvector. The most criti-
cal buckling load is the lowest one, which is equal to the
first eigenvalue, λ1, multiplied by the applied load. λ1 is
referred to as the buckling load factor. The objective of
buckling optimization is to raise the buckling load factor, λ1,
so that the buckling load may be maximized. The sensitivity
number for the buckling load is defined as:

αi = −
{
ui
1

}T [
�Ki

] {
ui
1

}
(14)

where
{
ui
1

}
is the eigenvector of the ith element and

[
�Ki

]
is the change in the ith element stiffness matrix. This sen-
sitivity number is a measure of the effect of changing the
cross-sectional area of the ith element on the buckling
load factor. For a plate structure this sensitivity number,
αi , is only valid for the case of gradually varying thick-
nesses of plate elements. Therefore an element cannot be
removed from the structure, as is the convention in the clas-
sical ESO methods, because of the significant changes in
the membrane or axial stress resultants in its surrounding
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elements. Buckling optimization is not performed by ele-
ment removal, but by changing the cross-sectional areas. For
the case of an increase in cross-sectional area the change in
the element stiffness matrix is given by:

[
�Ki

]
=

[
�Ki

]+ =
[
Ki(A + �A)

]
−

[
Ki(A)

]
(15)

and for reduction in cross-sectional area:

[
�Ki

]
=

[
�Ki

]− =
[
Ki(A − �A)

]
−

[
Ki(A)

]
(16)

Hence for the effect of cross-sectional area changes
on the buckling load factor two sensitivity numbers are
calculated, one for area increase:

α+
i = −

{
ui
1

}T [
�Ki

]+ {
ui
1

}
(17)

and another for area reduction:

α−
i = −

{
ui
1

}T [
�Ki

]− {
ui
1

}
(18)

To raise the buckling load factor it is most effective to
increase the cross-sectional areas of elements with high-
est α+

i values and reduce those with highest α−
i values.

This technique is the original ESO buckling optimization
method. Rong et al. (2001) extended the ESO method to
include the sensitivity of closely-spaced eigenvalues and
repeated eigenvalues. This type of problem is known as
bi-modal or multimodal. Extensive research has been car-
ried out to solve bi-modal and multimodal problems (Olhoff
and Rasmussen 1977; Haug 1982; Szyszkowski et al. 1989;
Rodrigues et al. 1995). When the first eigenvalue becomes
close to the subsequent eigenvalues, there will be interfer-
ence between the first and the subsequent buckling modes.
When λ1 and λ2 become close, the first two buckling modes
may swap as a result of the structural modifications during
the optimization iterations. To effectively increase the buck-
ling load factor in these circumstances, both λ1 and λ2 have
to be increased. To achieve this the average of λ1 and λ2 is
increased. Therefore the sensitivity number becomes:

αi = �

(
λ1 + λ2

2

)
= −1

2
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1

}T [
�Ki

] {
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1

}

+
{
ui
2

}T [
�Ki

] {
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2

})
(19)

Similarly for the multimodal case, when the distance
of the mth eigenvalue, λm, and the first eigenvalue, λ1, is
within a certain limit and the distance between λm+1 and λ1
is greater than that limit, the sensitivity number becomes:

αi = �
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⎝ 1
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m∑
j=1
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j

})

(20)

These sensitivity numbers are the average values of the
individual sensitivity numbers of all participating modes.

As mentioned in Section 4.5 numerical instabilities occur
when solving eigenvalue problems with low density ele-
ments. Huang et al. (2010) developed an alternative material
model to avoid numerical instabilities (see Section 4.5),
which can also be applied to the buckling optimization
problem.

4.7 Optimization for design dependent loading

Yang et al. (2005) showed that for compliance optimization
of structures with design dependent loads, such as self-
weight and surface loads, the conventional BESO procedure
can be applied with a modified sensitivity number. When the
self weight load is included in the finite element analysis,
modifying an element leads to changes in the load vector,
which needs to be considered in the sensitivity analysis. The
sensitivity number becomes:

αi = uT
i Kiui + 2�P T

i ui

Wi

(21)

where �Pi is the change in the load vector due to the
removal of the ith element. Ansola et al. (2006) also devel-
oped a modified sensitivity number for self weight loads in
ESO.More recently (Huang and Xie 2011) applied the ’soft-
kill’ penalty based BESO method to self-weight loading
compliance optimization.

