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Abstract Computationally expensive multiobjective opti-
mization problems arise, e.g. in many engineering applica-
tions, where several conflicting objectives are to be opti-
mized simultaneously while satisfying constraints. In many
cases, the lack of explicit mathematical formulas of the
objectives and constraints may necessitate conducting com-
putationally expensive and time-consuming experiments
and/or simulations. As another challenge, these problems
may have either convex or nonconvex or even discon-
nected Pareto frontier consisting of Pareto optimal solu-
tions. Because of the existence of many such solutions,
typically, a decision maker is required to select the most
preferred one. In order to deal with the high computational
cost, surrogate-based methods are commonly used in the
literature. This paper surveys surrogate-based methods pro-
posed in the literature, where the methods are independent
of the underlying optimization algorithm and mitigate the
computational burden to capture different types of Pareto
frontiers. The methods considered are classified, discussed
and then compared. These methods are divided into two
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frameworks: the sequential and the adaptive frameworks.
Based on the comparison, we recommend the adaptive
framework to tackle the aforementioned challenges.
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1 Introduction

Many practical engineering problems often involve optimiz-
ing (either minimizing or maximizing) multiple, possibly
incommensurable objective functions subject to a feasible
set determined by constraint functions. In such problems
known asmultiobjective optimization problems (MOPs), the
best solution for an objective function may be the worst
solution for some other objective functions. As a matter of
fact, in a solution of an MOP, improvement in the value of
one objective is only possible by allowing impairment in
the values of at least one of the other objectives which is
known as the concept of Pareto optimality (Miettinen 1999).
A solution of an MOP satisfying this concept is called a
Pareto optimal solution, and the set of all such solutions
is referred to as a Pareto frontier (often also known as a
Pareto optimal set). Mathematically, without any additional
information, all Pareto optimal solutions are equally accept-
able solutions of an MOP. It is, however, generally desirable
to obtain one solution to be implemented. Therefore, when
solving an MOP, we need a decision maker (DM) to com-
pare several different solutions or to provide preference
information in some other way and to select the most pre-
ferred one. In this survey, we define solving an MOP in two
ways, i.e., finding a representation of the entire Pareto fron-
tier to a DM or obtaining the most preferred solution based
on the preferences of a DM.

mailto:mohammad.tabatabaei@jyu.fi
mailto:jussi.hakanen@jyu.fi
mailto:markus.hartikainen@jyu.fi
mailto:kaisa.miettinen@jyu.fi
mailto:karthik.sindhya@jyu.fi


2 M. Tabatabaei et al.

In real-world MOPs, the mathematical formulas of objec-
tive and constraint functions could be either computation-
ally expensive to evaluate and/or of a black-box type. For
black-box functions, all that is known about them is the
output for a given input. When dealing with these func-
tions, mathematical properties such as convexity or conti-
nuity are not available. In some problems, objective and
constraint functions are evaluated using real and/or com-
putational experiments such as thermodynamic analysis,
structural analysis, computational fluid dynamics (CFD) or
reservoir simulation which involve differential equations to
be solved. Numerical techniques such as finite element (FE)
and finite difference methods may be applied to solve these
equations. These experiments are time consuming and such
problems are known as computationally expensive (inten-
sive, costly) MOPs. For example, each objective function
evaluation in reservoir simulation problems may take sev-
eral days even after applying various techniques to improve
the computational speed (Rezaveisi et al. 2014). The Pareto
frontiers of such problems may be convex, nonconvex or
disconnected. How to most efficiently solve these computa-
tionally expensive problems is an open research question in
the literature.

In this paper, we present a survey of methods to handle
computationally expensive MOPs. The focus of this sur-
vey is on general methods which are independent of the
type of the optimization algorithms used in them. The basic
idea in such methods is to introduce a computationally less
expensive replacement problem known as a surrogate prob-
lem. Besides methods considered here, methods have been
developed in the literature where mechanisms of nature-
inspired methods such as evolutionary and particle swarm
algorithms are essential elements of building the surrogates
of the methods. See Tenne and Goh (2010), Jin (2011),
Zhou et al. (2011) for reviews of such methods. As said,
these methods are not considered here. Surveys on methods
to solve computationally expensive single objective opti-
mization problems utilizing surrogate problems are given in
Simpson et al. (2001, 2004, 2008), Shan and Wang (2010),
Koziel et al. 2011. In such methods, only one objective
function is concerned, while in multiobjective optimization
methods, at least two objectives are considered. In single
objective optimization, comparing two solutions based on
the concept of optimality is possible: the smaller (or larger)
the objective function value, the better the solution. In
multiobjective optimization problems, however, the concept
of Pareto optimality is needed. In the literature, there are
scalarization-based methods (Steuer 1986; Miettinen et al.
2008) that transform an MOP into a single objective opti-
mization problem with respect to the preferences of a DM.
Then, the optimal solution of the single objective optimiza-
tion problem is considered as a preferred solution for the
decision maker. In this survey, wherever such methods are

employed to deal with computationally expensive MOPs,
we discuss them.

As far as we know, this is the first survey which fully
concentrates on handling computationally expensive MOPs
by general methods as defined above. This survey covers
20 selected papers written in English and published in sci-
entific journals before 2013. Besides as an overview of the
methods available, one can use this survey to find a method
applicable to one’s own problems.

A method where a computationally expensive MOP
is handled using a surrogate problem is here termed
a surrogate-based multiobjective optimization method. In
what follows, for the sake of simplicity, such methods are
called surrogate-based methods. Handling a computation-
ally expensiveMOP relying on a surrogate problem involves
selecting sample points, building, updating and solving the
surrogate problem. Based on when the surrogate problem
is updated, surrogate-based methods are here classified into
two frameworks: the adaptive and the sequential framework.
In accordance with when the sample points are selected to
update the surrogate problem, the adaptive framework is
divided into types 1 and 2.

The motivation of this survey is to focus on the charac-
teristics of the surrogate-based methods to solve a computa-
tionally expensive MOP and compare these methods in four
aspects: (1) Can the methods deal with general black-box
functions where information regarding mathematical prop-
erties of the functions such as convexity or continuity is
not available? (2) Can the methods capture different types
of Pareto frontiers? (3) How many objective and constraint
functions as well as decision variables can be handled by the
methods? (4) What is the role of a DM during the solution
process? For this comparison, we rely on the results given
by the authors of the papers considered on the employed
benchmark and real-world problems.

In surrogate-based methods, the quality of the Pareto
frontier of the surrogate problem depends on the accu-
racy of the surrogate problem and the performance of the
optimization algorithm employed to solve this surrogate
problem. In the literature (Wu and Azarm 2000; Okabe
et al. 2003; Zitzler et al. 2003; Zitzler et al. 2008), sev-
eral performance indices for measuring the quality of the
Pareto frontier have been proposed. According to Okabe
et al. (2003), this quality can be assessed based on the
number of solutions in the Pareto frontier of the surrogate
measured by e.g., overall non-dominated vector genera-
tion, the distribution and spread of these solutions mea-
sured by e.g., � index and closeness of the surrogate’s
Pareto frontier to the Pareto frontier of the computationally
expensive MOP measured by e.g., generational distance,
inverted generational distance and hyper-volume. If such
information is given in the papers considered, we also
mention it.



A survey on handling computationally expensive multiobjective optimization problems using surrogates: non-nature inspired methods 3

The rest of this paper is organized as follows. In
Section 2, the basic concepts used in this survey, and a brief
discussion on how a surrogate problem can be built, are
addressed. In Section 3, the classification of surrogate-based
methods into the sequential and the adaptive frameworks
is discussed. Details of the sequential framework and the
related methods are discussed in Section 4. Types 1 and 2
of the adaptive framework, and methods belonging to them
are discussed in Sections 5 and 6, respectively. There is a
method in which the sequential framework and type 1 of the
adaptive framework are hybridized to handle computation-
ally expensiveMOPs. Therefore, it is discussed in Section 7.
In Section 8, the surrogate-based methods considered in this
survey are compared. Future research directions are also
discussed. Finally, conclusions are drawn in Section 9.

2 Concepts

2.1 Definitions and notations

In the following, basic definitions and notations used in this
survey are given (mostly from Miettinen (1999)). Some of
these are illustrated in Fig. 1. In this paper, we deal with
multiobjective optimization problems of the form

minimize
x∈S

{f1(x), . . . , fk(x)}, (1)

where the set S is called the feasible decision region (set)
(often also called the feasible design space) which is a sub-
set of the decision space R

n. We have k(≥ 2) objective
functions fi : S → R. We denote the vector of objective
functions by f (x) = (f1(x), . . . , fk(x))T . An example of
the feasible decision region is S = {x ∈ R

n : gi(x) ≤ 0, i =
1, . . . , m, hj (x) = 0, j = 1, . . . , p}, where gi : Rn → R,

i = 1, . . . , m, and hj : Rn → R, j = 1, . . . , p, are called
constraint functions. A solution x = (x1, . . . , xn)

T ∈ R
n is

called a decision (variable) vector, where xi, i = 1, . . . , n,

are decision variables. A decision vector x ∈ S satisfy-
ing all the constraint functions is called a feasible decision
vector. The image of the feasible decision region in the
objective space R

k is called the feasible objective region
(set) (often also called performance space) denoted by Z(=
f (S)). The elements of Z are called feasible objective vec-
tors denoted by f (x) or z = (z1, . . . , zk)

T , where zi =
fi(x), i = 1, . . . , k, are objective (function) values. For the
sake of simplicity, we use the term a feasible solution which
refers to either a feasible decision vector or a feasible objec-
tive vector. If needed, we clarify whether a feasible solution
belongs to either S or Z.

A feasible solution x∗ ∈ S and the corresponding
f (x∗) ∈ Z are said to be weakly Pareto optimal for the
problem (1), if there does not exist another feasible solution

x ∈ S such that fi(x) < fi(x
∗) for all i = 1, . . . , k. Corre-

spondingly, they are Pareto optimal for the problem (1), if
there does not exist another feasible solution x ∈ S such that
fi(x) ≤ fi(x

∗) for all i = 1, . . . , k, and fj (x) < fj (x
∗) for

at least one index j ∈ {1, . . . , k}. Obviously, a Pareto opti-
mal solution is a weakly Pareto optimal solution. The set of
all Pareto optimal solutions in the objective space is called
a Pareto frontier (often referred to as a Pareto optimal set)
. We also define a feasible solution xi

e = argminx∈S{fi(x)}
for i = 1, . . . , k. The i-th extreme solution (also called the
anchor point (Messac and Mullur 2008)) for i = 1, . . . , k,

is defined as zi
e = f (xi

e) (see Fig. 1). A hyperplane passing
through all extreme solutions is called a utopia hyperplane
(Messac and Mullur 2008).

