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Abstract This paper introduces a topology optimization
approach that combines an explicit level set method (LSM)
and the extended finite element method (XFEM) for design-
ing the internal structural layout of fluid-structure interac-
tion (FSI) problems. The FSI response is predicted by a
monolithic solver that couples an incompressible Navier-
Stokes flow model with a small-deformation solid model.
The fluid mesh is modeled as an elastic continuum that
deforms with the structure. The fluid model is discretized
with stabilized finite elements and the structural model
by a generalized formulation of the XFEM. The nodal
parameters of the discretized level set field are defined as
explicit functions of the optimization variables. The opti-
mization problem is solved by a nonlinear programming
method. The LSM-XFEM approach is studied for two- and
three-dimensional FSI problems at steady-state and com-
pared against a density topology optimization approach.
The numerical examples illustrate that the LSM-XFEM
approach convergences to well-defined geometries even on
coarse meshes, regardless of the choice of objective and
constraints. In contrast, the density method requires refined
grids and a mass penalization to yield smooth and crisp
designs. The numerical studies show that the LSM-XFEM
approach can suffer from a discontinuous evolution of the
design in the optimization process as thin structural mem-
bers disconnect. This issue is caused by the interpolation
of the level set field and the inability to represent partic-
ular geometric configurations in the XFEM model. While
this deficiency is generic to the LSM-XFEM approach used
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here, it is pronounced by the nonlinear response of FSI
problems.

Keywords Topology optimization · Extended finite
Element method · Level set method · Fluid-structure
interaction · Hydroelasticity · Monolithic solver

1 Introduction

This paper presents a topology optimization approach for
strongly coupled fluid-structure interaction (FSI) problems.
Such problems pose interesting challenges on the optimiza-
tion method with respect to (a) describing the geometry of
the structure, (b) modeling the flow, the structural response
and their interactions, (c) discretizing the FSI model, and
(d) solving efficiently and robustly the resulting numerical
problems.

Figure 1 illustrates the two fundamental approaches for
varying the structural geometry in the optimization pro-
cess. We distinguish between methods that only optimize
the topology and shape of the internal structure and meth-
ods that only manipulate the geometry of the fluid-structure
interface. Adopting the nomenclature used in aeroelasticity
for internal, “dry” surfaces and external, “wet” surfaces, we
refer to these methods as “dry” and “wet” topology opti-
mization methods in the remainder of this paper. Combining
wet and dry methods leads to the most general from of topol-
ogy optimization for FSI problems. This paper presents a
method for optimizing the “dry” topology.

The structural geometry is typically defined via the dis-
tribution of two or more material phases in a given design
domain. Density methods describe the material distribu-
tion locally and introduce fictitious porous materials to
continuously transition between two or more materials.
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Fig. 1 Geometry variations in FSI problems

Alternatively, level set methods (LSMs) explicitly describe
the geometry of material interfaces via the iso-contours
of a level set function. The level set function is advanced
either by the solution of the Hamilton-Jacobi equation or
by a black-box optimization algorithm. The latter approach
defines the parameters of the discretized level set func-
tion by explicit functions of the optimization variables.
The interface geometry is represented in the mechanical
model either by an Ersatz material approach or by immersed
boundary techniques. Sigmund and Maute (2013) review
recent developments of density and level set methods. In
the case of “dry” topology optimization, the fluid-structure
interface is explicitly defined and interface conditions can
be formulated and discretized with standard methods. As
outlined in the following, specialized formulations and
numerical techniques are needed to treat interface condi-
tions for “wet” topology optimization.

To accurately predict the response of a particular FSI
problem, the fluid and structural models and the coupling
model need to be carefully chosen. The proper choice of the
fluid model depends on the Reynolds and Mach numbers
of the flow. A broad range of flow regimes can be modeled
by the compressible Navier-Stokes (CNS) equations, aug-
mented by turbulence models at higher Reynolds numbers.
If viscous effects can be ignored, the CNS equations can be
approximated by an inviscid Euler flow model. If the Mach
number is sufficiently low, compressibility phenomena can
be ignored and either the incompressible Navier-Stokes
(INS) equations or the hydrodynamic Boltzmann transport
equations (HBTE) are typically used. For subsonic flows in
aeronautical applications, potential flow models are often
employed to predict the aerodynamic forces. Optimizing the
“wet” topology with either a density or an Ersatz material
approach, the stick conditions at the fluid-structure interface
are enforced via a Brinkman penalization. Alternatively,
immersed boundary techniques can be used to enforce the
boundary conditions at the fluid-structure interface.

The flow models above are combined with a structural
model assuming either infinitesimal or finite deformations.

In density methods, the material properties are interpo-
lated as functions of the density, typically using the Solid
Isotropic Material with Penalization (SIMP) approach. Sim-
ilarly, the Ersatz material interpolates the material properties
as functions of either the level set field or the local vol-
ume ratio of the individual phases. For “wet” topology
optimization with either density or Ersatz material meth-
ods, the fluid loads are transformed into volumetric forces
and smeared along the fluid-structure interface. Immersed
boundary techniques have not yet been applied to “wet”
topology optimization.

In general, FSI problems are two-way coupled, i.e. the
flow depends on the structural displacements and veloci-
ties and the structural response depends on the fluid forces.
To capture dynamic coupling phenomena, such as flutter or
limit cycle oscillations, the transient response of FSI prob-
lem needs to be resolved. In the case of small structural
deformations, the FSI problem can be simplified by impos-
ing velocity boundary conditions on the fluid that account
for the deformations of the structure. These so-called tran-
spiration boundary conditions are however insufficient to
capture the influence of large geometrical changes of the
flow domain due to structural deformations.

The fluid and structure models can be discretized by the
same or different schemes depending on user preference for
each discipline. The CNS equations are typically discretized
in space by finite difference or finite volume schemes, while
stabilized finite element methods (FEMs) are commonly
applied to INS models. In the context of design optimiza-
tion, both forms of the Navier-Stokes equations are typically
integrated in time by implicit schemes. For transient prob-
lems, the CNS and INS equations are often formulated with
respect to an Arbitrary Lagrangean Eulerian (ALE) refer-
ence frame. The ALE formulation allows movement of the
fluid mesh as the structure deforms. Potential flow and the
HBTE are discretized by specialized schemes, such as panel
methods or the lattice Boltzmann method. Structural mod-
els are typically discretized by the FEM and integrated by
implicit time stepping schemes.

