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Abstract To reduce fuel consumption and exhaust emissions
in hybrid electric vehicles (HEVs), it is important to develop a
well-organized energy management system (EMS). This pa-
per proposes a torque control strategy coupled with optimiza-
tion for a parallel HEV. A torque control strategy is developed
first. In particular, a function to control the driving condition,
called the internal combustion engine (ICE) torque control
function, is introduced. This function controls the driving con-
ditions (electric motor (EM) driving, ICE driving, and ICE
driving assisted by EM) for reducing fuel consumption and
exhaust emissions. This function depends on several design
variables that should be optimized. Numerical simulation of
HEV using Matlab/Simulink is so computationally intensive
that a sequential approximate optimization (SAO) using a radial
basis function network (RBF) is adopted to determine the op-
timal values of these design variables. As the result, the optimal
ICE torque control function is determined with a small number
of simulation runs. In this paper, CO2 and NOx emissions are
minimized simultaneously for reducing the fuel consumption
and exhaust emission. Through numerical simulations using

typical driving cycles, the trade-off between CO2 and NOx

emissions is clarified and the validity of the proposed torque
control strategy coupled with the proposed optimization is
examined.

Keywords Hybrid electric vehicle . Torque control strategy .

Multi-objective optimization . Sequential approximate
optimization

Abbreviations
BSFC Brake Specific Fuel Consumption
DOH Degree of Hybridization
DP Dynamic Programming
EA Evolutionary Algorithm
EM Electric Motor
EMS Energy Management System
FLC Fuzzy Logic Control
HEV Hybrid Electric Vehicle
ICE Internal Combustion Engine
JC08 Japan Chassis 08
LHD Latin Hypercube Design
MOO Multi-Objective Optimization
NEDC New European Driving Cycle
RBF Radial Basis Function
SAO Sequential Approximate Optimization
SOC State of Charge
WLTC Worldwide harmonized Light duty driving Test

Cycle

1 Introduction

Zero emission vehicles using electric and fuel cells are an ideal
transportation for the environment. Unfortunately, both the
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battery and the fuel cell technologies are currently under de-
velopment. Therefore, hybrid electric vehicles (HEVs) using
both an internal combustion engine (ICE) and electric mo-
tor(s) (EM) are an alternative for reducing fuel consumption
and exhaust emissions. Hybrid technology is one of the most
promising research areas recently, and automotive industries
are trying to develop several new hybrid technologies for the
environment. To reduce the exhaust emissions as well as the
fuel consumption, it is important to develop and optimize not
only the architecture and components of HEVs, but also the
energy management system (EMS), for controlling the energy
flow among the components.

There are many hybrid types in HEVs, among which series
and parallel HEVs are the typical systems. In this paper, a
parallel HEV with a diesel engine is discussed. Figure 1 illus-
trates the block diagram schematic of the parallel HEV con-
figuration, in which the torque (or power) is provided from
both the diesel engine and the electric motor. The propulsion
power is transferred to the wheel via the transmission. While
braking, the kinetic energy can be converted into electrical
energy that is transferred to the electrical storage system. In
this paper, CO2 and NOx are minimized simultaneously. CO2

emission is closely related to fuel consumption, whereas NOx

is one of the representative exhaust emissions in the HEVwith
a diesel engine.

In addition, we assume that the HEV will not be EM-dom-
inated, but ICE-dominated. Therefore, the ICE provides the
main propulsion power, and the EM assists it. In this case, the
following driving conditions should be taken into account for
reducing CO2 and NOx emissions: (1) driving only using the
EM (EM driving), (2) driving only using the ICE (ICE driv-
ing), and (3) driving using both the ICE and EM (ICE driving
assisted by EM). The following issues are generally important
for CO2 and NOx emissions reduction:

(1) Develop a well-organized EMS considering the above
three driving conditions, and

(2) Operate the ICE on the optimal torque curve on the effi-
ciency map (Chau and Wong 2002).

In particular, the torque distribution between the ICE and
the EM is one of the important issues, and many papers have
been published on the EMS. Here, the following approaches

are mainly discussed: (1) the fuzzy logic control (FLC) includ-
ing the rule-based approach, (2) the dynamic programming
(DP), and (3) the evolutionary algorithms (EAs). In the fol-
lowing section, we briefly review some of these approaches.