As mentioned earlier, in the process of solving an MOP, a
DMmay be involved, whose role is to give preference infor-
mation, e.g., by comparing the obtained solutions. Based
on the literature (Miettinen 1999; Luque et al. 2011; Ruiz
et al. 2012), (s)he can provide his/her preferences, e.g., in
the form of a reference point z̄ = (z̄1, . . . , z̄k)

T where z̄i is
an aspiration level consisting of a desirable value for the i-
th objective function. Another approach to elicit information
about a DM’s preference during the solution process is clas-
sification, i.e., the DM classifies the objectives into classes
in which the objective function values should be improved,
can impair or are satisfactory. See Miettinen (1999) for fur-
ther information of the roles of a DM during the solution
process.

In the literature, scalarizing an MOP means formulating
a single objective optimization problem such that an opti-
mal solution for the single objective optimization problem
is a (weakly) Pareto optimal solution for the MOP. The fol-
lowing is an example of scalarization. It involves a so-called
achievement scalarizing function (Wierzbicki 1986):

minimize
x∈S

max
i=1,...,k

[wi(fi(x) − z̄i )] (2)

where wi ≥ 0 for all i = 1, . . . , k, are nonnegative weights,
and z̄i for all i = 1, . . . , k, the aspiration level for the i-
th objective function provided by a DM. Different (weakly)
Pareto optimal solutions can be obtained by changing the
reference point. Pareto optimal solutions can be obtained
by adding a so-called augmentation term to the objective
function of the problem (2) (see, e.g. Miettinen (1999)).

Let us assume that the set X = {x1, . . . , xq} is an
arbitrary subset of feasible solutions in S, and F =
{f (x1), . . . , f (xq)} the corresponding objective vectors in
Z. A solution xi (or f (xi)) for i = 1, . . . , q, that satis-
fies the definition of Pareto optimality with respect to all
solutions in X (or F ), is called a non-dominated solution
in X (or F ) (see Fig. 1). A Pareto optimal solution is a
non-dominated solution, but a non-dominated solution is not
necessarily a Pareto optimal solution. If X = S (or F = Z),
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Fig. 1 Some definitions in
MOPs
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then every non-dominated solution is a Pareto optimal solu-
tion and vice versa. Non-dominated solutions for the given
set X can be identified by e.g., the Pareto fitness function
(Schaumann et al. 1998) defined as

Gi = 1 − max
j∈{1,...,q}\{i}

[
min

{
f̄1(x

i) − f̄1(x
j ), . . . , f̄k(x

i)

−f̄k(x
j )

}]
,

i = 1, . . . , q, (3)

where Gi denotes the Pareto fitness of the i-th feasible solu-
tion xi , and f̄l(x

i) for l = 1, . . . , k, is the l-th normalized
objective function value of the i-th feasible solution, given
by:

f̄l(x
i) = fl(x

i) − fl,min(x)

fl,max(x) − fl,min(x)
, (4)

where fl,max(x) and fl,min(x) represent the maximum and
minimum values of the l-th objective function among all
feasible solutions inX, respectively.When the Pareto fitness
Gi is greater than 1, the corresponding feasible solution is a
non-dominated solution (Shan and Wang 2004).

2.2 How to build a surrogate problem

As mentioned earlier, the basic idea in a surrogate-based
method is to replace a computationally expensive MOP
with a computationally less expensive surrogate prob-
lem. One approach to building a surrogate problem is
to approximate each computationally expensive function
using metamodeling techniques such as polynomial func-
tions (Madsen et al. 2000), Kriging models (Kleijnen 2009),
radial basis functions (RBFs) (Buhmann 2003), multivariate

adaptive regression splines (MARS) (Friedman 1991), neu-
ral networks (Hagan et al. 1996) and support vector regres-
sion (SVR) (Smola and Schökopf 2004). To approximate
a computationally expensive function, sample points are
required. These sample points which are solutions in the
decision space can be selected by sampling techniques
such as Latin hypercube sampling (LHS) (Helton et al.
2006), central composite design (CCD) (Simpson et al.
2001), orthogonal array sampling (OAS) (Simpson et al.
2001) and full factorial sampling (FFS) (Simpson et al.
2001). See Simpson (2001), Queipo et al. (2005), Wang and
Shan (2006), Forrester et al. (2008) and Simpson (2001),
Queipo et al. (2005), Wang and Shan (2006), Forrester et
al. (2008), Jin et al. (2001), Clarke et al. (2004), Forrester
and Keane (2009), Nakayama et al. (2009), Li et al. (2010)
for surveys of the sampling and metamodeling techniques
and their characteristics, respectively.

Once a set of points is sampled, these points are evalu-
ated with the computationally expensive function for which
the metamodel is to be fitted. Sample points can also be
generated by other methods such as a posteriori methods
for multiobjective optimization where a subset of (weakly)
Pareto optimal solutions representing the Pareto frontier is
obtained. These methods are surveyed in Miettinen (1999)
and Marler and Arora (2004). The obtained (weakly) Pareto
optimal solutions can be considered as a set of sample
points. When a set of points evaluated with the compu-
tationally expensive function is available, a metamodeling
technique is employed to fit a computationally inexpensive
function to the sample points known as a surrogate function
(see Fig. 2). Once the surrogate functions of all compu-
tationally expensive functions are constructed, a computa-
tionally inexpensive MOP known as a surrogate problem is
formulated.
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Fig. 2 A surrogate function

According to Forrester and Keane (2009), in the context
of surrogate-based single objective optimization, we want
to build a surrogate problem to be most accurate in the
region of the optimum. In surrogate-based multiobjective
optimization, the accuracy of the surrogate problem in the
region of the Pareto optimal solutions is desirable. Since
each individual surrogate function may not be accurate in
such a region, the Pareto frontier of the surrogate problem
may not coincide with the Pareto frontier of the origi-
nal, computationally expensive MOP. The accuracy of the
surrogate functions can be evaluated with statistical mea-
surements such as root mean square error (RMSE) (Giunta
et al. 1998), predicted error sum of squares (PRESS) (Kut-
ner et al. 2005), cross-validation method (Wang and Shan
2006) and R2 (Jin et al. 2001). See Shan and Wang (2010),
Wang and Shan (2006), Jin et al. (2001) and Li et al. (2010)
for surveys of commonly used criteria to evaluate the accu-
racy. In this survey, we study how the Pareto frontier of the
surrogate problem represents the Pareto frontier of the com-
putationally expensive MOP by the methods proposed in the
papers considered.

Beside approximating each computationally expensive
function, other approaches can be used to build a surrogate
of a computationally expensive MOP, e.g., by approximat-
ing directly the Pareto frontier. These other approaches
apply particular techniques which are discussed in the sub-
sequent sections.

In this survey, when summarizing the methods consid-
ered we sometimes call a computationally expensive MOP
as an original problem. The objective and/or constraint
functions in the original and the surrogate problems are
referred to as computationally expensive and surrogate func-
tions, respectively. These functions involve models based
on which functions are formed. For the sake of simplicity,
we assume that all functions involved in the original prob-
lem are computationally expensive. A set of non-dominated
(or Pareto optimal) solutions of the surrogate problem
which may be evaluated with the computationally expensive

functions is considered as the approximated Pareto frontier
of the original problem. We also use the terms benchmark
and application problems. The first one refers to the avail-
able test problems in the literature, e.g. ZDT problems (Deb
et al. 2002), used to compare the performance of differ-
ent methods. Application problems refer to the problems
arising from industries which are dealt with in the papers
considered in this survey. If the information regarding the
characteristics of the Pareto frontiers of the benchmark and
application problems like convexity, nonconvexity or dis-
continuity as well as performance indices to assess the
quality of the surrogate’s Pareto frontier is provided by the
authors of the surveyed papers, we also mention it. There
are methods that have been developed to solve some partic-
ular application problems. While discussing such methods,
first these problems are mentioned and then the summary of
the methods is discussed. One should notice that the bench-
mark problems are not computationally expensive and, thus,
their validity for properly testing the methods surveyed is
questionable.

3 Classification of surrogate-based methods

After reviewing the journal papers considered in this sur-
vey, we have found out that two frameworks are employed
to handle computationally expensive MOPs utilizing surro-
gates. Nevertheless, there is no unified description of the
main steps involved in surrogate-based methods (see, e.g.
Queipo et al. (2005), Wang and Shan (2006), Forrester
and Keane (2009), Liu et al. (2008) and Kitayama et
al. (2013)). Therefore, we consider two general frame-
works, i.e., sequential and adaptive frameworks to classify
surrogate-based methods, inspired by the classification in
Wang and Shan (2006) and Liu et al. (2008), and based
on when to update the surrogate problem. The key point in
the sequential framework is to build an accurate surrogate
problem and then to solve it. In this framework, the approxi-
mated Pareto frontier (i.e., a set of non-dominated (or Pareto
optimal) solutions of the surrogate problem) is supposed to
be as close as possible to the Pareto frontier of the original
problem. Details of the sequential framework and methods
belonging to this framework are discussed in Section 4. In
the adaptive framework, however, the key point is first to
construct an initial surrogate problem. As mentioned ear-
lier, since the initial surrogate problem may not be accurate
over the region of the Pareto optimal solutions of the orig-
inal problem, the approximated Pareto frontier (obtained
by solving the initial surrogate problem) may not represent
the exact Pareto frontier of the original problem. Hence, by
updating and solving the surrogate problem iteratively, the
approximated Pareto frontier is supposed to coincide with
the Pareto frontier of the original problem.
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In order to update the surrogate problem, new sample
points (which are also termed infill points in Forrester et
al. (2008)) are required. These sample points can be selected
from either a set of non-dominated (or Pareto optimal) solu-
tions of the surrogate problem or unexplored regions in the
decision and/or objective space. Based on when the sample
points are selected to update the surrogate problem, inspired
by Liu et al. (2008), we divide the adaptive framework into
types 1 and 2. Details of the adaptive framework and meth-
ods in this framework are discussed in Sections 5 and 6,
respectively. In addition, there is a method in which the
sequential framework and type 1 of the adaptive framework
are hybridized to handle computationally expensive MOPs.
This method is discussed in Section 7 after describing both
frameworks. All the methods considered in this survey are
then compared in Section 8.

To solve a surrogate problem in both frameworks, two
types of methods can be employed, i.e., sampling-based
and optimization-based ones. In a sampling-based method, a
surrogate problem is solved with an emphasis on a sampling
process and without using any optimization algorithms. In
contrast, in an optimization-based method, a surrogate prob-
lem is solved utilizing an optimization algorithm. If the aim
of solving an MOP is to find the most preferred solution for
a DM, depending on the way of giving the preference infor-
mation, one can employ an interactive method. An overview
of such methods has been presented in Miettinen (1999) and
Miettinen et al. (2008). Several different solutions generated
during the solution process can also be visualized for the
DM to compare them. See Miettinen (2014) for a review of
visualization techniques.