The overall FSI problem is solved by either a staggered
or a monolithic scheme. Staggered schemes satisfy the inter-
face conditions iteratively by solving individually the fluid
and structure sub-problems with appropriate Dirichlet and
Neumann boundary conditions. While staggered schemes
allow for modularity of fluid and structure solvers, they
complicate the formulation and solution of the global sensi-
tivity equations (Maute et al. 2003). In contrast, monolithic
schemes solve the discretized fluid and structure models
simultaneously, requiring an implicit treatment of the inter-
face conditions. While this approach is often challenged by
the need for solving large, ill-conditioned nonlinear systems
of equations, it does not require any special consideration
for deriving and solving the global sensitivity equations.
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Prior work on topology optimization combines the dif-
ferent methods outlined above for describing the structural
geometry and modeling and solving the FSI problem. The
majority of FSI optimization studies employ density meth-
ods to optimize the dry topology. Guo et al. (2005) and Guo
(2007) model the flow by strip and lifting theory approxima-
tions that employ the above described transpiration bound-
ary conditions. Stanford and Ifju (2009) and Stanford (2008)
predict the fluid loads by a vortex lattice method which
is dependent on the panel deflection calculated by finite
element analysis. Stanford and Beran (2013) consider the
transient aero-thermo-elastic response of a panel, predicting
the aerodynamic loads via a linear piston theory. Kennedy
et al. (2014) optimized flexible aircraft wings with flutter
constraints using a panel method to predict the compressible
fluid response. They employ an FEM structural discretiza-
tion for modeling composite structures, considering both
small and large deformations. The change of the geome-
try of the flow domain due to structural deformations is
considered in the following studies. Ghazlane et al. (2011)
optimize wing-box configurations, analyzing the flow field
via a finite volume discretization of the CNS equations
where the overall flow domain is updated based on the con-
verged structural response. Allen and Maute (2002), Allen
and Maute (2004), and Martins et al. (2005) predict the
aeroelastic response by staggered scheme, coupling a finite
volume discretization of an Euler flow model and a FE dis-
cretization of a linear elastic structural model. Maute and
Reich (2006) use the same scheme to optimize morphing
airfoils but account for large deformations in the structural
model.

Only recently optimization of the “wet” and “dry” topol-
ogy is considered by Yoon (2009) and Yoon (2014). These
works account for the overall flow domain dependence
on structural displacements, and use a monolithic scheme
to couple an INS flow model augmented by a Brinkman
penalization method and a linear elastic structural model.

Density methods require a sufficiently refined mesh to
resolve the structural geometry and to mitigate the appear-
ance of jagged or blurred interfaces. The need for refined
meshes and the in general large computational cost of solv-
ing FSI problems render density methods impractical for a
broad class of real-world applications where the flow field
needs to be resolved by numerically expensive INS and CNS
models.

To obtain a crisp representation of the structural geom-
etry with moderately refined meshes, the LSM is applied
to FSI problems in the following studies, in all of which
the structural response is modeled via an Ersatz material
approach. Brampton et al. (2012) and Dunning et al. (2014)
apply the LSM with Hamilton-Jacobi update method to
the optimization of wing-box structures considering design
dependent aeroelastic loading, predicted by a structural

finite element model and a doublet-lattice fluid solver.
Gomes and Suleman (2008) adopt an explicit LSM, employ
a spectral discretization of the level set function, and opti-
mize the aileron reversal speed of a wing torsion box. The
fluid loads are computed by design dependent strip theory.

To resolve well the geometry defined by the LSM with
the Ersatz material approach, a rather fine mesh is needed.
Further, the Ersatz material approach may lead to similar
issues as the density approach in regards to the accuracy
of the FE predictions, the numerical stability of the opti-
mization problem, and the convergence to a clearly defined
geometry (Angot et al. 1999; Kreissl and Maute 2011). To
mitigate these issues, in this work we combine the LSMwith
an immersed boundary technique to describe the structural
geometry. We follow the approach of Makhija and Maute
(2014b) and Villanueva and Maute (2014): We optimize
the topology of structures with an explicit LSM, and pre-
dict the structural response with a generalized formulation
of the extended finite element method (XFEM). We study
this approach for “dry” topology optimization problems,
focusing on hydro-elastic problems at steady-state. The FSI
problem is modeled by coupling a stabilized finite element
model of the INS equations and a linear elastic structural
XFEM model. The fluid mesh is modeled as a fictitious
elastic continuum and deformed in response to the structural
displacements. The steady-state solution of the FSI problem
is computed by a monolithic scheme and the design sensi-
tivities are evaluated by the adjoint method. We study this
LSM-XFEM topology optimization method for designing
the internal structure of 2D and 3D FSI problems. We com-
pare the LSM-XFEM results against designs found by the
SIMP approach. While the numerical examples are rather
academic, they illustrate the key features of the proposed
method and are easily repeatable.

The remainder of this paper is organized as follows: in
Section 2 we present the FSI model, followed by a descrip-
tion of the XFEM framework used for the solid phase.
Section 3 summarizes the density and level set methods
studied here. Section 4 presents three examples that provide
insight into the characteristics of our LSM-XFEM approach.
In Section 5 we summarize the main findings of this work.

2 Fluid-structure interaction model

Figure 2 shows a structure immersed in fluid. The struc-
ture is composed of two material phases “A” and “B”, one
of which could represent “void”. Phase “A” occupies the
domain �s

A and phase “B” the domain �s
B . The boundary

between phase “A” and “B” is �s
A,B . The structural dis-

placements ui are defined in the structural domain �s with
the external boundary �s , where �s = �s

A∪�s
B . The fluid

velocity vi and pressure p are defined in the fluid domain
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Fig. 2 Schematic representation of a FSI problem

�f with the external boundary �f . The fluid mesh is
deformed within the domain �m to accommodate structural
displacements. The fluid mesh displacements are denoted
by di and �m is the boundary of�m. In this work, we update
the fluid mesh in the entire fluid domain, i.e. �f = �m and
�f = �m. The fluid-structure interface is �f si . Essential
boundary conditions do, vo, and uo are defined on the fluid
mesh, fluid, and solid boundaries, respectively.

The fluid is modeled by the INS equations, discretized
by the Streamline Upwind Petrov Galerkin (SUPG) and
Pressure Stabilized Petrov Galerkin (PSPG) stabilized FE
formulation of Tezduyar et al. (1992). The motion of the
fluid mesh is described via linear elastic deformations of
a fictitious continuum (Stein et al. 2004). The structure is
modeled by linear elasticity and discretized by a generalized
formulation of the XFEM, which is discussed in Section 2.2.
The fluid and structure meshes match on the FSI interface,
and we enforce two-way coupling of the fluid and structure
weakly using a boundary integral formulation that is out-
lined below. Note while the internal forces in the solid are
modeled via linear elasticity, i.e. infinitesimal small strains,
our model accounts for finite deformations in predicting
the fluid forces. This simplification of the solid model is
valid as long as geometric nonlinearities can be ignored for
modeling the internal forces.

2.1 Variational formulation of governing equations

The weak formulation for the stationary FSI problem is
written as follows:

Rf = R
f
� + R

f,IC

�f si + R
f
�f

= 0, (1)

Rm = Rm
� + R

m,IC

�f si + Rm
�m

= 0, (2)

Rs = Rs
� + Rs

�A,B + R
s,IC

�f si + Rs
�s

= 0. (3)

The fluid residual, Rf , is comprised of a volume contribu-
tion, R

f
�, contributions from the interface coupling at the

FSI boundary,Rf,IC

�f si , and contributions from boundary inte-

grals along the external boundaries,Rf
�f

. Similarly, the fluid
mesh motion residual, Rm, is comprised of integrals over
the volume, Rm

� , and the fluid-structure interface, R
m,IC

�f si .