5 Shape optimization

Themaximum stress present in a structure provides the basis
of the design limit, even though the bulk of the surface of the
structure often has a much lower stress. The ESO technique
has been used to provide structural shapes where the bound-
ary is evolved to make the surface form as evenly stressed
as possible. Shape optimization has been an important topic
well before the advent of ESO, the articles by Haftka and
Grandhi (1985) and Ding (1986) give excellent surveys on
the early shape optimization techniques.
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For shape optimization only a small region of a struc-
ture is of interest, thus only this region is available for the
ESO process and the rest of the structure is designated as
non-design. Material is only removed form the structural
boundaries in shape optimization, i.e. cut-outs and holes
are not created. Early shape optimization using non gra-
dient based algorithms are seen in Mattheck (1989), and
Baumgartner et al. (1992), Mattheck and Burkhardt (1990,
1992), Mattheck and Erb (1991), Huber-Betzer and
Mattheck (1991), and Chen and Tsai (1993).

An early use of ESO for shape optimization was in
the design of adhesive fillets (Rispler et al. 2000). The
ESO method was employed to optimize the shape of adhe-
sive fillets found in tabs of tensile test specimens. Shape
optimization of cutouts in laminated carbon-fiber compos-
ite panels using ESO was demonstrated by Falzon et al.
(1996). An initial small cutout was introduced into the finite
element model and elements were removed from around
the cutout based on a rejection criteria. An interesting
example of shape optimization using the ESO technique
is given by Querin (1997), who seeks to find the opti-
mal shape for an object hanging in the air under its own
weight. By removing elements from the boundaries based
on stress level, a shape with uniform stress is obtained. The
results of the shape optimization are indicative of shapes
in nature such as, plums and cherries, giving confidence
to the algorithm as it is known that nature evolves shapes
that lead to uniform surface stress (Mattheck 1990a, b;
Mattheck et al. 1992).

Li et al. (1999a) applied the ESO method for shape
optimization with stress minimization to a fillet in plane
stress under tension. Tekkaya and Guneri (1996) perform
a parametric study on the shape optimization of a plate
with a hole using a biological growth approach. Woon
and Querin performed shape optimization using genetic
algorithms (Woon and Querin 1999). Woon et al. (2000)
extended this analysis to incorporate fixed-grid methods.
Garcia and Gonzalez (2004) adopt evolutionary strategies to
perform shape optimization on continuum structures with a
fixed grid finite element method. They give the example of a
spanner, to show that it is the optimum shape for its loading
conditions.

Shape optimization with other constraints, such as fre-
quency constraints, has been considered. Wang et al. (2004)
analyze shape and sizing optimization for truss structures
with frequency constraints. Lingyun et al. (2005) per-
form the shape and sizing optimization of truss structures
with frequency constraints. Gomes (2011) use the particle
swarm algorithm to optimize the shape of truss structures
with dynamic constraints. Miguel (2012) compares the har-
mony search and firefly algorithms for the shape and size

optimization of truss structures considering dynamic con-
straints.

More recent efforts in shape optimization have focused
on aerodynamic shape optimization. Arias-Montano et al.
(2011) give an overview of Evolutionary algorithms
applied to multi-objective aerodynamic shape optimization.
Carrigan et al. (2012) developed a fully automated process
for optimizing the aerofoil cross-section of a wind turbine.

6 Applications

ESO/BESO have found a wide range of applications in
industrial topology optimization. The Akutagwa river side
project office building in Japan was designed using a BESO
method (Ohmori et al. 2005). The sensitivity function used
for the office building design is a stress level. The land size
of the building is approximately 10m×6m. The BESO pro-
cedure was applied to the south, west and north side walls
simultaneously, while the east side wall and floor slabs were
kept unchanged. The optimization was run for both dead
weight in the vertical direction and earthquake loading in the
horizontal direction. The topology of the three walls evolved
as material was removed from areas of low stress and added
to areas of high stress.

Cui et al. (2003) in collaboration with the well renowned
architect Arata Isozaki, created a tree-like structure using
a BESO method for the Florence New Station project in
Italy. The structure had a length of 400 m a width of 40 m

and height of 20 m. During the optimization process the
structure transformed from an initial design of a deck with
legs simply supported at the bottom to the final organic
form. Sasaki (2005) commented on the structure saying
‘The structural elements were optimally formed within a
three-dimensional space while satisfying the given design
conditions, and the structural shape thus obtained mani-
fests maximum mechanical efficacy with a minimum use
of materials.’ Although this proposal was not chosen as the
design for the Florence New Station, the same design was
chosen for the 250 m long entrance to the Qatar National
Convention Center.