4 Sequential framework

4.1 General flowchart

Constructing an accurate surrogate problem is the key
point in the sequential framework. The flowchart in Fig. 3
presents the main steps of methods belonging to this frame-
work. As can be seen in this figure, in Step 1 of a method
in this framework, initial points are sampled, and then eval-
uated with the computationally expensive functions in Step
2. After this, function values at the sample points are avail-
able. A surrogate problem is then constructed in Step 3.
Evaluating the accuracy of the surrogate problem in Step
4 (highlighted in Fig. 3) is critical in this framework. As
mentioned earlier, the accuracy can be evaluated by sta-
tistical measurements such as the cross-validation method,
root mean square error (RMSE), predicted error sum of
squares (PRESS) and R2. If the surrogate problem is not
sufficiently accurate, it is updated by selecting new sam-
ple points in Step 5, and Steps 2-4 are then repeated. If

the sample points are selected only once to build a surro-
gate problem, this is considered as a special case termed as
one-stage sampling. In this case, Step 5 is not conducted.
After constructing the accurate enough surrogate problem,
it is solved in Step 6 with a DM, if available. As men-
tioned earlier, the aim of solving the surrogate problem can
be to represent non-dominated (or Pareto optimal) solutions
to a DM or to provide the most preferred solution based on
the preferences of a DM. The solution(s) obtained by solv-
ing the surrogate problem are typically evaluated with the
computationally expensive functions in Step 7. As a result,
the outcome of Step 7 is considered as the approximated
Pareto frontier of the original problem and/or the most pre-
ferred solution for a DM in Step 8. This outcome can also
be visualized using an appropriate visualization technique.
In this framework, depending on the accuracy of the surro-
gate problem, the approximated Pareto frontier is as close
as possible to the Pareto frontier of the original problem.
In Section 4.2, we summarize the methods belonging to the
sequential framework. These methods are then compared in
Section 8.

4.2 Summary of methods in the sequential framework

In Goel et al. (2007), an optimization-based method using
polynomial functions is introduced. In Step 1 of this
method, initial points are sampled with OAS and then evalu-
ated with the computationally expensive functions in Step 2.
Each computationally expensive function is approximated
by a quadratic or a cubic polynomial function in Step 3,
and the surrogate problem is built. The accuracy of the sur-
rogate problem is evaluated with a cross-validation method
in Step 4. If needed, new points are sampled in Step 5 to
improve the accuracy, and Steps 2–4 are repeated. After
constructing the accurate enough surrogate problem, highly
correlated objectives among the surrogate functions may
be dropped or a representative objective can be used for
all the correlated objectives (applying principal component
analysis) (Goel et al. 2004). In Step 6, the surrogate prob-
lem is then solved using a population-based evolutionary
multiobjective optimization method called NSGA-II (Deb
et al. 2002). The non-dominated solutions obtained are then
locally improved by the ε-constraint method (Zanakis et al.
1998). In this paper, the authors do not discuss evaluating
the non-dominated solutions obtained in Step 6 with the
computationally expensive functions in Step 7. In Step 8, for
anMOPwith less than three objective functions, the approx-
imated Pareto frontier is visualized by fitting a polynomial
function to the non-dominated solutions in the objective
space. This function is accurate in a limited region of the
objective space which is identified by convex hulls.

In Goel et al. (2007), besides solving a computationally
expensive MOP, the authors discuss the problem of Pareto
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Fig. 3 Flowchart of the sequential framework

drift (losing some non-dominated solutions in each gener-
ation of the dominance based Multiobjective Evolutionary
Algorithms (MOEAs)). They propose an implementation of
an archiving strategy to preserve all good solutions. Regard-
ing the issue of capturing a nonconvex Pareto frontier, the
authors mention that the number of convex hulls is impor-
tant. In this method, a metamodeling technique is applied
for two reasons, i.e., to build the accurate enough surrogate
problem, and to visualize the approximated Pareto frontier.
Finding the correlated functions along with a representation
of an objective as a function of the remaining objectives to
visualize the approximated Pareto frontier can be a barrier of
using this method for MOPs with more than three objective
functions. The efficiency of this method was evaluated on
an MOP of liquid-rocket single element injector with four
black-box objective functions and four decision variables
requiring CFD simulations. In this problem, the number
of objective functions was reduced to three by applying
principal component analysis. The quality of the approxi-
mated Pareto frontier was assessed based on the average and
maximum distances between the non-dominated solutions
in two successive iterations of the optimization algorithm
employed. This application problem was also studied in
Queipo et al. (2005), where a discussion on the global sen-
sitivity analysis of the objective functions and the decision
variables was considered.

In the sequential framework, there are two sampling-
based methods which we discuss in the following para-
graphs. In Wilson et al. (2001), a sampling-based method
called efficient Pareto frontier exploration is introduced in

which metamodeling techniques are employed to approxi-
mate individual computationally expensive objective and/or
constraint functions. In efficient Pareto frontier exploration,
first the DM provides desirable ranges for the decision vari-
ables. Then, making use of two sampling techniques (i.e.,
CCD and LHS), two sets of initial points are sampled within
these ranges in the decision space in Step 1 and evalu-
ated with the computationally expensive functions in Step
2. For each set, the computationally expensive functions
are approximated with a second-order polynomial function
and a Kriging model in Step 3 to compare the results, and
the surrogate problems are constructed. In Step 4, using
a cross-validation method, the accuracies of the surrogates
are evaluated. If needed, new sample points are selected
in Step 5, and Steps 2-4 are repeated. In order to solve
the surrogate problems and to represent the corresponding
non-dominated solutions in Step 6, a considerable num-
ber of points is sampled and evaluated with the surrogate
functions. Then non-dominated solutions of the surrogate
problems among the evaluated points are identified using
the Pareto fitness function (3). These non-dominated solu-
tions are then evaluated in Step 7 with the computationally
expensive functions. The sets of evaluated non-dominated
solutions are considered as the approximated Pareto frontier
of the original problem in Step 8.

The efficient Pareto frontier exploration method was
applied in designing a piezoelectric bimorph actuator with
two black-box objective functions and five decision vari-
ables. The function evaluations involved applying the FE
method using Abaqus (2013). The performance of the
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efficient Pareto frontier exploration method was also eval-
uated on two benchmark problems with convex, nonconvex
and disconnected Pareto frontiers. The authors show that
the surrogate problem constructed based on initial sample
points of LHS and the Kriging model is more accurate than
the other surrogates for these problems. The results demon-
strated that, while this method can capture a nonconvex and
disconnected Pareto frontier, it performs better for an MOP
with a convex Pareto frontier. Since in this method, a large
number of sample points is required to solve the surrogate
problem, it cannot be applied to handle high-dimensional
MOPs in the decision and objective spaces. The role of a
DM is also to provide desirable ranges for the decision vari-
ables which does not match with the definition of a DM’s
role in the literature as defined in Section 2.1.

In most of the methods discussed so far, surrogates of
the computationally expensive functions are built using
metamodeling techniques to approximate computationally
expensive functions. In contrast, (Lotov et al. 2001) pro-
poses a sampling-based method called Feasible Goals
Method (FGM) to approximate the set Z (the feasible
objective region) by means of a collection of boxes in
the objective space and without using any metamodeling
technique. In order to approximate the set Z with a finite
number of boxes, it is assumed to be bounded. In Step 1
of this method, evenly distributed initial points are sam-
pled randomly, and then evaluated with the computationally
expensive functions in Step 2. In Step 3, a box in the neigh-
borhood of each point in the objective space is formed. The
collection of the boxes is considered as the surrogate of the
feasible objective region. Utilizing the Chebyshev metric,
the authors introduce a probability function to evaluate the
accuracy of the surrogate in Step 4. To do this, a set of new
evenly distributed points is sampled randomly in Step 5, and
evaluated with the computationally expensive functions in
Step 2. If the probability function value is less than a pre-
determined threshold, the farthest point is selected. Then, a
new box in the neighborhood of the selected point is formed
to update the surrogate in Step 3, and Steps 2-4 are repeated.
Otherwise, that is, the surrogate is sufficiently accurate, the
surrogate problem is considered in Step 6 to select the most
preferred solution in the objective space by the DM. In this
step, the collection of boxes is visually shown to a DM.
Then, the DM identifies a preferred solution. The center
of the related box is computed along with the associated
decision vector value in Step 7, and displayed to the DM
in Step 8. FGM was applied to a set of application prob-
lems such as pollution monitoring station problem with five
nonlinear objective functions and two decision variables.
The feasible objective region of this problem was noncon-
vex. This method can handle black-box functions, since in
practice, the boundedness of Z can be assumed by consid-
ering boundaries for the decision variables. Developments

of FGM to approximate both convex and nonconvex Pareto
frontiers are discussed in Lotov et al. (2004).

So far, we have discussed methods involving all steps
in the sequential framework. In the following paragraphs,
we discuss methods involving one-stage sampling. As men-
tioned earlier, in one-stage sampling, sample points are
selected only once. In Liao et al. (2008), an optimization-
based method is developed which is applied to solve
an MOP of crash safety design of vehicles with three
black-box objective functions and five decision variables.
LS-DYNA (Livermore Software Technology Corporation
(LSTC) 2013) is employed as a simulation software. In this
method, initial points are sampled with an extension of LHS
called optimal Latin hypercube sampling (OLHS) in Step
1 and then evaluated with the computationally expensive
functions involving the FE method in Step 2. After that,
stepwise regression and a quadratic polynomial function
are applied to approximate each computationally expensive
function and, then the surrogate problem is built in Step
3. The accuracy of this problem is evaluated based on R2

in Step 4. Non-dominated solutions of the surrogate prob-
lem are obtained using NSGA-II in Step 6. This set of
non-dominated solutions is considered as the approximated
Pareto frontier of the original problem in Step 8. This set is
not evaluated with the computationally expensive functions
in Step 7.