The contributions, Rm
�m

, from integrals along the external
boundary vanishes as the solution is prescribed at �m. The
structural residual, Rs , is the sum of contributions of inte-
grals over the volume, Rs

�, the phase boundaries, R
s
�A,B , the

fluid-structure interface, R
s,IC

�f si , and the external boundary,
Rs

�s
.
Adopting an index notation, the volume contributions

are:

R
f
� =

∫
�f

(
ρf ψi

∂vi

∂xj

vj + ∂ψi

∂xj

σ
f
ij + η

∂vi

∂xi

)
d�

+
N

f
elems∑
e

∫
�e,f

(
ρf ∂vi

∂xk

vk − ∂σ
f
ik

∂xk

)

(
τSUPG vj

∂ψi

∂xj

+ 1

ρf
τPSPG

∂η

∂xi

)
d�, (4)

Rs
� =

∫
�s,A

∂χA
i

∂xj

σ
s,A
ij d� +

∫
�s,B

∂χB
i

∂xj

σ
s,B
ij d�, (5)

Rm
� =

∫
�f

∂ξi

∂xj

σm
ij d�, (6)

whereN
f
elems is the total number of fluid elements, and�e,f

is the domain of the eth fluid element. The test functions
for the fluid momentum equations are denoted as ψi , and η

is the test function for the incompressibility condition. The
stabilization parameters of the SUPG and PSPG formula-
tions are denoted by τSUPG and τPSPG, respectively, and
are defined in Tezduyar et al. (1992). The fluid mesh dis-
placement test function is ξi . The test functions of the static
equilibrium equations in phase “A” and “B” are denoted by
χA

i and χB
i , respectively.

The elastic stress tensors in phase “A” and “B” are σ
s,A
ij

and σ
s,B
ij , respectively. The elastic stress tensor in the fic-

titious continuum describing the fluid mesh motion is σm
ij .

We assume a linear elastic constitutive relation for all elas-
tic stress tensors. The associated material parameters are
denoted by νs for the Poisson’s ratio in the solid and Es

A

and Es
B for the elastic moduli in phases “A” and “B”. The

Poisson’s ratio of the fictitious continuum is νm , and the
elastic modulus is Em. Note, the value Em > 0 is arbitrary.
Assuming a Newtonian fluid, the fluid stress tensor σ

f
ij is:

σ
f
ij = −pδij + μf

(
∂vi

∂xj

+ ∂vj

∂xi

)
, (7)

where the fluid dynamic viscosity is μf and δij is the
Kronecker delta.

The contributions from integrals over the external bound-
aries of the fluid and structure subdomains are:

R
f
�f

=
∫

�f

ψiσ
f
ij n

f
j d�, (8)

Rs
�s

=
∫

�s

χAσ s,Ans
j d� +

∫
�s

χBσ s,Bns
j d�, (9)
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where R
f
�f

vanishes if the fluid velocity or a traction
free condition is prescribed. Rs

�s
vanishes on the structural

boundary if there is no external traction present. The out-
ward facing normal vectors for the fluid and solid are nf and
ns , respectively. Note that on �f si the two normal vectors
are equal and opposite.

On the fluid-structure interface, we weakly enforce the
balance of the surface traction due to the fluid and elastic
stress tensors and the continuity of displacements and veloc-
ities. At steady state, the latter is equivalent to enforcing
stick conditions on the flow. To enforce the force balance
we follow the approach of Hubner et al. (2004) and add the
structural residual contributions of degrees of freedom of
nodes along the fluid-structure interface to the fluid residual
contributions of the same nodes. As the interface contribu-
tions of the structural and fluid equations cancel out, only
the volumetric portion of the structural residual needs to be
added to the fluid residual and subtracted from the struc-
tural residual. The displacement and velocity continuity
constraints are enforced via Lagrange multipliers. Formally,
we write the above procedure as follows:

R
f,IC

�f si = Rs
�∩�f si , (10)

R
s,IC

�f si = −Rs
�∩�f si +

∫
�f si

χivid�, (11)

R
m,IC

�f si = −Rm
�∩�f si +

∫
�f si

ξi (ui − di) d�. (12)

The displacement degrees of freedom in the structural and
the fluid mesh motion equations serve as Lagrange multipli-
ers to enforce the stick condition of the flow and to prescribe
the structural displacements for the mesh deformations,
respectively.

The residual Rs
�A,B that accounts for contributions from

phase boundary conditions is defined in the subsection
below.

2.2 Extended finite element discretization

We use a generalized formulation of the XFEM to predict
the structural response of the solid that is comprised of
two phases. The material layout is described by the level
set function. Note the XFEM is only used within the solid
domain.

The level set function, φ, defines the geometry of the
material layout within the structural domain as follows:

φ(xi) < 0, ∀ xi ∈ �s
A,

φ(xi) > 0, ∀ xi ∈ �s
B,

φ(xi) = 0, ∀ xi ∈ �A,B.

(13)

In this work we discretize the level set function with bi-
linear shape functions in 2D and tri-linear shape functions

in 3D. The same mesh is used for discretizing the level set
function and the structural governing equations. Figure 3
shows four configurations of the zero level set iso-contour
intersecting an element in 2D. Note that due to the linear
interpolation of the level set function the double-intersection
shown on the far right is not possible.

To allow for discontinuous displacement and strain fields
across phase boundaries, we approximate the displacement
field within an intersected element as follows:

ui =
M∑

m=1

⎛
⎝H(−φ)

Ne
nodes∑
z=1

Nzû
A,z
i,m + H(φ)

Ne
nodes∑
z=1

Nzû
B,z
i,m

⎞
⎠ ,

(14)

with H being the Heaviside function:

H(a) =
{
1 if a > 0
0 if a ≤ 0

, (15)

where Nz are the local shape functions, Ne
nodes is the num-

ber of nodes of the eth element, and û
q,z
i,m is the displacement

degree of freedom at node z for phase q = [A, B] in
the ith direction. The enrichment level is m, with M being
the maximum number of enrichment levels. The Heaviside
function turns on/off two sets of shape functions associ-
ated with the phases “A” and “B”. For each phase, multiple
enrichment levels, i.e. sets of shape functions, are necessary
if the degrees of freedom interpolate the solution in multi-
ple, physically disconnected regions of the same phase; see
Makhija and Maute (2014b), Terada et al. (2003), and Tran
et al. (2011). This generalization prevents spurious cou-
pling and load transfer between disconnected regions of the
same phase. A detailed explanation of this phenomenon is
provided byMakhija andMaute (2014b). To accurately inte-
grate the weak form of the static equilibrium (3) by standard
Gauss quadrature, the intersected elements are decomposed
into triangles in 2D and tetrahedrons in 3D.