Early work on the FLC can be found in Ref. (Baumann
et al. 2000), in which the 25-rules fuzzy controller was devel-
oped by using the fuzzy sets of the EM torque and the battery
state of charge (SOC). In particular, a new concept called the
degree of hybridization (DOH) was proposed. This DOH pro-
vides a quantitative measure of where power is flowing in a
hybrid. Schouten et al. proposed a fuzzy logic controller using
the driver power, the battery SOC, and the EM speed for
reducing the fuel consumption (Schouten et al. 2003). Kheir
et al. developed a generalized fuzzy logic controller based on
Ref. (Schouten et al. 2003), in which 44 rules were introduced
(Kheir et al. 2004). Unlike Ref. (Schouten et al. 2003), this
paper aimed to optimize not only the fuel consumption but
also NOx emission. The trade-off between fuel consumption
and NOx emission was then discussed. Hui et al. developed a
fuzzy torque control strategy based on the vehicle load chang-
es (Hui et al. 2009), in which the difference between the op-
timal torque and the vehicle required torque, the battery SOC,
and the vehicle load were used as the fuzzy set. Another rule-
based approach can be found in Ref. (Zhu et al. 2006), in
which the optimal power distribution considering torque was
discussed. The FLC approach is easy to implement and may
be suitable for real-time control, but the rules and the fuzzy
sets are determined based on the designer’s experience and
intuition. In addition, the rules are not always optimized in
accordance to the driving condition.

The DP approach is widely used in the EMS optimization
of HEVs, and many studies have already been reported. The
approach using the DP is so similar that only a few papers are
reviewed herein. Lin et al. clarified several advantages of the
DP, compared to the rule-based approach (Lin et al. 2003). In
their work, the ICE speed, the ICE torque, and the EM torque
were considered under the delta SOC constraint. In addition,
NOx emission and PM as well as the fuel consumption were
all taken into account. The optimal control problem was also
formulated and the DP approach was applied to estimate the
optimal ICE and EM torque and ICE speed. Perez et al. deter-
mined the optimal power flow between the ICE and the EM so
as to minimize the fuel consumption (Perez et al. 2006). Pei
and Leamy computed the optimal ICE/EM torque, the ICE/
EM speed and gear using the DP (Pei and Leamy 2013). A
similar approach can also be found in Ref. (Kum et al. 2011).
In addition, a comparison between the DP and the FLC has
been conducted in Ref. (Guemri et al. 2014). Nevertheless, the
DP has the following advantages, compared to the FLC:

(A1) It can handle more than two objectives (Koot and
Kesseks 2005;Wang et al. 2012). Most of papers adopt
the weighted sum. In other words, multi-objective
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Fig. 1 Block diagram of a parallel HEV system
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optimization is transformed into one objective function
with the weighted sum.

(A2) It can easily handle the delta SOC that is given by the
difference between the initial and the final SOC, where
the initial SOC implies the battery SOC at the begin-
ning of a driving cycle and the final SOC the battery
SOC at the end of a driving cycle. It is preferable that
the delta SOC will be zero for energy management
consideration. Thus, the delta SOC plays an important
role in the development of the EMS algorithm. Since
the delta SOC is a design constraint (requirement), it is
then handled as a penalty function (Sinoquet et al.
2011).

In contrast to the above advantages, the DP also has the
following disadvantages:

(D1) The weighted sum has several disadvantages
(Miettinen 1998). To overcome or avoid these disad-
vantages, another method should be adopted.

(D2) The DP approach is basically optimal control (Delprat
et al. 2004). To find optimal control law, a high com-
putational cost is required.

Recently, the approach using the EAs such as the genetic
algorithm (GA) and the particle swarm optimization (PSO)
has received much attention. Montazeri-Gh et al. applied the
GA to HEV control strategy (Montazeri-Gh et al. 2006), in
which four objectives (CO2, HC, CO, and NOx) were taken
into account. As described above, the weighted sum was
adopted to handle these objectives. Various weights were
assigned and the trade-off among them was investigated.
The PSO was also applied to the HEV powertrain (Wu et al.
2008), in which the weighted sum was adopted to handle five
objectives (CO2, HC, CO, NOx, and cost). A simple control
strategy was constructed, and the PSO was used to determine
the parameters in the control strategy. The application of EAs
to the EMS optimization was valid, but this approach gener-
ally required a large number of simulation runs. In addition,
the delta SOC was rarely discussed (Wu et al. 2008; Long and
Nhan 2012).

These representative approaches directly calculate the fuel
consumption and emissions, but the simulation in HEV is
computationally intensive. In addition, many papers employ
the optimal torque curve on the engine efficiencymap, but this
is dependent on the designer’s experience and intuition. When
it is difficult to determine and identify the optimal torque
curve, another approach for CO2 and NOx emissions reduc-
tion is to refer to the brake specific fuel consumption (BSFC)
map. In this paper, we propose a torque control strategy
coupled with optimization for CO2 and NOx emissions reduc-
tion referring to the BSFC map. The summary of this paper is
described below:

(1) First, a torque control strategy aiming to minimize CO2

and NOx emissions is developed. In particular, the ICE
torque control function explained in section 3 is intro-
duced. This function controls the driving condition for
both the CO2 and NOx emissions reduction.