In Su et al. (2011), an optimization-based method is
developed, and is applied to solve a biobjective optimization
problem of designing a bus body with 13 constraints and 31
decision variables. The objective and constraint functions
are evaluated with the FE method using simulation soft-
ware called MSC Nastran (MSC Nastran-Multidisciplinary
structural analysis 2013) and LS-DYNA. In Step 1 of this
method, initial points are sampled with OLHS and evalu-
ated with the computationally expensive functions in Step
2. Then, stepwise regression is applied to approximate each
objective and constraint function making use of a hybrid
of a linear polynomial function and a Gaussian RBF, and
the surrogate problem is constructed in Step 3. The accu-
racy of the surrogate problem is evaluated based on PRESS
in Step 4. The surrogate problem is then solved in Step 6.
The non-dominated solutions obtained are evaluated with
the computationally expensive functions in Step 7. The
set of evaluated solutions is considered as the approxi-
mated Pareto frontier of the original problem in Step 8. In
this paper, two evolutionary algorithms, i.e., NSGA-II and
AMISS-MOP (Su et al. 2011) were employed to solve the
surrogate problem. The authors concluded that the spread of
non-dominated solutions obtained by NSGA-II was wider
than AMIS-MOP, but the convergence of AMISS-MOP was
better than NSGA-II.

In Bornatico et al. (2013) steps similar to those of Liao
et al. (2008) and Su et al. (2011) are followed to solve a
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design optimization problem of a solar thermal building sys-
tem with two black-box objective functions and two deci-
sion variables involving the Polysun simulation software
(Polysun 2013). In this method, the sample points are
selected only once with the Poisson disk node distribu-
tion (Gamito and Maddock 2009). Each computationally
expensive function is approximated with a cubic RBF.
The biobjective surrogate problem is solved with NSGA-
II. In this paper, the accuracies of the surrogate problems
constructed with four sampling techniques, i.e., Cartesian
distribution (Bornatico et al. 2011), Hexagonal distribution
(Steinhaus 2011), uniform distributions (Hickernell et al.
2005) and Poisson disk node distribution were also com-
pared. To assess the quality of the approximated Pareto
front, the original problem was also solved. Then, the aver-
age Euclidean distance between the Pareto frontiers of the
original problem and the surrogates was considered. The
authors concluded that the surrogate problem constructed
with the Poisson disk node distribution sample points and a
cubic RBF outperformed the others in terms of the accuracy.

In the optimization-based methods discussed so far,
a surrogate problem is constructed using metamodeling
techniques to approximate each computationally expen-
sive function. In Hartikainen et al. (2012), however, an
optimization-based method called PAINT is proposed to
approximate the Pareto frontier of a computationally expen-
sive MOP directly without utilizing any metamodeling tech-
niques. In this method, a linear mixed integer multiobjective
optimization problem is introduced as a surrogate of the
original problem. In PAINT, initial sample points are gen-
erated by an a posteriori method in Steps 1 and 2. These
sample points are Pareto optimal solutions of the original
problem. Then, a PAINT interpolation between the sample
points is created in Step 3 and the surrogate problem is intro-
duced. The accuracy of the surrogate problem is high, if a
large number of well-distributed Pareto optimal solutions
is used as sample points. This problem can be solved with
any interactive multiobjective optimization method, and a
preferred approximated solution for a DM is obtained in
Step 6. After finding this solution, it is then projected to the
Pareto frontier of the original problem with the achievement
scalarizing function (2) in Steps 7 and 8.

In PAINT, only the objective space is considered.
Although the authors claim that PAINT can represent a
nonconvex Pareto frontier, it cannot capture a disconnected
Pareto frontier. In addition, the approximation of the Pareto
frontier loses the connection to the decision space when
solving the surrogate problem. However, after projecting
the preferred approximated solution to the Pareto frontier,
the closest Pareto optimal solution both in the decision
and objective spaces is obtained. The efficiency of this
method was evaluated on a benchmark problem with a
convex Pareto frontier. This method was also applied in

approximating the Pareto frontier of an MOP of wastewater
treatment planning with three black-box objective functions
described in Hakanen et al. (2011). The number of con-
straint functions and decision variables was not mentioned.

All the described methods are compared in Section 8.
Table 1 summarizes the characteristics of the methods in
the sequential framework with respect to sampling tech-
niques, metamodeling techniques, number of objective and
constraint functions as well as decision variables in the con-
sidered benchmark and application problems, whether the
methods involve one-stage sampling and whether they are
optimization- or sampling-based. In this table, for every
method, the most challenging MOP that was considered
as a benchmark or an application problem is mentioned.
Since the number of equality constraints in all problems are
zero (p = 0), it is not mentioned in the table. As can be
seen, most of the problems considered are limited to two or
three objective functions except (Lotov et al. 2001) with five
objective functions. As mentioned earlier, since the method
in Messac and Mullur (2008) hybridizes both the sequential
and the adaptive frameworks, we discuss it in Section 7.

5 Adaptive framework: type 1

5.1 General flowchart

As mentioned in Section 3, another class of surrogate-based
methods is the adaptive framework. In this framework, as
can be seen in the flowcharts in Figs. 4 and 6, in compari-
son with the sequential framework (Fig. 3), after sampling,
first an initial surrogate problem is constructed. As men-
tioned earlier, the approximated Pareto frontier (obtained
by solving the initial surrogate problem) may not represent
the exact Pareto frontier of the original problem. There-
fore, the surrogate problem is iteratively solved and updated
by selecting new sample points such that, the approxi-
mated Pareto frontier is supposed to coincide with the
Pareto frontier of the original problem. As described in
Section 3, the new sample points can be selected from
either a set of non-dominated (or Pareto optimal) solu-
tions of the surrogate problem or unexplored regions in
the decision and/or objective space. Based on when new
sample points are employed to update the surrogate prob-
lem, we divide this framework into types 1 and 2. In type
1, the sample points generated before assessing a stop-
ping criterion (Step 4 highlighted in Fig. 4) are utilized
to update the surrogate problem. In type 2, not only the
sample points generated before assessing the stopping crite-
rion (Step 4 highlighted in Fig. 6) are considered, but also
new sample points are generated and selected after assess-
ing the stopping criterion (Step 6 highlighted in Fig. 6) to
update the surrogate problem. In this section, we discuss
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Step 1: Input: Initial sample points

Step 3: Build the surrogate problem
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(computationally

expensive functions)

Step 6: Output: Represent the

approximated Pareto frontier and/or the

most preferred solution for a DM

Step 2: Evaluate function values of the

sample points
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needed, update the

surrogate problem

using the selected

points. Is the

stopping criterion

met?

Step 4: Generate and select new points

and/or non-dominated solutions and/or

the most preferable solution for a DM
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Fig. 4 Flowchart of the adaptive framework: type 1

type 1 of the adaptive framework. Type 2 is considered in
Section 6.

The flowchart in Fig. 4 shows the main steps of meth-
ods belonging to type 1 of the adaptive framework. As can
be seen, in the first step of type 1, initial points are sam-
pled, and then evaluated with the computationally expensive
functions in Step 2. After this, function values of the
sample points are available. In Step 3, the initial surro-
gate problem is constructed. In order to capture the Pareto
frontier or to provide the most preferred solution based on
the preferences of a DM, if available, new sample points
are generated in Step 4. These points can be obtained by
solving the surrogate problem and/or sampling unexplored
regions in the decision and/or objective space depending on
a sampling process. In accordance with a method-dependent
criterion, a subset of points among the generated points
is selected. In Step 5, assessing a stopping criterion may
require to evaluate the selected sample points with the
computationally expensive functions and/or to update the
surrogate problem. There are different stopping criteria
which are discussed in more detail in the following subsec-
tion. If a stopping criterion is met, the set of non-dominated
(or Pareto optimal) solutions or the most preferred solu-
tion of the last surrogate problem which may have been
evaluated with the computationally expensive functions are
considered as the approximated Pareto frontier of the

original problem or the most preferred solution for a DM
in Step 6. These solutions can also be visualized using
an appropriate visualization technique. Otherwise, that is,
when a stopping criterion is not met, if the surrogate prob-
lem has already been updated, Steps 4–5 are repeated. If
not, first the surrogate problem is updated with the evaluated
sample points and then Steps 4–5 are repeated.

In Section 5.2, we describe how the above steps are con-
ducted by methods in type 1 of the adaptive framework. We
compare these methods in Section 8.

5.2 Summary of methods in the adaptive framework: type 1

In Yang et al. (2002), first an optimization-based method
called adaptive approximation in single objective opti-
mization (AASO) is developed, and then it is extended
to adaptive approximation in multiobjective optimization
(AAMO). AAMO is the oldest method in the literature
developed based on the adaptive framework. In Step 1
of AAMO, initial points are sampled with any sampling
technique (e.g., LHS) and evaluated with the computation-
ally expensive functions in Step 2. Then in Step 3, each
computationally expensive function is approximated with a
Kriging model, and an initial surrogate problem is built. In
Step 4, a set of non-dominated solutions of the surrogate
problem is obtained by Multiobjective Genetic Algorithm
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(MOGA) (Goldberg 1989) and denoted by P0. Among
these points, using the maximin distance design criterion
(Johnson et al. 1990), a number of isolated points is
selected. In Step 5, these points are evaluated with the com-
putationally expensive functions, and utilized to update the
surrogate problem. The solutions in the set P0 obtained
in Step 4 are again evaluated with the updated surrogate
problem. A set of non-dominated solutions among these
evaluated points is identified and denoted by Pnew. If the
difference between the number of the non-dominated solu-
tions in P0 and in Pnew is less than a predetermined thresh-
old, the set Pnew is considered as the approximated Pareto
frontier in Step 6. Otherwise, the set Pnew is inserted into an
initial population of MOGA and the method continues with
Step 4.

Similar to Goel et al. (2007), the authors in Yang et
al. (2002) also discuss the difficulties of GA-based algo-
rithms in identifying extreme solutions in the Pareto frontier.
To overcome these difficulties, they propose a method called
combined AASO-AAMO in which the AASO and AAMO
methods are combined. In combined AASO-AAMO, after
obtaining a set of non-dominated solutions of the surrogate
problem in Step 4, all objective functions in the surrogate
problem are individually minimized. The obtained optimal
solutions along with the set Pnew are inserted into an ini-
tial population of MOGA. The combined AASO-AAMO
method was tested on solving an I-beam design problem
with two nonlinear objective functions, one nonlinear con-
straint function and four decision variables. The quality of
the approximated Pareto frontier was assessed based on
closeness of it to the Pareto frontier of the application prob-
lem. While this method can handle black-box functions,
the application of combined AASO-AAMO to a practi-
cal optimization problem involving actual computationally
expensive or noisy simulations is mentioned as a future
research direction.