Using the Heaviside enrichment approach described
above does not guarantee that the displacement field is
continuous across phase boundaries. Therefore, we enforce
the continuity of the displacement fields across phase
boundaries by a stabilized Lagrange multiplier formulation

Fig. 3 Intersection configurations
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(Gerstenberger and Wall 2008; Kreissl and Maute 2012).
The associated phase boundary residual Rs

�A,B is:

Rs
�A,B

=
∫

�s
A,B

[χi] λi d� +
∫

�s
A,B

ζi [ui] d� (16)

+ γ

∫
�s

A,B

ζi

(
λi − σ̄ s

ij n
A,B
j

)
d�, (17)

where [·] denotes the jump across the phase boundary,
i.e. [z] = zA − zB , λi is a Lagrange multiplier, and ζi is
the test function for the displacement continuity constraint
and a consistency condition. The latter enforces weakly the
equivalence of the Lagrange multiplier and the surface trac-
tion along the phase boundary, which defined via the mean
stress σ̄ s

ij :

σ̄ s
ij = 1

2

(
σ

s,A
ij + σ

s,B
ij

)
. (18)

The vector n
A,B
i denotes the normal pointing from phase

“A” to phase “B”. The parameter γ scales the consistency
conditions versus the displacement continuity constraint. In
this work, the Lagrange multiplier is approximated element-
wise constant and condensed out during the assembly of
the elemental contributions. If either phase “A” or “B”
represents “void” the displacement continuity condition is
ignored and the residual, Rs

�A,B , in (17) vanishes.
While the spatial interpolation (14) of the state variables

allows for a discontinuity across the phase boundary, this
does not imply that the structural response is discontinu-
ous with respect to a shape variation, i.e. a variation of the
level set field. The reader is referred to Lang et al. (2014)
who studied the XFEM approach described above for shape
variations.

3 Geometry model

In this work we focus on “dry” topology optimization
and do not alter the shape of the fluid-structure interface.
Figure 4 depicts the geometry configuration we consider in
the following. The design domain, �s

D , is comprised of the
phase “A” and “B”, and the material arrangement is deter-
mined in the optimization process. The design domain and
fluid domain are separated by a skin layer, �s

C , that is con-
strained to phase “A” and is not altered in the optimization
process. Thus, phase “A” cannot represent “void”.

In Section 4, we compare optimization results of the pro-
posed LSM-XFEM approach against designs found by a
density method. The geometry models of both approaches
are summarized in the following subsections.

Fig. 4 Geometry model

3.1 Density approach

Following the seminal work of Bendsøe and Sigmund
(1999) and Zhou and Rozvany (1991), we apply a SIMP
approach to optimize the internal structure. We define an
independent optimization variable, si ∈ S, at each node in
the design domain, with S = {si ∈ �|0 ≤ si ≤ 1}. In the
structural finite element model, the material properties are
assumed to be element-wise constant. The elemental den-
sity, ρs,e, of the eth element is computed using the following
filter:

ρs,e =
⎛
⎝Nnodes∑

j=1

wij

⎞
⎠

−1
Nnodes∑
j=1

wij sj , (19)

with

wij = max
(
0, (r − |xe

i − xj |)
)
, (20)

where xe
i is position vector of the center of the ith element,

xj the coordinates of the j th node, Nnodes is the total num-
ber of structural nodes, and r the filter radius. The elastic
modulus, Es,e of the eth element is interpolated as follows:

Es,e = Es
B + (

Es
A − Es

B

) (
ρs,e

)β
, (21)

where β is the SIMP penalization parameter. If phase “B”
represents “void” its elastic modulus Es

B is set to a small,
non-zero value to prevent numerical instabilities in the finite
element analysis. Note that the interplay of the linear inter-
polation of the density and the nonlinear interpolation of
the elastic modulus penalizes intermediate density values
only if the objective promotes structural stiffness subject to
a mass constraint.

The optimization variables associated with nodes in the
skin layer, �s

C , are set to one.

3.2 Level set approach

In this work, we adopt the explicit level set method pre-
sented by Kreissl and Maute (2011) and define the nodal
level set values as explicit functions of the optimization vari-
ables. Similar to the density filter (19), the nodal values,
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φi , of the discretized level set function are computed with a
filter:

φi =
⎛
⎝Nnodes∑

j=1

wij

⎞
⎠

−1
Nnodes∑
j=1

wij sj , (22)

with

wij = max
(
0, (r − |xi − xj |)

)
, (23)

where xi is the location of node i. The level set filter (23)
widens the zone of influence of the optimization variables
on the level set field and thus enhances the convergence
of the optimization process. In contrast to the density fil-
ter (19), however, it does neither guarantee the convergence
of the optimized geometry with mesh refinement nor pro-
vide local size control; see, for example, the discussions
in van Dijk et al. (2013), Sigmund and Maute (2013), and
Villanueva and Maute (2014). To control globally, i.e. in an
integral sense, the geometry of the optimized design, we
penalize the perimeter of the phase boundary in the formu-
lation of the LSM-XFEM optimization problems studied in
Section 4. Makhija and Maute (2014b) show that penaliz-
ing or constraining the perimeter leads to smooth shapes
and impedes the emergence of small features and free-
floating material. Note the SIMP approach with density
filter (19) does not require a perimeter penalization, as the
filter already suppresses the emergence of small features
(Petersson and Sigmund 1998).

The optimization variables associated with nodes in the
skin layer, �s

C , are set to a negative value to ensure that the
skin layer is occupied by phase “A” only.

4 Numerical examples

We study the proposed LSM-XFEM method and compare
it against a SIMP approach with three examples. In the
first two examples we maximize the stiffness of the struc-
ture in two and three dimensions. In the third example, we
manipulate the internal structural layout to obtain a desired
flow characteristic as the structure deforms. While these
examples are rather academic and maximizing the struc-
tural stiffness often leads to structural designs that do not
undergo strong FSI phenomena, they are well-suited to illus-
trate the main characteristics of the proposed LSM-XFEM
approach and can be easily repeated. Furthermore, the third
example utilizes fluid-structure coupling to meet the design
objective.

The same formulations of the optimization problems are
used for the LSM-XFEM and the SIMP approaches, except
for an additional perimeter penalization is considered for
the LSM-XFEM formulation. The need for this term is
discussed in Section 3.2.

In the 2D examples of this section we discretize the fluid,
mesh motion, and structural sub-problems with 4-node,
bi-linear finite elements. The 3D example uses 8-node,
tri-linear finite elements. In all examples, the steady-state
response of the FSI problem is computed by Newton’s
method. The design sensitivities of the objective and con-
straints are determined by the adjoint method. The Jacobian
of the state equations and the gradients of objective and
constraints with respect to the state variables are com-
puted based on analytically derived expressions. The partial
derivatives of the FSI residual, objective, and constraints
with respect to the optimization variable are evaluated by
a central difference scheme. The linear sub-problems in
the forward and adjoint sensitivity analysis are solved by a
direct parallel solver (Sala et al. 2008; Amestoy et al. 2000),
unless stated otherwise.

The parameter optimization problems resulting from the
SIMP and the proposed LSM-XFEM approaches are solved
by the Globally Convergent Method of Moving Asymptotes
of Svanberg (2002). We use an initial adaptation of 0.5 and
0.7 thereafter, a relative step size of 0.01, and a GCMMA
penalty of 100.0. Sub-cycling of the GCMMA algorithm is
suppressed for the examples shown here.