(2) The ICE torque control function depends on several de-
sign variables. To determine this function, optimization
is performed. Unfortunately, the simulation in HEV is so
computationally intensive that it is preferable to deter-
mine this function with a small number of simulation
runs. Under this situation, the response surface approach
is valid. In particular, a sequential approximate optimi-
zation (SAO) that the response surface is repeatedly con-
structed and optimized is one of the powerful tools avail-
able. The Kriging is a famous SAO approach (Donald
et al. 1998), and we have developed the SAO system
using a radial basis function (RBF) network (Kitayama
et al. 2011; Kitayma et al. 2013). By using this SAO
system, the ICE torque control function is determined.

The driving cycle is generally unknown in advance. Fortu-
nately, several typical driving cycles, such as the New Euro-
pean Driving Cycle (NEDC), are widely used as the bench-
marks for testing the EMS optimization. Three representative
driving cycles are then used to examine the validity of the
proposed torque control strategy coupled with the
optimization.

This paper is organized as follows: In section 2, the HEV
simulation model is described. In section 3, the proposed
torque control strategy is described. Numerical results are
shown, the pareto-frontier is identified, and the validity of
the proposed approach is discussed. Matlab/Simulink is used
in all the HEV numerical simulations.

2 Flow of HEV simulation

Figure 2 shows the flow of the HEV simulation in which two
black boxes are included. The flow of the simulation proceeds
as follows:

At first, the vehicle speeds v(t) and v(t+1) are obtained
from the driving cycle block at time t, and their values are
then sent to the driver model module. The accelerator/brake
pedal is then calculated in the driver model module, and the
solutions are sent to the EMS module. In the EMS module, a
single driving condition among the EM driving, ICE driving,
and ICE driving assisted by EM is first selected. In addition,
the target torque values for both the ICE and the EM are
determined. These values are then sent to the HEV model
module, where the ICE/EM speed, the battery SOC, the torque
values for both the ICE and the EM, and the vehicle speed are
calculated. These are fed back to both the driver model mod-
ule and the EMS module. CO2 and NOx at time t are
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calculated in the HEV model module, and the sum of them at
time tend is considered as the objective functions. To reduce
CO2 and NOx emissions, we can arrange the EMS module
highlighted in gray in Fig. 2. A c-segment car with 7-speed
AMT is assumed as the HEV. Note that in this paper the
battery is not charged by the diesel engine and is charged only
by the regenerative braking through a driving cycle.

To reduce CO2 and NOx emissions, the ICE/EM speed and
gear should also be taken into account. Unfortunately, these
latter two parameters are included in the black boxes and we
cannot change them.

3 Torque control strategy for determining the ICE
torque control function

As described in Ref. (Chau and Wong 2002), the ICE opera-
tion along with the optimal torque curve directly affects the
exhaust emissions as well as the fuel consumption. In this
paper, the ICE torque control function that controls the driving
conditions is introduced for CO2 and NOx emissions reduc-
tion. Seven design variables are included in this function, and
these are determined by the SAO using the RBF network.

3.1 Torque control strategy

The proposed torque control strategy is shown in Fig. 3, where
“ICE” implies the ICE driving, “EM” the EM driving, and
“ICE+EM” the ICE driving assisted by the EM. Note that
the EMS module in Fig. 3 is replaced with that in Fig. 2.
Figure 4 shows the basic driving conditions based on BSFC
map with the ICE torque control function. It is clear from
Fig. 4 that the three driving conditions (EM driving, ICE driv-
ing, and ICE driving assisted by EM) are taken into account
for CO2 and NOx emissions reduction. The illustrative exam-
ple of the BSFC is shown in Fig. 5, fromwhich it can be found
that, in ICE driving only, CO2 emission reduction is not effec-
tive with lower torque and engine speed, whereas NOx is

produced with higher torque. In other words, the trade-off
between CO2 and NOx can be found when the ICE driving
only is performed. In addition, the EM driving should be per-
formed in the lower torque and engine speed for CO2 emission
reduction, whereas the ICE driving assisted by EM should be
performed for NOx emission reduction. Note that the BSFC
map is simply used to refer to CO2 and NOx emissions and this
map is not used to calculate CO2 and NOx emissions. Before
explaining the proposed torque control strategy, the following
notations are introduced:

SOCmin: Minimum battery SOC determined by the de-
signer. This is not a hard bound of the battery
SOCmax: Maximum battery SOC determined by the de-
signer. This is not a hard bound of the battery
ωICE: ICE speed
ωICE

L: Lower bound of the ICE speed
ωICE

U: Upper bound of the ICE speed
ωICE

V: ICE speed betweenωICE
L andωICE

U

ωICE
max: Maximum ICE speed

TD
REQ(t): Driving torque request at time t

TICE
T(t): Target torque of the ICE at time t, which is

included in D in Fig. 2
TEM

T(t): Target torque of the EM at time t, which is in-
cluded in D in Fig. 2
TSW: Switch torque from the EM driving to the ICE
driving
TICE

C(ωICE): ICE torque control function

The objective of the proposed torque control strategy is to
determine the target torque for both the ICE and the EM at
time t (TICE

T(t) and TEM
T(t)).