In Zhou and Turng (2007), an optimization-based method
is developed which is applied to solve an MOP of injection-
molding process with five black-box objective functions
and three decision variables. To do this, initial points are
sampled with LHS in Step 1 and evaluated with the com-
putationally expensive functions in Step 2 involving the
Moldex3D simulation software (Moldex3d: Plastic injection
molding simulation software 2013). Each computationally
expensive function is approximated in Step 3 with a Krig-
ing model, and the initial surrogate problem is built. In Step
4, new sample points are selected randomly. The objective
function values of these points are evaluated with the sur-
rogate functions. The variances of the objective function
values of these points are also calculated with the Krig-
ing model. For each point, a vector consisting of these
variances is considered. These vectors are sorted using the
non-dominated sorting method (Deb et al. 2002) (variances

are maximized). Then, a subset of points with the largest
variances (at the first front) is selected randomly. In Step
5, the selected points are evaluated with the computation-
ally expensive functions and added to the sample points set.
Then, the surrogate problem is updated. In other methods
in type 1 of the adaptive framework, the surrogate problem
is solved in Step 4. In this method, however, the surrogate
problem is solved using NSGA-II in Step 5 to assess the
stopping criterion.

The authors in Zhou and Turng (2007) employ the con-
cept of user-defined indifference threshold (Wu and Azarm
2000) as the stopping criterion in Step 5. This threshold
refers to the change in each objective function value within
which the non-dominated solutions are indifferent to each
other. Applying the user-defined indifference thresholds, the
objective space is discretized into a collection of hyper-
boxes. Using the method of Wu and Azarm (2000), if the
distances between the boundaries of the hyperboxes are
less than the predetermined threshold, the method stops.
The set of non-dominated solutions of the last surrogate
problem is considered as the approximated Pareto frontier
of the original problem in Step 6. Otherwise, the method
repeats Steps 4-5. According to the authors, the quality of
the approximated Pareto frontier was assessed based on the
average error percentage between the non-dominated solu-
tions obtained by solving the surrogate and the original
problems.

In Yun et al. (2009), an optimization-based method is
developed to represent an approximation of the Pareto fron-
tier as well as to identify the most preferred solution for a
DM with respect to a reference point consisting of desirable
aspiration levels for all objectives. In this method, initial
points are sampled randomly in Step 1, and evaluated with
the computationally expensive functions in Step 2. Then,
each computationally expensive function is approximated
with an extension of SVR called μ − ν−SVR, and the sur-
rogate problem is built in Step 3. This surrogate problem is
then solved with an evolutionary multiobjective optimiza-
tion method called SPEA2 (Zitzler et al. 2001) in Step 4.
In order to approximate well a neighborhood of the clos-
est Pareto optimal solution to the reference point provided
by the DM, among the generated non-dominated solutions,
thepoint with the minimum value of an order-approximating
achievement function (Miettinen 1999) is selected. More-
over, to update the surrogate problem, another point is
selected based on a specific parameter associated with the
μ − ν−SVR. In Step 5, if the number of computationally
expensive function evaluations is less than a predetermined
threshold, the selected points are evaluated with the com-
putationally expensive functions. The surrogate problem is
then updated, and the method returns to Step 4. Otherwise,
the set of non-dominated solutions of the last surrogate
problem is considered as the approximated Pareto frontier of
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the original problem. The point with the minimum value of
the order-approximating achievement function is also con-
sidered as the most preferred solution for the DM. The
efficiency of this method was evaluated on a benchmark
problem with a nonconvex and disconnected Pareto frontier,
and on a welded beam design problem with two nonlinear
objective functions, four nonlinear constraint functions and
four decision variables.

In Jakobsson et al. (2010), an optimization-based method
is developed to handle noisy black-box single objective opti-
mization problems. This method is then extended to handle
computationally expensive MOPs. The authors call both
methods qualSolve. They claim that it is the first method to
handle a computationally expensive noisy MOP. However,
the performance of the qualSolve method for MOPs is only
evaluated with deterministic benchmark problems. Here, we
focus on qualSolve for MOPs. In Step 1 of qualSolve, ini-
tial points are sampled with LHS and evaluated with the
computationally expensive functions in Step 2. Each com-
putationally expensive function is approximated with a thin
plate spline RBF in Step 3, and a surrogate problem is built.
In Step 4, the surrogate problem is solved by a multiob-
jective optimization method to represent its Pareto frontier.
Using this Pareto frontier, the extended Pareto frontier, i.e.,
the set of weakly Pareto optimal solutions in Zs + R

k is
represented where Zs is the feasible objective region of the
surrogate problem. Figure 5 which is a modification of a
figure in Jakobsson et al. (2010) shows the extended Pareto
frontier in which s1 and s2 are the approximated objective
functions.

To update the surrogate problem, in every iteration of the
method, a sample point is selected from either the Pareto
frontier of the surrogate problem or in an area near the
extended Pareto frontier of the surrogate problem. This
point can be a Pareto optimal solution, or a feasible solu-
tion in the objective space, near the extended Pareto frontier

s2

s1

Feasible objective region of the 

current surrogate problem ( ) Distance between a feasible solution

in the objective space and the extened

Pareto front of the current surrogate 

problem

Pareto front of the current

surrogate problem

Extened Pareto front of the current

surrogate problem

Fig. 5 Extended approximated Pareto front

of the current surrogate problem. To select the new sam-
ple point, the authors introduce a quality function based
on two functions, i.e., a distance and a weight function.
The distance function is defined as the smallest Euclidean
distance between a feasible solution in the objective space
and a solution on the extended Pareto frontier of the cur-
rent surrogate problem. The weight function controls the
procedure of selecting new sample points from either the
Pareto frontier or an area near the extended Pareto fron-
tier in the feasible objective region of the current surrogate
problem. The quality function is formulated with respect to
the weight and distance functions. The point that maximizes
the quality function is used to update the surrogate prob-
lem. In Step 5, if the number of computationally expensive
function evaluations is less than a predetermined thresh-
old, the selected point is evaluated with the computationally
expensive functions. The surrogate problem is then updated,
and the method returns to Step 4. Otherwise, the Pareto
frontier of the last surrogate problem is considered as the
approximated Pareto frontier of the original problem in
Step 6.

The performance of this method was evaluated on a set
of benchmark problems such as Kursawe (1991) and OKA1
(2006). The authors concluded that qualSolve performed
well on the Kursawe problem with a nonconvex and discon-
nected Pareto frontier. It, however, failed to represent the
convex Pareto frontier of OKA1, since OKA1 has a very
strong nonlinear behavior close to the minimum solution
to one of the objective functions. They note that qualSolve
was developed in a project on simulation-based multiobjec-
tive optimization of the Volvo D5 diesel engine with three
black-box objective functions and five decision variables
(Jakobsson et al. 2010) involving CFD simulation using
Star-CD (Star-CD 2013). The authors consider the execu-
tion time, as a main downside of the qualSolve method for
MOPs. Because the quality function includes an integral
equation, the evaluation time of this function rises expo-
nentially with the dimension of the decision space. They
mention that qualSolve is suitable for problems with less
than six decision variables. They also discuss that represent-
ing the extended Pareto frontier can be hard for three or
more objective functions.

In Gobbi et al. (2013), an optimization-based method
called approximate normal constraint (ANC) is introduced
in which the idea of employing the normal constraint
method (Messac et al. 2003; Messac and Mattson 2004)
is followed. In the ANC method, a neural network with a
single hidden layer is used to handle computationally expen-
sive MOPs. To do this, first one of the computationally
expensive objective functions is optimized to calculate the
corresponding extreme solution. The authors, however, do
not provide any guideline to choose this function. In a neigh-
borhood of the extreme solution obtained in the decision
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space, initial points are sampled randomly in Step 1 and
evaluated with the computationally expensive functions in
Step 2. These points are used to train a neural network to
approximate each computationally expensive function, and
to build a surrogate problem in Step 3. In Step 4, the other
extreme solutions are calculated by minimizing the corre-
sponding objective functions in the surrogate problem, and
a utopia hyperplane is constructed. A set of evenly dis-
tributed points is then generated on the utopia hyperplane.
For each point on the hyperplane, the surrogate problem is
scalarized using the scalarizing technique introduced in the
normal constraint method (Messac et al. 2003; Messac and
Mattson 2004), and a single objective optimization problem
is formulated.

The authors claim that by solving the single objective
optimization problem, a non-dominated solution in an area
near the Pareto frontier of the original problem can be
obtained. Therefore, a set of non-dominated solutions can
be generated near the Pareto frontier of the original problem
by forming and solving the single objective optimization
problem for each point on the hyperplane. In Step 5, these
non-dominated solutions are evaluated with the computa-
tionally expensive functions. To keep the number of the
training sample points constant, the points that are the far-
thest from the current utopia hyperplane are removed. The
evaluated points are added to the training set, and the surro-
gate problem is updated. If the number of computationally
expensive function evaluations is less than a threshold,
the method returns to Step 4. Otherwise, the set of non-
dominated solutions obtained near the Pareto frontier of the
original problem is considered as the approximated Pareto
frontier.

The efficiency of the ANC method was evaluated on
benchmark problems with nonconvex Pareto frontiers. The
efficiency was also assessed on an MOP of ground vehicle
suspension design with five black-box objective functions
and eleven decision variables. The authors compared the
efficiency of the ANC method with MOGA and a method
called Parameter Space Investigation (PSI) described in
Miettinen (1999) and references therein. They provided
remarks to show that the ANC outperformed the others. The
authors claim that ANC can be used to refine the solutions
obtained with other methods which approximate the Pareto
frontier at once (i.e., genetic algorithms (Goldberg 1989)
and quasi Monte Carlo method (Niederreiter 1992)).

In Kitayama et al. (2013), an optimization-based method
is developed to handle computationally expensive black-box
MOPs. In this method, the aim is to find the most preferred
solution for a DM rather than to represent an approximation
of the entire Pareto frontier. The authors introduce two sam-
pling functions. They describe how to capture disconnected
parts of the Pareto frontier by generating a set of sam-
ple points as evenly distributed as possible using the first

sampling function. The second sampling function provides
the most preferred solution for a DM. In addition, to approx-
imate computationally expensive functions with RBF, they
utilize a new estimation proposed in Kitayama et al. (2011a)
for the width parameter of a Gaussian kernel in RBF based
on the number of and distances between sample points. In
Kitayama et al. (2013), a set of initial points is sampled
with LHS in Step 1 and evaluated with the computationally
expensive functions in Step 2. The width parameter is also
calculated based on the number of sample points. In Step
3, each computationally expensive function is approximated
with the Gaussian RBF, and a surrogate problem is built.
The multiobjective surrogate problem is scalarized with the
weightedLp-norm function known e.g., in Miettinen (1999)
as the method of weighted metrics in which a DM pro-
vides his/her preferences by the weights. In Step 4, this
scalarized problem is optimized with the differential
evolution algorithm (Kitayama et al. 2011b). This optimal
solution is added to the sample points set and the width
parameter is recalculated.