4.1 Two-dimensional beam in flow channel

We seek to determine the optimal geometry of the internal
structure of beam immersed in a flow channel. The objective
is to minimize the compliance of the beam subject to a con-
straint on the maximum structural mass. With this example,
we illustrate the key features of the proposed LSM-XFEM
approach. We study the optimization problem for differ-
ent stiffness ratios of the material phases and compare the
LSM-XFEM results against the one of a SIMP method.

This problem is similar to one of Yoon (2009) who opti-
mizes a beam-type structure with a design dependent fluid
load for minimum compliance. The problem presented here
has a fixed fluid-structure boundary, and we optimize the
dry topology of the structural member. The geometry of the
problem is a scaled version of the COMSOL Multiphysics
benchmark problem (COMSOL 2008). However, the mate-
rial properties used in this study differ from the bench-
mark problem to magnify the strength of the fluid-structure
coupling.

The problem setup is shown in Fig. 5. A flexible beam
is immersed in a flow channel with stick conditions on
both the top and bottom of the channel. A parabolic veloc-
ity profile is prescribed at the inlet, and a traction free
condition is prescribed at the outlet. The beam is pinned
along the bottom edge in both horizontal and vertical direc-
tions. The fluid and solid sub-domains are discretized with
unstructured meshes that match geometrically and topolog-
ically along the fluid-structure interface. We consider two
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Fig. 5 Flexible beam in flow channel: problem setup for 2D example

levels of mesh refinement. The properties of the fluid and
the solid along with algorithmic parameters are summarized
in Table 1. Using the mean inflow velocity and the beam
length as reference values, the Reynolds number of the flow
is 1.0.

Table 2 gives the discretization parameters for the prob-
lem where the number of active degrees of freedom (DOFs)
depends on the structural element intersection configura-
tion, and varies throughout the optimization process. The
reader is referred to Makhija and Maute (2014b) for details
on the dependence of the number of constrained and uncon-
strained DOFs on the intersection configuration.

The design objective is to minimize the strain energy
(SE) augmented by a perimeter penalty and a constraint on
the volume of solid phase “A”:

minimize
si

z(si) = kD

∫
�s

A

σ
s,A
ij εA

ij d�

+kD

∫
�s

B

σ
s,B
ij εB

ij d� + kP

∫
�s

A,B

d�

subject to g (si) = 1

nV ms
T

∫
�s

A

ρs,e d� − 1.0 ≤ 0, (24)

Table 1 Physical parameters of flexible beam problem

fluid density ρf 1.0 kg/m3

fluid dynamic viscosity μf 1.0 kg/ms

solid density phase “A” ρs
A 1.0 kg/m3

solid elastic modulus phase “A” Es
A 40.0 kPa

solid Poisson ratio phase “A” and “B” νs 0.33

scaling of consistency condition γ 10.0

maximum number of enrichment levels M 10

mean inlet velocity v̄in 1.0 m/s

elastic modulus fluid mesh Em 1.0 Pa

Poisson ratio fluid mesh νm 0.33

Table 2 Discretization parameters of flexible beam problem

Refinement level Coarse Fine

Number of fluid nodes 7,760 23,768

Number of solid nodes 2,819 10,259

Number of total DOFs (initial design) 41,523 132,461

where ms
T is the total structural mass of the structure filled

with ρs
A, and ε

q
ij is the strain tensor for phase q = [A, B].

The structural density is:

ρs,e =
{

ρs
A if xi ∈ �s

A,

ρs
B if xi ∈ �s

B,
(25)

where ρs
B is to zero. We limit the volume fraction of phase

“A” to 60 %, i.e. nV = 0.6. The smoothing radius, r , is
1.6 times the maximum solid element edge length, that is
r = 0.016 m for the coarse mesh, and r = 0.014 m for
the fine mesh. The weighting factors are kD = 100 and
kP = 0.1.

The skin layer, �s
C , is formed by prescribing one layer

of solid elements along the fluid-structure interface to phase
“A”. The skin layer is approximately 0.00495 m for the
coarse mesh, and 0.00280 m for the fine mesh.

The initial structural design has six holes filled with solid
phase “B”; the hole diameter is 0.074 m. The hole centers
are aligned at the beam center 2.05m in the horizontal direc-
tion, and equally spaced in the vertical direction. The initial
hole radius is used as the upper and lower bound on �s

D

for the box constraints of the optimization problem (24):
[−0.074:0.074].

4.1.1 LSM-XFEM approach

First we study the optimization problem above on the coarse
mesh for the following ratios of elastic moduli of phases “A”
and “B”: Es

B = [0.0; 10−3; 10−2; 10−1] Es
A. Note, E

s
B = 0

represents phase “B” being “void”. For this case, the fluid
velocity norm, the fluid pressure field, and the norm of
the displacements of the fluid mesh of the initial optimized
design are shown in Fig. 6. Note these solutions do not
change significantly during the optimization process.

Figure 7 shows the optimized structural geometries for
different Es

A/Es
B ratios. The smaller the stiffness of phase

“B”, the more phase “A” material is placed along the
upstream side of the fluid-structure interface to stiffen the
skin layer against large local deformation. As the stiffness
of phase “B” increases, more material is placed at the root
of the beam to reduce the overall bending deformation. As
expected, the strain energy decreases as the stiffness for
phase “B” increases.

The evolutions of the objective function are depicted in
Fig. 8 for different Es

A/Es
B ratios. Note the jumps in the



Level set topology optimization of FSI problems 187

Fig. 6 Contour plots of velocity magnitude, fluid pressure and mesh
displacement magnitude in deformed configuration of initial design
(left) and optimized design (right) for Es

B = 0

objective evolution, in particular for small Es
B/Es

A ratios.
The evolution convergence is smooth and faster for large
Es

B values. The jumps are due to thin members disconnect-
ing and resulting in large local deformations. For particular
configurations of element intersections, a small change in
the optimization variables leads to a change in the struc-
tural topology, accompanied by a significant change of the
structural response.

This issue is illustrated in Fig. 9 for the case Es
B = 0.0.

Consider a design with a thin member as in Fig. 9a; the level
set function in the vicinity of the thinnest section is shown.
The design sensitivities of the objective promote reducing

Fig. 7 Optimized designs and level set fields for Es
A/Es

B ratios

Fig. 8 Objective evolution for different Es
A/Es

B ratios

the thickness of the member. The target intersection config-
uration is shown in Fig. 9b: the sign of the level set value
at node (i) switches from negative to positive and the edge
ez is intersected twice. However, this intersection configu-
ration is not possible as the bi-linear interpolation of level
set field used in this study only allows for no more than one
intersection of the zero level set iso-contour along an ele-
ment edge ez. Instead, the change of the level set function
promoted by the design sensitivities results in the intersec-
tion pattern shown in Fig. 9c, disconnecting the member and
leading to large structural deformations seen in Fig. 9d.

The issue discussed above is inherent to the proposed
LSM-XFEM approach and may arise independent of the
physics modeled. Interestingly, the jumps in the evolution of
the objective have not been observed in earlier LSM-XFEM
studies on structural and flow problems (Makhija andMaute
2014b; 2014a). We speculate that the nonlinearity of the
fluid-structure coupling amplifies the sensitivity of the FSI
response to changes in the structural topology and leads to
discontinuities discussed above. Finding remedies for this
issue are beyond the scope of this paper, but are planned for
future studies.