Burry et al. (2005) carried out a series of studies which
revealed remarkable similarities between Gaudi’s designs
and ESO solutions. Antoni Gaudi’s Sagrada Familia Church
in Spain show parallels to natural growth and morphogen-
esis which has much in common with ESO/BESO tech-
niques. Gaudi had an unusual insight into optimal structural
forms, creating many structures that proved to be highly
efficient. Burry developed several models based off Gaudi’s
original drawings. After these prototype models were cre-
ated, structural optimization of columns on a sloping surface
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was performed. There was a great resemblance between the
ESO results and the actual columns.

Black Kosloff Knott (BKK) architects, work-
ing in collaboration with the Innovative Structures
Group, are designing pedestrian bridges for use in
major metropolitan freeways in Australia. The design
team employed the BESO method to create struc-
turally efficient and elegant forms. The structure
must have a width of 65 m and height of 5.7 m, with a
maximum ramp slope of 1 : 20. Currently a number of
optimized solutions, calculated with different constraints
and element types, are being investigated (Zuo 2009).

Other interesting applications of ESO/BESO found in
civil engineering include reinforced concrete strut-and-
tie models (Liang et al. 2000b), connection patterns for
joints (Li et al. 2001a), bridge design (Guan et al. 2003),
underground mining cavity design (Ren et al. 2005) and
tunnel engineering (Liu et al. 2008).

Applications in other fields of engineering include the
use of a conventional ESO method to design aircraft bulk-
heads for strength and low weight (Das and Jones 2011).
Biomedical design applications such as tissue scaffolds
using a BESO algorithm and a wall shear stress crite-
rion (Chen et al. 2011). Naceur et al. (2004) demonstrated
the use of ESO for sheet metal optimization. Ansola et al.
(2007) used ESO for compliant mechanism design, devel-
oping similar topologies to those obtained using SIMP.
More recently, Huang et al. (2012) used BESO to design
multifunctional periodic composites having both extremal
magnetic permeability and electrical permittivity and Yang
et al. (2011) did the same, however for stiffness and thermal
conductivity. There have been a number of recent publica-
tions in applying BESO methods to topology optimization
of material microstructures (Yang et al. 2013; Huang et al.
2013a; Zuo et al. 2013).

7 Future developments

This section looks at the direction that the research of evo-
lutionary algorithms is heading. A recent method that has
been developed in the field of topology optimization is
boundary variation techniques. Boundary variation methods
originated in shape optimization, where an explicit function,
such as the strain energy, defines a structural boundary as
shown in Fig. 2.

Figure 2 shows a UAV spar where the domain exists as
an explicit parameterization of variables between 0 and 1.
The structural boundary exists at the interface of regions
between 0 and 1. There are two main boundary varia-
tion methods in literature, level set (Sethian and Weigmann
2000; van Dijk et al. 2013) and phase-field method (Bourdin
and Chambolle 2003, 2006). The recent publications in

evolutionary based optimization has involved coupling
algorithms such as ESO/BESO with level set methods (Jia
et al. 2011; Zhu et al. 2014). The idea is to take the merits of
both the evolutionary algorithm and the level set algorithms.
Since traditional level-set methods are largely dependent on
the initial guess topology, ESO/BESO has been added to
avoid this Jia et al. (2011) and Zhu et al. (2014).

A recent structural topology optimization algorithm,
developed by Tong and Lin (2011), called the Moving Iso-
Surface Threshold (MIST) technique is a hybrid of the
ESO method, as it uses a physics based function, such as
von Mises stress, to drive the optimization. Vasista and
Tong (2014) recently applied the MIST topology optimiza-
tion method to aircraft structural design and extended the
method to three-dimensional ’block’ design. Munk et al.
(2014) extended the method to complex three-dimensional
geometries, such as the internal configuration of aircraft
wings, with structural cross-coupling.

Victoria et al. (2009) developed a novel optimization
algorithm, isolines topology design (ITD), which uses an
iterative algorithm similar to the ESO/BESO. The shape
and design depend on material which is removed and added
according to the shape and distribution of the isolines.
Victoria et al. (2014) extended the ITD algorithm to include
multi-material designs.