Introducing the first sampling function based on the
current sample points, a set of sample points as evenly dis-
tributed as possible is obtained. These points are added
to the current sample points. Then, the second sampling
function is introduced and optimized based on the updated
sample points and a modification of the Pareto fitness func-
tion (3). Both functions are approximated using a Gaussian
RBF. In Step 5, if a stopping criterion based on the selected
points is not met, the optimal solution obtained with the
second sampling function is added to the current sample
point. The updated sample points are evaluated with the
computationally expensive functions. The width parameter
is recalculated, and the surrogate problem is updated. The
method then returns to Step 4. Otherwise, the last optimal
solution of the second sampling function is considered as
the most preferred solution for the DM.

Regarding the new estimated width parameter, the
authors mention that this estimation has been obtained with
a heuristic approach. Therefore, the validity of the new
parameter is not proved mathematically. They also propose
that this parameter can be used for SVR. The performance
of this method was evaluated on a set of benchmark prob-
lems with nonconvex and disconnected Pareto frontiers. The
efficiency of the method was also evaluated on an MOP of
variable blank holder force trajectory in deep drawing with
two nonlinear objective functions and six decision variables.
The numerical simulation was done by LS-DYNA.

In the optimization-based methods discussed so far in
this subsection, a surrogate problem is constructed with
metamodeling techniques to approximate each computa-
tionally expensive function. In Monz et al. (2008), how-
ever, an interactive optimization-based method called Pareto
Navigation method is introduced for convex problems to
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find the most preferred solution with respect to a DM’s
preference without using any metamodeling techniques, and
is applied in intensity-modulated radiation therapy plan-
ning. Based on a figure in this paper, we conclude that the
application problem has six objective functions. Moreover,
there is no information regarding the number of constraint
functions and the decision variables. In this method, a set
of initial sample points is generated with an a posteriori
method (Steps 1 and 2). Then, in Step 3, convex hulls of
these points are constructed in both the decision and objec-
tive spaces. The set of sample points is shown to the DM
who must select one of them. The DM provides his/her
preference information by specifying an aspiration level
called a goal for one of the objective functions and upper
bounds for the other objective functions. With respect to the
given preference information, a convex scalarization prob-
lem introduced in Pascoletti and Serafini (1984) (based on
a reference point) is formulated as the surrogate problem
in Step 3, which is optimized in Step 4. The optimal solu-
tion of this problem is a convex combination of the Pareto
optimal solutions in the sample points set in the decision
and objective spaces corresponding to the given preferences.
In Step 5, if the DM desires, this point can be evaluated
with the computationally expensive functions. If the DM is
not satisfied with this point, it can be added to the sam-
ple points set, and the surrogate problem is updated. Then,
the method returns to Step 4. Otherwise, the obtained point
is considered as the most preferred solution for the DM in
Step 7.

In Eskelinen et al. (2010), an interactive method called
Pareto navigator is introduced. In this method, conducting
Steps 1 and 2, i.e., constructing a convex hull, and show-
ing the set of sample points to the DM are similar to the
Pareto navigation method (Monz et al. 2008). In Step 3 of
the Pareto navigator method, however, the DM provides the
preference information in a form of a classification or a ref-
erence point consisting of desirable values for all objectives.
The main difference between this method and the method in
Monz et al. (2008) is that in the latter, only one solution with
respect to the given preference is generated whereas, in this
method, multiple solutions corresponding to the given pref-
erence are available when moving from the current solution
towards the reference point specified.

To be more specific, a search direction with respect to
the preference information is formed. Then, based on the
convex hull, the single objective optimization problem (2),
where the reference point is parametrically moved along the
search direction, is formulated as the surrogate problem. If
the DM desires, (s)he can control the speed of movement.
Pareto optimal solutions to the surrogate problem are gen-
erated by solving the single objective optimization problem
for different reference points until the DM wants to stop.
If the DM wishes, the corresponding Pareto optimal solu-

tion of any point generated is obtained by projecting this
point to the Pareto frontier of the original problem using the
achievement scalarization function (2) in Step 5. If the DM
is satisfied with the projected Pareto optimal solution, it is
considered as the most preferred solution for the DM in Step
7. Otherwise, the DM can change the preference informa-
tion, that is, the direction of movement and/or the starting
solution. If desired, it is possible to add the projected Pareto
optimal solution to the sample points set in order to improve
the accuracy of the surrogate problem. Then, Steps 4-5 are
repeated. The performance of this method was evaluated on
a simple problem with three nonlinear objective functions,
three linear constraint functions, two decision variables and
a simple nonconvex Pareto frontier. In the Pareto naviga-
tion method (Monz et al. 2008), the objective functions
and the Pareto frontier are assumed to be convex, whereas
in Pareto navigator (Eskelinen et al. 2010), a simple non-
convex Pareto frontier can be captured by the convex hull.
Capturing a complex nonconvex Pareto frontier is men-
tioned as a future research direction in Eskelinen et
al. (2010). While the Pareto navigation method keeps the
connection to the decision space, Pareto navigator loses the
connection with the decision space when navigating in the
objective space. In the Pareto navigation method (Monz
et al. 2008), convexity of the objective functions is assumed,
which is an obstacle to deal with black-box functions. How-
ever, the method in Eskelinen et al. (2010) can handle
black-box functions.

In Shan and Wang (2004), a sampling-based method
called Pareto Set Pursuing (PSP) is introduced, which is an
extension of the Mode Pursuing Sampling (MPS) method
proposed in Wang et al. (2004). In Step 1 of PSP, initial
points are sampled randomly. These points are evaluated
with the computationally expensive functions in Step 2, and
are saved in an archive based on their Pareto fitness values.
In Step 3 of the method, two metamodeling techniques (a
quadratic polynomial function and a linear RBF) are used
to approximate the computationally expensive functions.
Using the two surrogate problems, the authors introduce
two functions to guide the sampling process, and devise
two criteria for selecting between them during the sam-
pling in Step 4. The first function selects sample points
towards the extremes of the Pareto frontier, and the sec-
ond one towards the entire Pareto frontier of the original
problem. These sample points are then combined with the
sample points in the archive and a subset of these is selected
with the help of the second function. The selected points
are evaluated in Step 5 with the computationally expensive
functions and added to the archive. The authors have two
criteria to stop the sampling process. If the stopping cri-
teria are not met, the surrogate problem is updated. Then,
the method returns to Step 4. Otherwise, the non-dominated
solutions in the archive are considered as the approximated
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Pareto frontier. The authors claim that PSP can capture
a nonconvex and disconnected Pareto frontier. Similar to
Goel et al. (2007) and Yang et al. (2002), the authors also
discuss the difficulties of GA-based algorithms in identi-
fying extreme solutions in the Pareto frontier. They claim
that the first function can overcome this difficulty. As far
as the accuracy of the surrogate problem is concerned, the
authors claim that the accuracy of their method is not critical
when solving an MOP. The efficiency of PSP was eval-
uated on solving an MOP of fuel cell component design
with one nonlinear objective function, one black-box objec-
tive function, one black-box constraint function and three
decision variables.

In Khokhar et al. (2010), the PSP method (Shan and
Wang 2004) is modified for mixed integer MOPs as the
MV-PSP method. In the MV-PSP method, the basic idea
of employing a surrogate problem is similar to the PSP
method. To deal with discrete variables, however, random
sampling in PSP would most likely generate infeasible
discrete sample points (Khokhar et al. 2010). In order to rec-
tify this issue, the authors use a method to sample feasible
discrete points during the sampling process. The perfor-
mance of the MV-PSP method was evaluated on solving
an MOP of welded beam design with two nonlinear objec-
tive functions, four nonlinear constraint functions and four
decision variables. In this paper, the performance of the
MV-PSP method was also compared with the performance
of six evolutionary multiobjective optimization algorithms,
i.e., AbYSS (Nebro et al. 2008), CellDE (Durillo et al.
2008), FastPGA (Eskandari and Geiger 2008), NSGA-II
(Deb et al. 2002), OMOPSO (Reyes and Coello 2005) and
SPEA2 (Zitzler et al. 2002). These evolutionary algorithms,
however, have not been developed to deal with compu-
tationally expensive MOPs. To compare these methods, a
set of benchmark problems with convex, nonconvex and
disconnected Pareto frontiers was considered. Since the
basic idea of MV-PSP and PSP is the same, for MOPs
with real-valuated and discrete decision variables, PSP and
MV-PSP were applied, respectively. In this comparison,
spread, generational distance, inverted generational dis-
tance, hyper-volume, generalized spread and percentage of
the Pareto optimal solutions were considered as the perfor-
mance indices to assess the quality of the solutions obtained
by these methods. Based on this comparison, the authors
claim to be relatively safe to mention that with a limited
number of computationally expensive function evaluations,
the PSP and MV-PSP methods outperform the compared
methods for MOPs with two to three objective functions
and less than eight decision variables. They observe that
when the dimensionality increases to ten decision variables,
PSP does not offer any superiority over the others. Handling
this weakness is mentioned as a future research direction in
Khokhar et al. (2010).

To summarize, in this subsection, we have surveyed
methods in type 1 of the adaptive framework. In the fol-
lowing section, methods in type 2 of this framework are
considered. After surveying all methods in the adaptive
framework, we summarize characteristics of them in Table 2
of Section 6.2.

6 Adaptive framework: type 2

6.1 General flowchart

The flowchart in Fig. 6 outlines the main steps of methods
belonging to type 2 of the adaptive framework. As men-
tioned earlier, the initial approximated Pareto frontier may
not represent the exact Pareto frontier of the original prob-
lem. Thus, by solving and updating the surrogate problem
iteratively, the approximated Pareto frontier is supposed to
coincide with the Pareto frontier of the original problem. To
do this, sampling new points is required iteratively. In type
1, sample points selected before assessing a stopping cri-
terion are utilized to update the surrogate problem (Step 4
highlighted in Fig. 4). In type 2, not only the sample points
generated before assessing the stopping criterion are con-
sidered (Step 4 highlighted in Fig. 6), but also new points
are sampled after assessing the stopping criterion in other
regions of the decision and/or objective space to update the
surrogate problem (Step 6 highlighted in Fig. 6).