4.1.2 Comparison of LSM-XFEM and SIMP approaches

Next, we compare the LSM-XFEM to the SIMP method for
two mesh refinement levels and for two different Es

A/Es
B

ratios. For the SIMPmethod we consider the same optimiza-
tion problem formulation as the LSM-XFEM, except we
omit the perimeter penalty term. The SIMP penalty factor
is β = 3.5. If phase “B” is considered ”void”, the Young’s
modulus of phase “B” is set to Es

B = 10−6 to avoid a singu-
lar finite element problem. The smoothing radius is element
dependent and set to h(e)/

√
2, where h(e) is the solid ele-

ment edge length of element (e). Note that the smoothing



188 N. Jenkins, K. Maute

Fig. 9 Illustration of configurations leading to disconnection of structural members

radius for the SIMP approach differs from the one for the
LSM-XFEM approach since the density and level set filters
serve different purposes as explained previously. The struc-
tural design domain, �s

D , is initialized to a uniform density
of 60 %.

Figure 10 shows the optimized structural designs for
the LSM-XFEM and SIMP approaches where the shade
indicates the material stiffness. As observed in the pre-
vious study by Villanueva and Maute (2014), the SIMP
approach leads to designs with more structural members
in comparison to the LSM-XFEM approach. However, the
increased geometric complexity does not result in a sig-
nificant increase in structural stiffness. As the results for
the fine mesh show, the structural performances between
LSM-XFEM and SIMP designs differ insignificantly. Both
approaches exhibit mesh dependency, which is to be
expected given we use a mesh dependent filtering scheme
for both approaches. Efficient density and sensitivity filter-
ing schemes have been developed for the SIMP approach to

Fig. 10 Comparison of LSM-XFEM and SIMP methods for different
mesh resolutions and Es

A/Es
B ratios

mitigate the dependence of the optimized results on mesh
refinement level; see, for example, Bourdin (2001) and
Sigmund (2007), and Sigmund and Maute (2012). How-
ever, similar efficient methods for LSMs are currently lack-
ing (van Dijk et al. 2013).

The evolution of the objectives for the LSM-XFEM and
SIMP approaches along with snapshots of the designs in the
course of the optimization process are given in Fig. 11. Note
the values of the objectives are different for the LSM-XFEM
and SIMP formulations due the scaling factors and inclusion
of the perimeter penalty in (24). Comparing the evolution
plots shows that the SIMP approach yields a smooth and
quick convergence to the optimized solution. In contrast, the
LSM-XFEM approach suffers from the jumps for reasons

0

Fig. 11 SIMP and LSM-XFEM objective evolution for phase “B”
being “void”
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discussed above. Note the objective values just before the
jumps in Fig. 11 seem converged and are larger after the
jump. Interestingly, the final objective value is the lowest
value in the optimization process. However, due to the dis-
continuity in the optimization process associated with the
disconnecting of thin members, we cannot guarantee such a
behavior.

4.2 Flexible plate in flow channel

We study the LSM-XFEM and SIMP approaches for opti-
mizing the internal structural layout of a three-dimensional
flexible plate immersed in a flow channel. As in the exam-
ple of Section 4.1, the objective is to minimize the strain
energy of the structure subject to a volume constraint on the
material phase “A”. We will show with this problem that the
improved geometry resolution on rather coarse meshes is an
attractive feature of the proposed LSM-XFEM approach, in
particular for 3D FSI problems.

The problem setup is depicted in Fig. 12. A plate of size
3.0 × 1.5 × 0.5 m is mounted at the bottom a flow chan-
nel. The plate is centered in the z-direction. The distance
between the channel inlet and the front face is 4.0 m in the
x-direction, and the remaining dimensions of the channel
are given in Fig. 12.The structural displacements are pre-
scribed to zero at the bottom face of the plate. A parabolic
profile for the velocity in x-direction is prescribed at chan-
nel inlet face. Stick conditions are enforced at the channel
walls, and a traction free boundary condition is imposed
at the channel outlet face. The fluid and structural proper-
ties along with algorithmic parameters are summarized in
Table 3. The discretization parameters are given in Table 4.

Using the mean inflow velocity and the width of the plate
as reference values, the Reynolds number is 3.0. We con-
sider two levels of mesh refinement and assume that the
phase “B” represents “void”, i.e. Es

B = 0 and ρs
B = 0.

The skin layer, �s
C , is formed by prescribing one layer of

solid elements along the fluid-structure interface to phase

Fig. 12 Dimensions and coordinate system for the flexible plate
example

Table 3 Physical parameters of flexible plate problem

fluid density ρf 1.0 kg/m3

fluid dynamic viscosity μf 1.0 kg/ms

solid density phase “A” ρs
A 1.0 kg/m3

solid elastic modulus phase “A” Es
A 5.0 kPa

solid Poisson ratio phase “A” and “B” νs 0.33

scaling of consistency condition γ 10.0

maximum number of enrichment levels M 27

mean inlet velocity v̄in 1.0 m/s

elastic modulus fluid mesh Em 1.0 Pa

Poisson ratio fluid mesh νm 0.33

“A”. The thickness of skin layer is approximately 0.033 m
for the coarse mesh and 0.025 m for the fine mesh. Note
the fine mesh leads to more than 106 degrees of freedom.
As direct parallel solvers do not scale well as the number
of processors increase, we solve the linear sub-problems
of this example by the Generalized Minimum Residual
Method (GMRES) with the Dual Threshold Incomplete LU
Factorization (ILUT) preconditioning scheme (Saad 1994).

The formulations of the optimization problem for the
LSM-XFEM and the SIMP approaches are the same as for
the 2D problem in Section 4.1. As in Section 4.1, we limit
the volume fraction of the structural design domain filled
with phase “A” to 60 %, i.e. nV = 0.6. For the LSM-XFEM
formulation (24), the weighting factors are kD = 100 and
kP = 0.01. The smoothing radius for the coarse mesh is
r = 0.088 m and for the fine mesh is r = 0.055 m.

For the LSM-XFEM approach, the solid is initialized
with 20 equally spaced spheres of phase “B”material (void):
4 in the y-direction, 5 in the z-direction, 1 in the x-direction.
The radius of each initial spheres is 0.12 m. The initial
sphere radius is used as the upper and lower bound for
the box constraints in �s

D: [−0.12:0.12]. For the SIMP
approach, the design domain is initialized with a uniform
density of 60 %. The smoothing radius is element size
dependent and set to h(e)/

√
2, where h(e) is the solid ele-

ment edge length of element (e). The SIMP penalty factor
is β = 3.5, and the Young’s modulus of phase “B” is set to
Es

B = 10−6 to avoid a singular finite element problem.
The initial LSM-XFEM design in the deformed state is

shown in Figs. 13 and 14. In Fig. 13, the up-stream half of

Table 4 Discretization parameters of flexible beam problem

Refinement Level Coarse Fine

Number of fluid nodes 100,768 143,856

Number of solid nodes 33,605 61,440

Number of total DOFs (initial design) 608,312 1,118,120
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(a)

(b)

Fig. 13 Structural response and flow field of initial LSM-XFEM
design in deformed configuration: a contour plot of structural displace-
ment magnitude with streamlines and b channel velocity magnitude
contours with streamlines

Fig. 14 Pressure field of initial LSM-XFEM design in deformed
configuration for upstream view a and downstream view b

the plate is not shown to expose the internal topology. Note
the displacements are not amplified.