Section 3 showed the vast developments made in
the ESO/BESO optimization algorithm, however isotropic
materials were only considered during optimization. Sun
et al. (2011) extended the BESO algorithm to include
anisotropic material in the design process. Huang et al.
(2013b) applied a BESO algorithm to the microstructure
topology optimization of cellular materials and composites
with periodic microstructures. Their objective was to max-
imize the stiffness of the macrostructure’s design. Huang
et al. (2011) performed a similar analysis, however with
the objective of maximizing the bulk or shear modulus of
the macrostructure with a volume constraint. Yang et al.
(2013) applied the BESO method to the design of three-
dimensional orthotropic materials with predefined ratios
for effective Young’s moduli. The recent developments of
the ESO/BESO algorithm are to apply such methods to
microstructural optimization, which have typically been the
focus of gradient based methods such as: homogeniza-
tion and SIMP. Alonso et al. (2014) recently developed
a Sequential Element Rejection and Admission (SERA)
method, another term for ESO (see Section 3), that allows
material to flow between different material models. Sep-
arate criteria for the rejection and admission of elements
allows the material to change between the different prede-
fined material models and efficiently achieve the optimum
design.

The two streams of topology optimization, macroscopic
(ESO/BESO) and microscopic (Homogenization), have
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Fig. 2 Physical Response
Function taken from Munk et al.
(2014)

developed individually. However, recently (Yan et al. 2014)
have coupled the ESO/BESO algorithm for the macroscopic
optimization and the homogenization algorithm for the
microscopic optimization of structures. A similar approach
was performed by Coelho et al. (2008), they used a hierar-
chical model for topology optimization of the macroscopic
structure and a SIMP based method for concurrent optimiza-
tion of the microscopic structure.

Coupling between evolutionary and purely non gradient
based techniques has also been implemented to improve
the convergence of the ESO methods. A popular recent
development termed GESO Genetic Evolutionary Struc-
tural Optimization use the ESO sensitivity number as the
fitness function and less fit elements die off throughout
the evolutionary procedure. GESO has advantages over the
conventional ESO technique as the probabilistic criteria
involved in the genetic algorithm helps to avoid conver-
gence to local optima. Examples of applications of GESO
are found in Liu and Yi (2010). Zuo et al. (2009) developed
a genetic BESO technique that is similar to GESO, however
utilizing a BESO formulation similar to the hard-kill BESO
method.

A new approach that has been developed from optimiza-
tion in CFD design problems is called Nash-evolutionary
algorithms. The algorithm was first introduced in Sefrioui
and Periaux (2000) for solving computational fluid dynam-
ics problems. They include the mathematical concepts of
Nash equilibrium (Nash 1950; 1951), competitive game
theory where players maximize their payoffs while consid-
ering the strategies of their competitors, in the evolutionary
search. The idea is that the subpopulations interact to evolve
towards the equilibrium (Greiner et al. 2015).

8 Conclusion

This review article presented a comprehensive overview of
the developments made in evolutionary algorithms for struc-
tural topology and shape optimization. An introduction on
the early ‘foundations’ of structural topology and shape
optimization is given, followed by some prominent refer-
ences for non gradient based techniques. Due to the initial
resistance for the non gradient based methods, the article
focuses on the evolutionary algorithms, which have matured
to the point of industry application. The article attempts to
emphasis the broad range of topics and developments made
in the evolutionary algorithms, similar to the review articles
for gradient based methods (Eschenauer and Olhoff 2001;
Deaton and Grandhi 2014). The review article looks at some
of the different mathematical formulations for the variety of
optimization problems that the evolutionary algorithms have
been applied to. Application of evolutionary algorithms to
real world problems have been investigated in this review
article, showing the maturity of the current state of the art.
Finally, the most recent developments and directions of the
research in evolutionary algorithms have been discussed.

The early ESO optimization algorithms were criticized
for being slow and computationally inefficient as they were
not driven by a mathematical formulation. The early meth-
ods also seemed to fail for certain types of problems,
where the gradient based methods produced optimal results.
However, this criticism lead to significant developments,
outlined in this article, which allowed the ESO method to be
applied to industrial problems.

Current criticism directed towards evolutionary algo-
rithms include: lack of convergence and no guarantee of
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finding the global solution. The current evolutionary algo-
rithms include sensitivity functions that are said to be con-
verged when no material can be removed or added without
breaking the constraints of the problem. The latest research
have coupled the SIMP material model and level set meth-
ods to the ESO/BESO algorithm to improve the algorithms
convergence and efficiency.

The final section of the review paper analyzed the most
recent research undertaken in evolutionary algorithms for
structural topology optimization. Furthermore, new avenues
in the field have been discussed in combining gradient
and non gradient based algorithms to improve efficiency.
Finally, approaches in running evolutionary algorithms con-
currently with homogenization and SIMP methods for opti-
mization of the macrostructure and microstructure has been
examined.
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