As can be seen in the flowchart in Fig. 6, a set of ini-
tial points is sampled in Step 1, and then evaluated with the
computationally expensive functions in Step 2. After this,
the function values of the sample points are available. In
Step 3, an initial surrogate problem is built. In Step 4, a set
of new sample points is generated relying on the surrogate
problem. Similar to type 1, these points can be generated
and selected e.g., by solving the surrogate problem with a
DM if available. In Step 5, a stopping criterion is checked,
which may require to evaluate the selected sample points
with the computationally expensive functions. If the cri-
terion is not met, based on a method-dependent criterion,
a subset of non-dominated solutions generated in Step 4,
which may have been evaluated with the computationally
expensive functions, is selected. Then, in Step 6, a set of
new points in other regions of the decision and/or objective
space is sampled. These points along with the sample points
selected in Step 5 are considered, and Steps 2-5 are then
repeated. Otherwise, the set of non-dominated (or Pareto
optimal) solutions or the most preferred solution of the last
surrogate problem, which may have been evaluated with
the computationally expensive functions, is considered as
either the approximated Pareto frontier of the original prob-
lem or the most preferred solution for a DM, respectively.
These solutions can also be visualized by an appropriate
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Fig. 6 Flowchart of the adaptive framework: type 2

visualization technique. In Section 6.2, we summarize the
methods in type 2 of the adaptive framework. These meth-
ods are then compared with other methods in type 1 of the
adaptive framework in Section 8.

6.2 Summary of methods in the adaptive framework: type 2

In Liu et al. (2008), an optimization-based method is intro-
duced using a quadratic polynomial function. The authors
claim that this method is highly efficient and is less depen-
dent on the accuracy of the surrogate problem. From this
point of view, they claim that the framework of their
method is a new framework which covers surrogate-based
methods, and consider it as a novel multiobjective opti-
mization method based on an approximation model man-
agement technique. Type 2 of the adaptive framework has
been inspired by this paper. In Chen et al. (2012) also an
optimization-based method similar to the idea in Liu et
al. (2008) is introduced. Without loss of generality, we sum-
marize these methods together. In both methods, the sample
points are selected within a trust region in the decision
space. To do this, an initial trust region is considered in the
decision space by initializing its parameters, i.e., trust region
center, radius and bounds, threshold and control constants
to update the trust region. The authors also define a set of
equations to update the trust region in each iteration of the
methods.

After initializing the trust region, in Liu et al. (2008)
and Chen et al. (2012) initial points are sampled using
OLHS and LHS, respectively, within the trust region in
Step 1, and evaluated with the computationally expensive
functions in Step 2. Each computationally expensive func-

tion is approximated in Step 3 with a quadratic polynomial
function and a Gaussian RBF in Liu et al. (2008) and Chen
et al. (2012), respectively, and the initial surrogate problem
is constructed. In Step 4, non-dominated solutions of these
surrogate problems are obtained by solving them using μ-
MOGA (Liu and Han 2006). Then, in both methods, the
set Pa consisting of a subset of evenly distributed non-
dominated solutions in the decision space from the obtained
non-dominated solutions is considered. In Step 5, the points
in Pa are evaluated with the computationally expensive
functions. The non-dominated solutions of the evaluated
points are stored in an archive Pe. In order to check a stop-
ping criterion, the set Pt = Pa ∩ Pe is considered. Then,
a ratio between the number of points in Pt and Pa is cal-
culated. Based on this ratio, the predefined equations and
the constants, the trust region is updated by adjusting its
parameters.

In Liu et al. (2008), if the radius of the updated trust
region is less than a given threshold, or the number of itera-
tions of solving and updating the surrogate problem is more
than a given threshold, the method stops. In (Chen et al.
2012), other criteria based on the calculated ratio or the
accuracy of the surrogate problem are also checked. If either
of the stopping criteria is met, in both methods, the set Pe is
considered as the approximated Pareto frontier of the orig-
inal problem in Step 7. Otherwise, in both methods, a set
of new points is sampled with LHS in Step 6. These points
and those points from Pe that fall into the updated trust
region are considered. In Liu et al. (2008), Steps 2–5 are
then repeated. In Chen et al. (2012), a subset of those points
from Pe that are in the updated trust region is first removed
with respect to a distance coefficient. This action avoids
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singularity in the matrix of updating the RBF. The remain-
ing points along with the new sample points are selected,
and Steps 2–5 are repeated.

These methods can capture nonconvex and disconnected
Pareto frontiers. The authors in Liu et al. (2008) discuss
that capturing such Pareto frontiers depends on the initial
trust region radius. The efficiency of the method in Liu et
al. (2008) was evaluated on a black-box biobjective opti-
mization problem of variable binder force in a car sheet
metal forming with three decision variables. LS-DYNA was
employed as a simulator. As far as the method in Chen
et al. (2012) is concerned, the distribution of the non-
dominated solutions relies on the quality of μ-MOGA. The
distance coefficient affects the performance of this method.
Based on the obtained results using the benchmark prob-
lems, the authors suggest the best value for the distance
coefficient. The performance of this method was evalu-
ated on a structure optimization problem of a vehicle door
with two black-box objective functions, two black-box con-
straint functions and five decision variables involving the FE
method. In Liu et al. (2008), closeness of the Pareto frontiers
of the surrogate and benchmark problems was considered
to assess the quality. In Chen et al. (2012), the quality was
assessed based on the spread of non-dominated solutions
obtained by the surrogate problem and closeness of them to
the Pareto frontier of the benchmark problems.

All the methods described in Sections 5 and 6 are
compared in Section 8. Table 2 summarizes the charac-
teristics of the methods belonging to both types 1 and 2
in the adaptive framework with respect to sampling tech-
niques, metamodeling techniques, number of objective and
constraint functions as well as decision variables in the con-
sidered benchmark and application problems, and whether
the methods are optimization- or sampling-based. In this
table, for every method, the most challenging MOP that
was considered as a benchmark or an application problem
is mentioned. Since the number of equality constraints in
all problems are zero (p = 0), it is not mentioned in the
table. As can be seen, most of the problems consist of two
or three objective functions except (Zhou and Turng 2007;
Gobbi et al. 2013) with five objective functions.

7 A hybrid method

In Messac and Mullur (2008), a two-stage optimization-
based method called Pseudo Response Surface (PRS) which
hybridizes both the sequential framework and type 1 of
the adaptive framework is introduced. Since discussion
on the frameworks utilized in Sections 4 and 5 are nec-
essary to describe this method, we discuss it in this
section. This method is compared with other methods in
Section 8. PRS consists of two stages where handling

computationally expensive constraint functions is not
addressed. In the first stage, a surrogate problem is built and
updated iteratively in the same way in type 1 of the adap-
tive framework to generate a set of as evenly distributed
feasible solutions as possible near the Pareto frontier of the
original problem. This set is utilized to build another surro-
gate problem in stage two with the sequential framework.
The second surrogate problem is accurate near the Pareto
frontier of the original problem and intentionally inaccurate
in other regions of the objective space. By formulating and
solving the second surrogate problem, an approximation of
the Pareto frontier is represented.

In stage one of PRS, extreme solutions are calculated.
The extreme solutions, the utopia hyperplane and normal
constraint method (Messac et al. 2003; Messac and Matt-
son 2004) are employed to generate feasible solutions near
the Pareto frontier of the original problem. In Step 1 of type
1 of the adaptive framework utilized in this stage, a set of
evenly distributed points including the extreme solutions is
generated on the utopia hyperplane. Near every point on the
hyperplane, a set of new points is sampled with FFS or LHS.
These points are evaluated with the computationally expen-
sive functions in Step 2. The individual computationally
expensive functions are then approximated with a multi-
quadric RBF in Step 3, and an initial surrogate problem is
built. In Step 4, the surrogate problem is scalarized using the
normal constraint method introduced in Messac et al. (2003)
and Messac and Mattson (2004). A feasible solution near
the Pareto frontier is generated by solving this scalarized
problem. In Step 5, this point is evaluated with the compu-
tationally expensive functions, and replaced with the oldest
sample point in the sample points set. The surrogate prob-
lem is then updated. Steps 4 and 5 are repeated until all
points on the hyperplane are used. As a result, in the first
stage, a set of evenly distributed feasible solutions near the
Pareto frontier is obtained in Step 6. These points are con-
sidered as the evaluated initial sample points for Steps 1 and
2 of the sequential framework used in stage two.

As mentioned earlier, the second stage of PRS con-
centrates on building an accurate surrogate problem near
the Pareto frontier and is intentionally inaccurate in other
regions of the objective space. To do this, based on the
dimensionality of the decision space, a number of new sam-
ple points is selected far from the sample points set obtained
from stage one. Instead of evaluating the selected points
with the computationally expensive functions, every objec-
tive function value of these points is set such that each
point has a higher objective value in comparison with the
objective function value of the nearest point among the
sample points evaluated with the computationally expensive
functions. Then, each computationally expensive function
is approximated with an extension of RBF called E-RBF
(Mullur and Messac 2005) in Step 3 of the sequential
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framework, and an initial surrogate problem is built. In Step
4, the accuracy of the surrogate problem is evaluated near
the Pareto frontier of the original problem by RMSE. In Step
5, if the accuracy is not sufficient, new points near the Pareto
frontier are obtained using the first stage, and the surrogate
problem is updated in Step 3.

Having the accurate enough surrogate problem, the set of
non-dominated solutions is obtained in Step 6 by solving the
surrogate problem of the stage two. This set is considered as
the approximated Pareto frontier of the original problem in
Step 8. These solutions are not evaluated with the compu-
tationally expensive functions in Step 7. The performance
of PRS was evaluated on benchmark problems with non-
convex Pareto frontiers. The PRS method was also applied
to a complex structural optimization problem requiring the
FE method and analysis of rigidified inflatable structures. It
had two black-box objective functions, three black-box con-
straints and three decision variables. The authors claim that
the computational cost in simulation-based MOPs can be
reduced considerably since the surrogate problem obtained
with PRS is accurate near the Pareto frontier. While, the
authors state that the approximated Pareto frontier is the
Pareto frontier of the original problem, mathematical proof
of this statement was mentioned as a future research direc-
tion. This method assumes that the ranges of the objective
function values are available to compute the extreme solu-
tions. This assumption can be a challenge. Although the
authors expect that PRS can capture a disconnected Pareto
frontier, they mention handling multimodalities and discon-
nected Pareto frontiers as a future research direction.

8 Comparison of surrogate-based multiobjective
optimization methods

After giving an overview of surrogate-based methods pro-
posed in the literature, we compare them in this section. As
mentioned in Section 1, in this comparison, we concentrate
on the attributes of the methods in four aspects: 1) Can the
methods handle general black-box functions where infor-
mation regarding mathematical properties of the functions
such as convexity and continuity is not available? 2) Can the
methods capture different types of Pareto frontiers? 3) How
many objective and constraint functions as well as decision
variables can be handled by the methods? 4) What is the role
of a DM during the solution process? For this comparison,
we consider the results given by the authors of individual
papers on the benchmark and application problems that they
have used to evaluate the performance of their methods.
Throughout this comparison, we also discuss future research
directions.