The optimized designs for the LSM-XFEM and the den-
sity approach are shown in Fig. 15 where the shade indicates
the material stiffness. In the top row, the design from the
density approach are given, and the LSM-XFEM results
are on the bottom row where black is phase “A” material.
Fig. 15 shows that the SIMP and LSM-XFEM approach are
similar in that they both lead to column-type internal struc-
tures. They differ near the lower region of the plate, where
the density approach has a thick filled in design, and the
LSM-XFEM design has breaks along the z-length of the
plate. Note the appearance of seemingly free-floating mate-
rial in Fig. 15 arises from showing a slice in the y-z plane
through the center of the structure; this material is actually
connected in the out of plane (x) direction.

The LSM-XFEM performs better by achieving a lower
strain energy on both refinement levels than the SIMP
method. The designs acquired using the SIMP method are
very different for the two mesh refinement levels. In con-
trast, the optimal design for the LSM-XFEM is nearly the
same for both mesh refinements, suggesting that the LSM-
XFEM approach converges faster as the mesh is refined.
Again, we note that the SIMP convergence can be improved
through density or sensitivity filter and the crispness of the
density distribution can be enhanced by projection meth-
ods (Sigmund 2007; Guest 2009). Neither option is studied
here. Nevertheless, the ability of the LSM-XFEM approach
to capture optimal geometries on rather coarse meshes is an
attractive feature of this approach, in particular for 3D FSI
problems that are computationally costly.

Figure 16 shows the evolution of the objectives in the
optimization process for both the LSM-XFEM and the
SIMP approaches. Fig. 17 depicts the zero level set iso-
surface in the course of the optimization process at different
snapshots for the fine mesh. Fig. 16 shows that both the

Fig. 15 Material distributions of optimized designs in the y-z plane at
x = 4.5m obtained with LSM-XFEM and SIMP approaches on coarse
mesh (left) and the fine mesh (right)
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Fig. 16 Objective evolution for both SIMP and LSM-XFEM, with
both mesh refinements

LSM-XFEM and the SIMP method objective function con-
verge at nearly the same rate. Note in Fig. 16 the fine
LSM-XFEM curve increases until the inequality constraint
is satisfied, then converges after iteration 50. The 3D exam-
ple does not exhibit the jumps seen in the 2D problem due
to the greater redundancy of load paths in the 3D design.

4.3 Pressure tuning device

In the final example of this study we optimize a passive
valve to control the pressure drop in a 2D channel. The
problem is illustrated in Fig. 18. The internal structural
geometry of the two vertical beams is to be designed
such that upon deformation of the beams the flow exhibits
a desired pressure drop, �pdesired , across the channel.
This example will illustrate that the proposed LSM-XFEM
approach is applicable to design optimization problems that
do not involve compliance. We will further show that the
SIMP approach requires a volume penalization to converge
toward a “0-1” material distribution.

Fig. 17 Snapshots of the level set iso-surface through the optimization
evolution

Fig. 18 Pressure tuning device example: problem setup

The dimensions of the problem are given in Fig. 18. The
fluid and structural properties along algorithmic parame-
ters are given in Table 5. The discretization parameters are
given in Table 6. The Reynolds number is 1.0 using the
mean inflow velocity and the beam length Lb as reference
values. We assume that the phase “B” represents “void”,
i.e.Es

B = 0 and ρs
B = 0. The problem is assumed to be sym-

metric about the y = 1.3 m line. Therefore, only half of the
FSI problem is modeled, using an unstructured mesh. The
skin layer, �s

C , is formed by prescribing the material in one
layer of solid elements along the fluid-structure interface
to phase “A”. For the given mesh, the thickness of the skin
layer is approximately 0.0055 m. The optimization prob-
lem is to minimize the difference between the actual and
the desired pressure drop. To regularize the LSM-XFEM
version of the optimization problem the perimeter is also
penalized. We further study the influence of penalizing the
volume occupied by phase “A”. The optimization problem
reads as follows:

minimize
si

z(si) = k�p

(
�p

�pdesired

− 1.0

)2

+ kV

∫
�s

A

d� + kP

∫
�s

A,B

d�, (26)

Table 5 Physical parameters of pressure-tuning problem

fluid density ρf 1.0 kg/m3

fluid dynamic viscosity μf 1.0 kg/ms

solid density phase “A” ρs
A 1.0 kg/m3

solid elastic modulus phase “A” Es
A 3.0 kPa

solid Poisson ratio phase “A” and “B” νs 0.33

scaling of consistency condition γ 10.0

maximum number of enrichment levels M 10

mean inlet velocity v̄in 1.0 m/s

elastic modulus fluid mesh Em 1.0 Pa

Poisson ratio fluid mesh νm 0.33
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Table 6 Discretization parameters of pressure-tuning problem

Number of fluid nodes 11,670

Number of solid nodes 6,378

Number of total DOFs (initial design) 67,904

where the actual pressure drop, �p, is computed as follows:

�p =
∫

�inflow

(
1

2
ρf |vi |2 + p

)
d� (27)

−
∫

�outflow

(
1

2
ρf |vi |2 + p

)
d�. (28)

To find an obtainable value for the desired pressure drop,
we consider the beams made of a uniform material and
study the pressure as the elastic modulus of the material
changes. The results are shown in Fig. 19. The pressure
drop decreases as the stiffness of the beams increase and
the structural deformations decrease. This may be found
counter-intuitive. As the structure deforms, the orthogonal
projection of the beam onto the inlet is reduced, i.e. the
beam appears shorter as seen by the inlet flow, yet the pres-
sure drop increases. This behavior can be explained by the
skin friction being the main driver of the pressure loss in
the channel. As the structure deforms, the more the fluid-
structure interface is aligned with the flow and, thus, the skin
friction increases. To promote a beam design that exhibits
some flexibility, we choose the value 0.37 for �pdesired .

First we will solve the optimization problem with both
LSM-XFEM and the SIMP approaches, omitting the vol-
ume penalty, i.e. kV = 0. The penalty parameter for the
pressure term k�p is 10000. For the LSM-XFEM we use a
perimeter penalty of kP = 0.1. The LSM-XFEM approach
is initialized with an equally spaced array of 2 × 5 holes
of radius 0.045 m. The initial hole radius is used as the
upper and lower bound for the box constraints in �s

D:
[−0.045:0.045]. For the SIMP approach, we set the penalty
factor to β = 3.5 and initialize the design domain, �s

D ,to

Fig. 19 Phase “A” elastic modulus sweep results

Fig. 20 Contour plots of fluid velocity magnitude of initial configu-
rations for SIMP and LSM-XFEM approaches

uniform 60 % density. The Young’s modulus in the “void”
phase is set to Es

B = 10−6 to avoid a singular finite element
problem.