First, let us explain the left-hand side of Fig. 3. If the battery
SOC is less than the SOCmin, the ICE driving is selected.
Then, TICE

T(t) is directly set to TD
REQ(t), and TEM

T(t) is set
to zero.

Next, let us explain the right-hand side of Fig. 3. If the
battery SOC is greater than the SOCmax, the EM driving or

Fig. 2 Flow of the HEV
simulation
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the ICE driving assisted by EM is selected by considering
ωICE and TD

REQ(t). This situation assumes that the battery will
be fully charged. Under this situation, the battery SOC should
be actively used to reduce CO2 and NOx emissions. The ICE
driving region in Fig. 4 is then replaced with the EM driving
region as shown in Fig. 6. If ωICE is less than ωICE

L, the EM
driving is selected (see the area surrounded by the bold line in
Fig. 6). Otherwise, TD

REQ(t) is compared to TICE
C(ωICE). If

TD
REQ(t) is less than TICE

C(ωICE), the EM driving is selected
as shown in Fig. 6a. Otherwise, the ICE driving assisted by
EM is selected as shown in Fig. 6b. TICE

T(t) is then set to
TICE

C(ωICE), and the rest of TD
REQ(t) is compensated with T-

EM
T(t) (= TD

REQ(t) - TICE
C(ωICE)).

Finally, let us explain the crucial part of the proposed
torque control strategy. This situation assumes that the battery
SOC is within the SOCmin and SOCmax. First, T

SW is com-
pared to TD

REQ(t). If TD
REQ(t) is less than TSW, the EM driving

is selected. Otherwise, ωICE is compared to ωICE
L. IfωICE is

less than ωICE
L, the EM driving is selected. In the EM driving,

TICE
T(t) is always set to zero, and TEM

T(t) is set to TD
REQ(t).

These situations are schematically illustrated in Fig. 7a and b

with the bold line. The corresponding torque control strategy
proposed is shown in Fig. 7c.

Next, the ICE driving or the ICE driving assisted by EM is
selected, by comparing TICE

C(ωICE) and TD
REQ(t). The sche-

matic example and the corresponding torque control strategy
flow diagram are shown in Fig. 8, where we consider the area
surrounded by the bold line. If TICE

C(ωICE) is less than TD-
REQ(t), the ICE driving assisted by EM is selected. In this case,
TICE

T(t) is set to TD
REQ(t) and the rest of TD

REQ(t) is compen-
sated with TEM

T(t)(: = TD
REQ(t) - TICE

C(ωICE)). Otherwise, the
ICE driving is selected, and TICE

T(t) is directly set to TD
REQ(t).

Several characteristics of the proposed torque control strat-
egy are summarized as follows:

1. Unlike the FLC and DP approaches (Schouten et al. 2003;
Kheir et al. 2004; Hui et al. 2009; Lin et al. 2003), the ICE
torque control function referring to the BSFC map is in-
troduced for CO2 and NOx emissions reduction. In

Fig. 4 ICE torque control function and driving conditions
Fig. 5 Illustrative example of the BSFC map on torque-engine speed
plane

Fig. 3 Proposed torque control
strategy
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particular, this function controls the three driving condi-
tions. In addition, this function can take into account the
nonlinearity of CO2 and NOx emissions reduction.

2. A constant torque curve has been assumed in previous
papers (Montazeri-Gh et al. 2006; Wu et al. 2008; Long
and Nhan 2012). In contrast to such papers, the proposed
approach can take into account the nonlinear torque re-
quest curve for practical applications.

3. By introducing ωICE, the EM driving is taken into account
for the lower range of the engine speed for CO2 emission
reduction.

4. When the battery is fully charged, the ICE driving region
is replaced by the EM driving. Therefore, the proposed
torque control strategy is designed to use the battery SOC
actively. As the result, it is expected that the battery SOC
is effectively used to reduce CO2 and NOx emissions.

3.2 Design variables

As shown in Fig. 4, four points (A, B, C, and D) are used to
determine the ICE torque control function. At point D, ωICE-
max is practically regarded to be constant. In this paper,

ωICE
max is taken as the engine speed of the red-zone (ωICE-

max=4500 rpm). In addition, TSW is introduced to denote the
switch torque from the EM driving to the ICE driving. As the
result, the ICE torque control function consists of seven design
variables (ωICE

L, ωICE
V, ωICE

U, TSW, T(ωICE
L), T(ωICE

V), and
T(ωICE

U)).

3.3 Sequential approximate optimization

In this paper, CO2 and NOx are minimized simultaneously.
Thus, the problem is formulated as a multi-objective optimi-
zation (MOO). To determine these design variables, the SAO
using RBF network is used. Here, the flow to determine the
ICE torque control function is described.