As far as black-box functions are concerned, all the
described methods except (Monz et al. 2008) can handle

such functions. In Monz et al. (2008), the convexity of the
objective functions is assumed which cannot be guaran-
teed when considering black-box functions. We observe that
only in Jakobsson et al. (2010) dealing with noisy black-box
functions is discussed. However, the authors evaluated the
efficiency of their method on benchmark problems without
noise. Based on these observations, more research to figure
out how metamodeling techniques can be applied to handle
noisy black-box functions is required.

As far as handling nonconvex and disconnected Pareto
frontiers is concerned, we observe that capturing a poten-
tial region to select sample points for updating the surro-
gate problem has a vital and a critical role. In Shan and
Wang (2004), Kitayama et al. (2013), Yun et al. (2009),
Jakobsson et al. (2010) and Khokhar et al. (2010), meta-
modeling techniques not only are employed to build the
surrogate problem, but also to introduce functions for sam-
pling. In Shan and Wang (2004) and Khokhar et al. (2010)
these functions choose sample points towards the extreme
solutions and the Pareto frontier. In Jakobsson et al. (2010),
the sampling function selects sample points from or close
to the extended Pareto frontier of the surrogate problem. In
Kitayama et al. (2013), the aim of employing the sampling
function is to generate evenly distributed sample points.
The authors argue that sampling evenly distributed points to
build and update the surrogate problem may help to capture
disconnected parts of the Pareto frontier.

In Zhou and Turng (2007), the sample points are selected
based on the variances of the objective function values of the
sample points predicted by the Kriging model. In addition,
expected improvement is another criterion related to Krig-
ing model used in nature-inspired methods (Wagner et al.
2010) to select a new point for updating a surrogate prob-
lem. Such a criterion can also be considered in non-nature
inspired methods. In Yun et al. (2009), Lagrangian multi-
plier values given by the metamodeling technique play a role
to select new sample points. In Liu et al. (2008) and Chen
et al. (2012), the trust region strategy is employed to select
sample points from the explored and unexplored regions in
the decision and/or objective space. In both methods, the
sample points are selected to update the surrogate problem
before and after assessing a stopping criterion. In Wilson
et al. (2001), a considerable number of sample points is
selected to capture nonconvexity and discontinuity, which
highly relies on the accuracy of the surrogate problem. In
Goel et al. (2007), convex hulls are discussed to capture
a nonconvex Pareto frontier. In this paper, a metamodel-
ing technique is utilized to approximate a function which
visualizes the approximated Pareto frontier. This function
represents an objective as a function of other objectives.

The authors in Eskelinen et al. (2010) claim that a simple
nonconvex Pareto frontier can be captured by their method,
because a convex hull is applied. In the PAINT method
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(Hartikainen et al. 2012), which can capture a nonconvex
Pareto frontier, an interpolation between sample points is
built. In Messac and Mullur (2008) and Gobbi et al. (2013),
the idea of the normal constraint method (Messac et al.
2003; Messac and Mattson 2004) is employed to gener-
ate sample points near the Pareto frontier of the original
problem. In Messac and Mullur (2008), the surrogate prob-
lem is constructed by type 1 of the adaptive framework
to generate initial sample points. These points are used to
form a surrogate problem of a computationally expensive
MOP by the sequential framework. However, handling a
disconnected Pareto frontier in Messac and Mullur (2008),
Goel et al. (2007), Hartikainen et al. (2012) and Zhou and
Turng (2007) is not considered. Based on the above obser-
vations, developing a method to handle the issues of non-
convexity and discontinuity in the Pareto frontier deserves
research efforts.

One can see that in Messac and Mullur (2008), Shan
and Wang (2004), Kitayama et al. (2013), Jakobsson et
al. (2010) and Khokhar et al. (2010), RBFs have been
employed to handle computationally expensive MOPs. The
benchmark or application problems in Messac and Mul-
lur (2008) have nonconvex Pareto frontiers, while in Shan
and Wang (2004), Kitayama et al. (2013), Jakobsson et
al. (2010) and Khokhar et al. (2010), they have nonconvex
and disconnected Pareto frontiers. Now, a question arises
whether the type of a metamodel technique has any impact
on capturing a nonconvex and disconnected Pareto frontier.
In addition, we observe that many methods developed in
the adaptive framework can capture a nonconvex and dis-
connected Pareto frontier. Based on this observation, we
recommend employing the adaptive framework to handle
the issue of nonconvexity and discontinuity in the Pareto
frontier.

The methods of Hartikainen et al. (2012), Monz et
al. (2008) and Eskelinen et al. (2010) introduce surro-
gate problems to approximate directly the Pareto frontier.
Both methods in Hartikainen et al. (2012) and Eskelinen et
al. (2010) lose the connection to the decision space when
solving the surrogate problems. Nevertheless, the corre-
sponding decision vector value is available after projecting
the approximated preferred solution obtained by the surro-
gate problems to the Pareto frontier of the original problem
(although, this can be time consuming). In contrast, the
Pareto navigation method (Monz et al. 2008) keeps the
connection to the decision space during the navigation in
the objective space. Apart from an approximation of the
Pareto frontier in the objective space, there is a possibil-
ity to approximate the set of Pareto optimal solutions in the
decision space. In Bhardwaj et al. (2013), a method is pro-
posed to approximate this set in the decision space rather
than in the objective space. In this method, however, han-
dling a computationally expensive MOP is not concerned.

Moreover, this method requires differentiability of the
objective and constraint functions, and, thus, we do not
discuss it further. However, one can consider the idea
of approximating the set of Pareto optimal solutions in
the decision space as an approach to handle computation-
ally expensive MOPs. In addition, developing a method to
approximate the Pareto frontier directly rather than each
computationally expensive function in which the connection
to the decision space is kept, can be considered for further
research.

As far as the number of objective and constraint func-
tions as well as decision variables is concerned, except in
Lotov et al. (2001), Su et al. (2011), Zhou and Turng (2007),
Gobbi et al. (2013), the authors in other considered papers
employed benchmark and/or application problems limited
to at most three objective functions, four constraint func-
tions and seven decision variables. The highest number of
objective functions (k = 5) was considered in Lotov et
al. (2001), Zhou and Turng (2007), Gobbi et al. (2013)
and Monz et al. (2008). In Lotov et al. (2001), a surro-
gate problem is formed based on a sampling strategy, in
Gobbi et al. (2013), based on a neural network, in Zhou and
Turng (2007), based on a Kriging model and in Monz et
al. (2008), based on the convex hulls. The sampling strat-
egy, however, can be unstable to handle an MOP with a high
number of decision variables. In addition, training a neural
network is time consuming. In Lotov et al. (2001), Su et
al. (2011), Zhou and Turng (2007) and Gobbi et al. (2013),
it remains unclear how to capture a disconnected Pareto
frontier. In (Monz et al. 2008), the convexity of the objec-
tive functions is required. An MOP with the highest number
of constraint functions (m = 13) and decision variables
(n = 31) was considered in Su et al. (2011) based on the
sequential framework. In (Shan and Wang 2004; Khokhar
et al. 2010), the authors note that their methods can be
employed to solve a computationally expensive MOP with
two or three objective functions and less than seven deci-
sion variables. Moreover, applying the method in Jakobsson
et al. (2010) to handle an MOP with more than three objec-
tive functions and six decision variables is unsuitable. In
other methods, the authors do not discuss upper bounds on
the number of objective and constraint functions as well as
decision variables. See Shan and Wang (2010) for a review
on handling a high-dimensional design problem. The ideas
may be extended to deal with an MOP with a high number
of objective and constraint functions and decision variables.

Considering the role of a DM as defined in Section 2.1
in solving an MOP has been discussed in Kitayama et
al. (2013), Lotov et al. (2001), Hartikainen et al. (2012), Yun
et al. (2009), Monz et al. (2008) and Eskelinen et al. (2010).
A DM provides his/her preferences in the form of weights
in Kitayama et al. (2013) and Yun et al. (2009), while in
Lotov et al. (2001), (s)he compares the generated solutions.
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In Monz et al. (2008), a DM provides his/her preferences as
a goal for one of the objective functions and upper bounds
for the other ones. In Eskelinen et al. (2010), (s)he can
express the preferences by means of a classification or a ref-
erence point consisting of aspiration levels for all objectives.
In this aspect, PAINT has a distinguished feature, because a
mixed integer linear multiobjective surrogate problem of the
original problem is created without involving preferences.
Therefore, it can be employed with any interactive method.
The aim in methods of Kitayama et al. (2013), Lotov et
al. (2001), Hartikainen et al. (2012), Monz et al. (2008) and
Eskelinen et al. (2010) is to provide the most preferred solu-
tion for a DM rather than to approximate the entire Pareto
frontier. Involving a DMwhen solving anMOP has not been
considered in many papers and, thus, can be considered as
another future research direction.

As mentioned earlier, the quality of the approxi-
mated Pareto frontier can be assessed based on Wu and
Azarm (2000), Okabe et al. (2003) and Zitzler et al. (2003,
2008), the number of solutions in the approximated Pareto
frontier, the distribution and spread of these solutions and
closeness of the approximated Pareto frontier to the Pareto
frontier of the original problem. Evaluating the performance
of the surveyed methods based on these aspects with respect
to a limited number of computationally expensive func-
tion evaluations requires implementing and testing them
on a common set of benchmark problems. Nevertheless,
the benchmark problems considered in the surveyed papers
were not computationally expensive. Thus, to assess the
performance of surrogate-based methods to handle compu-
tationally expensive problems, developing computationally
expensive benchmark problems is a future research topic.

9 Conclusions

Many real-world (engineering) problems involve multiple
conflicting objectives (and possibly constraints) that are
computationally expensive to evaluate. In order to deal
with the high computational cost, various surrogate-based
methods which are independent of the type of the optimiza-
tion algorithms used in them, have been proposed in the
literature. So far, however, no survey has been available
summarizing their characteristics, similarities and differ-
ences. This survey provided an overview of the methods
available and with it, one can find out whether there exist a
method applicable for one’s own problems.

Based on when the surrogate problem is built and
updated, we classified these methods into the sequential and
the adaptive frameworks. A special case of the sequential
framework termed as one-stage sampling was also consid-
ered. In this case, points were sampled only once to build the
surrogate problem. In accordance with when sample points

are selected to update the surrogate problem, we divided
the adaptive framework into types 1 and 2. The considered
papers were then summarized and compared. Based on this
comparison, we can identify the following challenges as
future research directions:

• handling noisy black-box functions,
• capturing a nonconvex and disconnected Pareto frontier,
• handling a high number of objective and constraint

functions as well as decision variables,
• providing the most preferred solution for a DM when

solving computationally expensive MOPs,
• developing computationally expensive benchmark

problems.

In order to capture a nonconvex and disconnected Pareto
frontier, we recommend developing a method in the adap-
tive framework. We hope that this survey opens new hori-
zons for the researchers interested in this topic.
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