The contour plots of the velocity magnitude and pressure
fields of the initial configuration are given in Figs. 20 and
21 for both LSM-XFEM and SIMP approaches. The flow
solution plots show the overall symmetry of the problem,
and stagnation and low pressure areas.

The initial and optimized geometries are given in Fig. 22
where the shade indicates the material stiffness. The con-
vergence plots of the objectives are shown in Fig. 23. The
pressure drop values and the volumes occupied by phase “A”
are reported in Table 7. The LSM-XFEM approach leads to
a simple design that provides flexibility to the beam through
simple compliant mechanism at the bottom of the beam. In
contrast, the SIMP approach leads to material distribution of
intermediate density values that provides no guidance for a
practical design solution. Note in this case projection meth-
ods will not improve the results (Sigmund and Maute 2013).
Both optimization processes are well converged and both

Fig. 21 Fluid pressure fields of initial configurations for LSM-XFEM
and SIMP approaches
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Fig. 22 Initial and optimized geometries for LSM-XFEM and SIMP
approaches with no volume penalty

Fig. 23 Evolution of objectives for LSM-XFEM and the SIMP
method with no volume penalty

Table 7 Performance of optimized pressure tuning device

Approach �P [Pa] Volume Fraction Phase “A”

LSM-XFEM 0.3700 0.5746

LSM-XFEM with kV = 10 0.3703 0.1881

SIMP 0.3700 0.4184

SIMP with kV = 10 0.3702 0.1867

Fig. 24 Initial and optimized geometries for LSM-XFEM and SIMP
approaches with volume penalty: kV = 10

Fig. 25 Evolution of objectives for LSM-XFEM and the SIMP
method with volume penalty: kV = 10

the LSM-XFEM and SIMP design meet well the target pres-
sure drop. Note that the LSM-XFEM approach converges
without any jumps.

In the absence of physical phenomena that naturally
promote a “0-1” solution, the convergence of the SIMP
approach toward a “0-1” material distribution relies on the
interplay of an objective that promotes stiffness and a con-
straint or penalty on volume. To enhance the SIMP results
we therefore introduce a volume penalty and solve the opti-
mization problem for kV = 10. These initial and optimized
designs are given in Fig. 24 where the shade indicates the
material stiffness. The evolution of the objectives are shown
in Fig. 25.

Due to the volume penalty, the SIMP approach converges
to a material distribution that describes well the optimized
geometry. However, the design of both the LSM-XFEM and
SIMP approaches are significantly more complex and do not
meet the target pressure drop as well as when omitting the
volume penalty; see Table 7. Figure 25 shows that SIMP and
the LSM-XFEM converge at similar rates. However, due to
the formation of thin structural members, the convergence
of LSM-XFEM suffers from a few jumps.

5 Conclusions

A topology optimization approach that combines an explicit
level set method and the extended finite element method
was presented and studied for optimizing the internal struc-
tural layout of FSI problems. The structural response was
modeled assuming infinitesimal small strains and a linear
elastic material behavior. The fluid loads were predicted via
an incompressible Navier-Stokes model. Fluid and struc-
ture models were strongly coupled and the steady-state FSI
response was computed by a monolithic scheme.

Optimization problems in 2D and 3D were studied,
comparing the proposed LSM-XFEM approach against the
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SIMP method. For both approaches, the gradients of objec-
tive and constraints were evaluated by the adjoint method
and the parameter optimization problems were solved by
the Globally Convergent Method of Moving Asymptotes.
The examples focused on two-phase structural designs,
including both “solid-void” and “solid-solid” configura-
tions. Objective functions were considered that increase the
structural stiffness and tune the flexibility of the structure
such that a target pressure drop across a flow channel is
achieved. Either a penalty or constraint on the mass of the
stiff phase was imposed. The LSM-XFEM problem formu-
lations were augmented by a penalty on the perimeter. While
the examples presented in this paper are rather academic
and, with the exception of the third example, do not neces-
sarily highlight the need for considering FSI phenomena in
the design process, they are well-suited to gain insight into
the proposed LSM-XFEM approach.

The numerical studies suggested the proposed LSM-
XFEM scheme is a suitable approach to find crisp geome-
tries of the internal structure for FSI problems. It was
observed that the convergences of the LSM-XFEM designs
in the optimization process may suffer from jumps. This
issue was more pronounced for “solid-void” problems in
2D as the structure forms thin members. Analysis of design
evolution revealed that the jumps are due to the bi-linear
interpolation scheme of the level set functions that does not
allow multiple intersections along an element edge. While
this issue is inherent to the proposed LSM-XFEM approach,
it was not observed in previous LSM-XFEM studies but
seems to be more pronounced for FSI problems. In 3D
the tri-linear interpolation of the level set function provides
more flexibility to represent thin structural members and
therefore jumps in the design evolutions are less likely.

Comparing LSM-XFEM and SIMP results showed that
both approaches find designs with comparable performance.
When sufficiently constraining the mass of the stiff phase,
the SIMP approach converged toward a two-phase solu-
tion and typically found designs with a more complex,
delicate geometry. However, the increased geometric com-
plexity did not provide a significant mechanical advantage
over the much simpler designs found by the LSM-XFEM
approach. Note that for SIMP, the density filter was not used
to control the feature size as the filter radius was decreased
as meshes were refined. Further, it was observed that the
LSM-XFEM approach results in optimized geometries with
crisp phase boundaries on rather coarse meshes. In contrast,
the SIMP approach requires much finer meshes to yield
clearly defined boundaries. The ability of the LSM-XFEM
approach to work on coarse meshes provides a practical
advantage in particular for 3D FSI problems.

The numerical studies on the pressure tuning device
illustrated that the LSM-XFEM approach is applicable to
problems where the mass of the stiff phase is not constrained

or penalized. In this case, the SIMP approach did not con-
verge toward a two-phase solution, and a mass penalty
was needed to obtain meaningful designs with the SIMP
approach. Note that augmenting the SIMP approach with
a projection scheme is not likely to resolve the lack of
convergence as the presence of intermediate density values
is not due to filtering; see, for example, the discussion in
Sigmund and Maute (2013).

In future studies, the proposed LSM-XFEM approach
should be refined and expanded. An alternative interpolation
scheme of the level set function needs to be developed
to mitigate the jumps in the design evolution. The cur-
rent approach should be enhanced to allow optimizing both
the “wet” and “dry” geometry. Expanding the method into
finite strains and nonlinear constitutive structural models is
straight forward from an algorithmic point of view. How-
ever, one needs to devise strategies to deal with structural
instabilities. Applying the proposed approach to higher
Reynolds and Mach number flows requires the integra-
tion of appropriate flow models and anisotropic mesh-
ing schemes to resolve relevant flow phenomena, such as
boundary layer flows. To consider dynamic FSI phenom-
ena, such as flutter and limit cycle oscillations, the transient
response of the FSI system needs to be considered. Finally,
the applicability of the LSM-XFEM approach should be
studied in the context of practical design problems.
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