(STEP1) Some initial sampling points are generated by the
latin hypercube design (LHD).

(STEP2) Numerical simulation is carried out. Objective
functions (CO2 and NOx) are numerically evaluat-
ed at all sampling points.

(STEP3) All functions are approximated by the RBF net-
work. Here, the approximated objective functions

are denoted as ef i xð Þ (i=1,2,⋯,K).

Fig. 6 ICE torque-speed plane in
the case of SOCmax is less than
SOC. a TD

REQ(t) is less than
TICE

C(ωICE) b TD
REQ(t) is greater

than TICE
C(ωICE)

Fig. 7 Conditions of the EM
driving. a TD

REQ(t) is less than
TSW b ωICE is less than ωICE

L (c)
Corresponding torque control
strategy of the EMS algorithm
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(STEP4) We find a pareto-optimal solution of response sur-
face with the weighted lp norm method formulated
as follows (Miettinen 1998):

X K

i¼1
αi
ef i xð Þ

� �p� �1=p
→min ð1Þ

where αi (i=1,2,⋯,K) represents the weight of the i-th objec-
tive function, and p is the parameter. In this paper, p is set to 4.
In order to obtain a set of pareto-optimal solutions, various
weights are assigned.
(STEP5) The density function is constructed andminimized.

The optimal solution of the density function is
added as a new sampling point. This step is repeat-
ed till a terminal criterion is satisfied.

(STEP6) If terminal criterion is satisfied, the SAO algorithm
will be terminated. Otherwise, it will return to
STEP 2.

The differential evolution (DE) is used as the optimizer in
STEPS 4 and 5. There are various models in the DE, and the
most basic model (DE/rand/1/bin) is used. The DE has several
parameters such as the number of populations, the maximum
search iteration number, the mutation ratio, and the crossover
ratio. Through numerical experiences, the following parame-
ters are used: the number of populations 50, the maximum
search iteration number 1000, the mutation ratio 0.8, the cross-
over ratio 0.5.

4 Numerical result and discussion

4.1 Driving cycle and pareto-frontier

Through numerical simulation, the validity of the proposed
approach is examined. SOCmin and SOCmax are set to 45 %

Fig. 8 Conditions of the ICE
driving/ICE driving assisted by
EM. a ICE driving assisted by
EM/ ICE driving b
Corresponding torque control
strategy of the EMS algorithm
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and 65 %, respectively. In this paper, the following represen-
tative driving cycles are used:

(1) New European Driving Cycle (NEDC): This consists of
four identical urban cycles and one extra-urban cycle.
This is one of the widely used benchmarks for testing
EMS.

(2) Japan Chassis 08 (JC08): This is the driving cycle regu-
lated by the Ministry of Land, Infrastructure, Transport
and Tourism in Japan. Ordinary and compact cars are
required to report the fuel consumption. The average
vehicle speed of this driving cycle is 24.4 km/h, and
urban driving is mainly assumed.

(3) Worldwide harmonized Light duty driving Test Cycle
(WLTC): This cycle consists of the following four speed
ranges: (1) Low (589 s), (2) Middle (433 s), (3) High
(455 s), and Extra-high (323 s). Unlike other cycles, this
cycle includes the extra-high speed range where the max-
imum speed is 131.3 km/h. It is expected that NOx emis-
sion will increase in this range. As a result, this cycle is
one of the challenging driving cycles for CO2 and NOx

emissions reduction.

These three driving cycles are shown in Fig. 9(a)~(c). In
addition, the cycle time, the average and maximum speed, and
the driving distances are listed in Table 1.

To identify the pareto-frontier, eighteen initial sampling
points are distributed by the LHD. The error between the
response surface and the numerical simulation is taken as the
terminal criterion with the error set to 1.0 %. Therefore, the
SAO algorithm will be terminated when the error is within
1 %. The lower and upper bounds of the design variables in
each driving cycle are set as follow:

For NEDC:

800≤ωL
ICE ≤1500 1500≤ωV

ICE ≤2500 2500≤ωU
ICE ≤3500

25≤TSW ≤70 70≤T ωL
ICE

� �
; T ωV

ICE

� �
;T ωU

ICE

� �
≤150

ð2Þ
For JC08:

800≤ωL
ICE ≤1500 1500≤ωV

ICE ≤2500 2500≤ωU
ICE ≤3500

20≤TSW ≤35 50≤T ωL
ICE

� �
; T ωV

ICE

� �
;T ωU

ICE

� �
≤100

ð3Þ
For WLTC:

800≤ωL
ICE ≤1500 1500≤ωV

ICE ≤2500 2500≤ωU
ICE ≤3500

25≤TSW ≤60 70≤T ωL
ICE

� �
; T ωV

ICE

� �
;T ωU

ICE

� �
≤140

ð4Þ
Figure 10a-c shows the pareto-frontier of each driving cy-

cle, where the white dots denote the sampling points and the
black dots the points on the pareto-frontier of the response

surface using the sampling points. Here, we would like to
explain the parato-frontier of WLTC. Several white dots can
be found below the black dots, and these may be considered as
the pareto-optimal solutions. Various weights are assigned to
identify the pareto-frontier, but we never obtained these white
dots and always obtained the black dots. Then, we considered
the black dots represent the pareto-frontier. In addition, we
confirmed that all numerical simulation results showed that a
final SOC equals to the initial one. Therefore, the delta SOC is
zero at all points. The right hand side of Fig. 10 shows the
enlarged view around the pareto-frontier. It can be found from
Fig. 10 that the pareto-frontier of both NEDC and JC08 is
continuous, whereas the pareto-frontier of WLTC is discon-
tinuous. In order to identify the pareto-frontier, 36 simulation
runs were required in NEDC, 67 simulation runs in JC08, and
63 simulation runs in WLTC.

4.2 Battery SOC variation and ICE operating points

It is found from Fig. 10 that the pareto-frontier is continuous
and that the variation of CO2 and NOx emissions is small in
the cases of NEDC and JC08, whereas the pareto-frontier of
WLTC is discontinuous. In the case ofWLTC, the variation of
CO2 and NOx emissions in the regions enclosed by two circles
is quite small. Based on these findings, we considered that it
would be still possible to compare WLTC’s operating charac-
teristics for these two regions. The representative point indi-
cated by the arrows in Fig. 10 (NEDC-A, JC08-A, WLTC-A,
andWLTC-B) is then selected for the discussion. Specifically,
the following points are included in Figs. 11, 12, and 13, for
the analysis and the discussion:

(a) The battery SOC variation through the driving cycle
(b) The time history of the ICE torque and the value of the

ICE torque control function
(c) The ICE operating points denoted by the cross mark,

plotted at the intervals of 1 s. In order to perform the
ICE driving and the ICE driving assisted by EM, the
ICE inevitably overlaps through the EM driving region.
As a result, the ICE operating points are plotted in the
EM driving region. In addition, as explained in sec-
tion 3.1, all ICE operating points ideally lie on and under
the ICE torque control function for CO2 and NOx emis-
sions reduction. If the ICE operating points are plotted
above the ICE control function, this implies that ICE
driving should be performed, due to the lack of a total
torque request. Unfortunately, NOx emission will in-
crease in the ICE driving assisted by EM. Finally, the
ICE operating points plotted on the ICE torque control
function implies the use of the ICE driving assisted by
EM.

(d) The time history of torque between ICE and EM. This
figure shows the torque distribution through the driving

602 S. Kitayama, et. al



0

20

40

60

80

100

120

140

0 200 400 600 800 1000 1200 1400
Time [s]

V
eh

ic
le

 s
p

ee
d

 [
k

m
/h

]

(a) NEDC 

0

20

40

60

80

100

120

140

0 200 400 600 800 1000 1200 1400
Time [s]

V
eh

ic
le

 s
p

ee
d

 [
k

m
/h

]

(b) JC08 

0

20

40

60

80

100

120

140

0 200 400 600 800 1000 1200 1400 1600 1800

Time [s]

V
eh

ic
le

 s
p

ee
d

 [
k

m
/h

]

Low 

(589 [s])
Middle

(433 [s])

High 

(455 [s])

Ex.-high 

(323 [s])

(c) WLTC 

Fig. 9 Representative driving
cycles

Table 1 Outline of the
NEDC/JC08/WLTC driving
cycle characteristics

Driving Cycle Cycle Time

[s]

Average speed

[km/h]

Maximum speed

[km/h]

Driving Distance

[km]

NEDC 1180 33.6 120 11.01

JC08 1204 24.4 81.6 8.17

WLTC 1800 46.5 131.3 23.17

Torque control strategy and optimization for HEVs 603



cycle. In this figure, it can be identified when the EM/
ICE/ICE+EM driving condition is selected. In the same
figure, the black line denotes the ICE driving condition
and the red line the EM driving condition. It is impossi-
ble to show all the parts of the ICE driving assisted by
EM and so, only the major part of this driving condition
is indicated, enclosed by a circle.

First, let us consider NEDC driving cycle. It is found
from Fig. 11a that the battery SOC through the driving
cycle is within the SOCmin and SOCmax. It is also found
from Fig. 11b that most of the ICE torque values are less
than the values of the ICE torque control function during
the driving cycle. Many ICE operating points are then plot-
ted below the ICE torque control function, as shown in
Fig. 11c. However, the ICE torque is greater than the value
of ICE torque function around the region enclosed by the
circle in Fig. 11b. The ICE operating points are then

plotted above the ICE torque control function, as shown
in Fig. 11c. Finally the ICE operating points on the ICE
torque control function implies the ICE driving assisted by
EM for NOx emission reduction. It is found from Fig. 11c
and d that the EM and ICE driving are primarily performed
at NEDC-A.

Next, JC08 driving cycle is considered. The battery
SOC through the driving cycle is within the SOCmin and
SOCmax, like NEDC driving cycle. However, as shown in
Fig. 12c, numerous ICE operating points are plotted on the
ICE torque control function, in comparison with NEDC
driving cycle. This implies that the ICE driving assisted
by EM is more often performed in this case, in comparison
with NEDC driving cycle. In addition, all ICE operating
points lie on and under the torque control function. There-
fore, the proposed torque control strategy coupled with the
optimization works well for CO2 and NOx emissions
reduction.
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Finally, WLTC driving cycle is discussed. Since the
pareto-frontier is discontinuous, the characteristics at
WLTC-A and WLTC-B are discussed respectively. The sol-
id line in Fig. 13a represents the variation of battery SOC at
WLTC-A in Fig. 10c, and the dashed line the variation of
SOC at WLTC-B in Fig. 10c. Unlike NEDC-A and JC08-A,
the battery SOC is sometimes over the SOCmax. In this
case, as also shown in Fig. 6, the EM driving or the ICE
driving assisted by EM is selected. Since the WLTC driving

cycle includes the extra-high speed range, the battery SOC
is actively used for CO2 and NOx emissions reduction in
this range. It is found from Fig. 13a that the battery SOC is
well charged by the regenerative braking in the low, mid-
dle, and high speed ranges and is only actively used in the
extra-high speed range. In addition, it is found from
Fig. 13c and d that the ICE driving assisted by EM is often
performed at the WLTC-A and WLTC-B. However, at
WLTC-B, more ICE operating points are plotted above
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the ICE torque control function. This can be understood
from Fig. 13b that the ICE torque is greater than the value
of ICE torque function around the regions enclosed by the
circles. On the other hand, it is found from Fig. 13c that all
ICE operating points lie on and under the ICE torque con-
trol function at WLTC-A. Therefore, we can infer that the
proposed torque control strategy coupled with the

optimization works well at this point. However, the trade-
off can be observed between CO2 and NOx emissions, and
it is difficult to conclude which point is better.

With all things considered, the proposed torque control
strategy coupled with optimization leads to a well-organized
EMS system and to effective reductions in CO2 and NOx

emissions.
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4.3 Improvement of CO2 and NOx

There are various HEVs such as a series, a parallel, and their
mixed HEVs, and the engine and the transmission types are
also different (gasoline or diesel engine, AT or CVT). There-
fore, it is difficult to simply compare CO2 and NOx emissions

reduction under same conditions. Then, CO2 and NOx emis-
sions reduction are compared to the ICE driving only by using
this HEV model. Therefore, the ICE driving is performed in
the torque-engine speed plane. The summary of comparison is
listed in Table 2, from which it is found that the proposed
approach drastically reduce CO2 and NOx emissions.

Fig. 13 Battery SOC variation and ICE operating points in the WLTC
driving cycle at WLTC-A and WLTC-B in Fig. 10c. a Battery SOC
variation through the driving cycle b Time history of the ICE torque

and the value of the ICE torque control function c ICE operating points
d Time history of torque between the ICE and the EM driving conditions
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4.4 Accuracy of response surface

Finally, the accuracy of response surface is shown in Fig. 14,
where the circles denote the sampling points. The error is also
summarized in Table 3. It is found from Fig. 14 and Table 3
that the highly accurate response surface is obtained and the
error is much small. Therefore, it is considered that the pareto-
frontier shown in Fig. 10 is reliable.

5 Conclusions

In this paper, a torque control strategy to reduce CO2 and NOx

emissions for parallel HEV is developed. In ICE dominated
HEV, it is important to develop a well-organized EMS taking
into account the following driving conditions: (1) EM driving,
(2) ICE driving, and (3) ICE driving assisted by EM. In the
proposed torque control strategy, the ICE torque control func-
tion based on the BSFC map is introduced. This ICE torque
control function consists of seven design variables. Simulation
of the HEVis so computationally intensive that SAO using the
RBF network is adopted to determine the ICE torque control
function. In addition, the pareto-frontier between CO2 and
NOx emissions is identified. Three representative driving cy-
cles are used to examine the validity of the proposed approach.
The trade-off is observed between CO2 and NOx, and these are
effectively reduced. The validity of the proposed torque con-
trol strategy coupled with optimization is confirmed.

Appendix sequential approximate optimization
with radial basis function network

A.1 Radial basis function network and width
in the gaussian kernel

The RBF network is a three-layer feed-forward network. Giv-
en the training data expressed by {xj, yj}(j=1,2,⋯,m), where
m represents the number of sampling points, the output of the
network ỹ(response surface) is given by

by xð Þ ¼
X m

j¼1
wjK x; x j

� � ðA1Þ

wherem denotes the number of sampling points,K(x, xj) is the
j-th basis function, and wj denotes the weight of the j-th basis
function. The following Gaussian kernel is generally used as
the basis function:

K x; x j

� � ¼ exp −
x−x j

� �T
x−x j

� �
r2j

 !
ðA2Þ

In (A2), xj represents the j-th sampling point, and rj is the
width of the j-th basis function. The response yj is calculated at
the sampling point xj. The learning of RBF network is usually
accomplished by solving

E ¼
X m

j¼1
y j−by x j

� �� �2
þ
X m

j¼1
λ jw

2
j→min ðA3Þ

where the second term is introduced for the purpose of the

Fig. 13 (continued)
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regularization. It is recommended that λj in (A3) is sufficient
small value (e.g., λj =1.0×10

−2). Thus, the learning of RBF
network is equivalent to finding the weight vector w. The

necessary condition of (A3) result in the following equation.

w ¼ HTH þΛ
� �−1

HTy ðA4Þ

Table 2 Improvement of CO2

and NOx
Driving cycle NEDC JC08 WLTC

ICE driving only CO2 [g/km] 116.4 120.3 117.6

NOx [mg/km] 250.2 273.5 295.5

Proposed approach Reference point NEDC-A JC08-A WLTC-A WLTC-B

CO2 [g/km] 83.65 83.29 94.46 95.76

NOx [mg/km] 102.4 109.2 198.1 193.2

Improvement CO2 [%] 28.14 30.76 19.68 18.57

NOx [%] 59.07 60.07 32.96 34.62
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where H, Λ and y are given as follows:

H ¼
K x1; x1ð Þ K x1; x2ð Þ ⋯ K x1; xmð Þ
K x2; x1ð Þ K x2; x2ð Þ ⋯ K x2; xmð Þ

⋮ ⋮ ⋱ ⋮
K xm; x1ð Þ K xm; x2ð Þ ⋯ K xm; xmð Þ

2664
3775;

Λ ¼
λ1 0 ⋯ 0
0 λ2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 0 λm

2664
3775

ðA5Þ

y ¼ y1; y2;⋯; ymð ÞT ðA6Þ

It is clear from (A4) that the learning of RBF network is
equivalent to the matrix inversion (HTH+Λ)−1. The new sam-
pling points are added through the SAO process. Using the
RBF network, it is easy to calculate the weight vector w, be-
cause the additional learning is reduced to the incremental
calculation of the matrix inversion.

The width in the Gaussian kernel plays an important role
for good approximation. The first author of this paper has
proposed the following simple estimate of the width
(Kitayama et al. 2011):

r j ¼ d j;maxffiffiffi
n

p ffiffiffiffiffiffiffiffiffi
m−1n

p j ¼ 1; 2;⋯;m ðA7Þ

where rj denotes the width of the j-th Gaussian kernel, and dj,

max denotes the maximum distance between the j-th sampling
point and the other sampling points. (A7) is applied to each
Gaussian kernel individually, and can deal with the non-
uniform distribution of sampling points.

A.2 Density function using RBF network

In the SAO, it is important to find out the unexplored region
for global approximation. The Kriging can achieve this objec-
tive with the expected improvement (EI) function. In order to
find out the unexplored region with the RBF network, we
have developed a function called the density function
(Kitayama et al. 2011). The basic idea is very simple. The
local maxima are generated at the sampling points. To achieve
this objective, every output y of the RBF network is replaced
with +1. The procedure to construct the density function is
summarized as follows:

(D-STEP1) The following vector yD is prepared at the sam-
pling points.

yD ¼ 1; 1;⋯; 1ð ÞTm�1 ðA8Þ

(D-STEP2) The weight vector wD of the density function
D(x) is calculated as follows:

wD ¼ HTH þΛ
� �−1

HTyD ðA9Þ

(D-STEP3) The density function D(x) is minimized.

D xð Þ ¼
X m

j¼1
wD

j K x; x j

� �
→min ðA10Þ

(D-STEP4) The point minimizing D(x) is taken as the new
sampling point.

Figure 15 shows an illustrative example in one dimension.
The black dots denote the sampling points. It is found from
Fig. 5 that local minima are generated around the unexplored
region. The RBF network is basically the interpolation be-
tween sampling points: therefore, points A and B in Fig. 15
are the lower and upper bounds of the design variables of the
density function.

Table 3 Error of each driving
cycle Driving cycle Minimum [%] Maximum [%] Average [%]

CO2 NOx CO2 NOx CO2 NOx

NEDC 1.491E-04 9.332E-05 0.269 0.124 0.022 0.017

JC08 8.940E-05 4.959E-06 0.937 0.985 0.127 0.178

WLTC 4.693E-05 2.594E-04 0.295 0.389 0.038 0.060

Fig. 15 Illustrative example of density function
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