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Abstract This paper examines the evolutionary structural
optimisation (ESO) method and its shortcomings. By
proposing a problem statement for ESO followed by an
accurate sensitivity analysis a framework is presented in
which ESO is mathematically justifiable. It is shown that
when using a sufficiently accurate sensitivity analysis, ESO
method is not prone to the problem proposed by Zhou
and Rozvany (Struct Multidiscip Optim 21(1):80–83, 2001).
A complementary discussion on previous communications
about ESO and strategies to overcome the Zhou-Rozvany
problem is also presented. Finally it is shown that even the
proposed rigorous ESO approach can result in highly ineffi-
cient local optima. It is discussed that the reason behind this
shortcoming is ESO’s inherent unidirectional approach. It is
thus concluded that the ESO method should only be used
on a very limited class of optimisation problems where the
problem’s constraints demand a unidirectional approach to
final solutions. It is also discussed that the Bidirectional
ESO (BESO) method is not prone to this shortcoming
and it is suggested that the two methods be considered as
completely separate optimisation techniques.
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1 Introduction

The evolutionary structural optimization (ESO) method was
initially introduced by Xie and Steven (1993) based on the
simple idea of gradually removing inefficient parts of struc-
tures to reach optimised designs. A bidirectional version of
ESO (BESO) was proposed later by Querin et al. (1998) and
Yang et al. (1999) which also permits adding new elements
to the efficient parts of structures. The term SERA (sequen-
tial element rejection and admission) was later proposed by
Rozvany and Querin (2002) for this method to distinguish it
from Darwinian evolutionary-based methods.

In ESO/BESO terminology, the measure of an element’s
efficiency is its sensitivity number. In earlier works on
ESO/BESO, not enough attention was paid to mathemat-
ically stating the optimisation problem and the sensitivity
numbers used to be defined rather intuitively. For example,
to obtain a fully stressed structure, a stress invariant of ele-
ments such as vonMises stress was considered as sensitivity
number (Xie and Steven 1993).

In more recent works on BESO, some researchers have
adopted a rigorous approach of clearly stating the optimi-
sation problem and defining sensitivity numbers based on
sensitivity analysis of the objective function. For example,
one can refer to Huang and Xie (2007, 2009, 2010a, b,
Ghabraie (2009), Ghabraie et al. (2010), and Nguyen et al.
(2014). Despite the apparent similarity between ESO and
BESO, however, to the best knowledge of the author, no sat-
isfying mathematical problem statement has been proposed
for ESO. As explained by Rozvany (2009), the problem
statements proposed earlier (e.g. by Tanskanen 2002) are
not justifiable.

Another serious criticism on ESO/BESO methods was
proposed by Zhou and Rozvany (2001). Through a simple
example, Zhou and Rozvany showed that ESO method can
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lead to non-optimal solutions. Suggestions for changes in
ESO algorithm to answer this criticism have been proposed
by a number of authors. Rozvany (2009) reviewed some
of the most important proposed discussions and solutions,
including Tanskanen (2002), Rozvany and Querin (2002),
Rozvany et al. (2004), Edwards et al. (2007), and Huang and
Xie (2008). Rozvany discusses that some of these proposed
“solutions” (e.g. Edwards et al. 2007) are unjustifiable. For
other suggestions, such as mesh refinement and “freezing”
critical boundary elements (proposed by Huang and Xie
2008), he discusses that the solution is not always reliable.

The problem can be fixed if a soft-kill BESO approach
is employed. In soft-kill BESO, also known as the “virtual
material” approach (e.g. in Rozvany and Querin 2002), the
inefficient elements are weakened by using a very soft mate-
rial rather than being completely removed from the design
domain (hard-kill). However, as Rozvany correctly sum-
marises, none of the proposed solutions completely rectifies
this problem for the ESO method. He thus concludes that
“ESO is presently fully heuristic, computationally rather
inefficient, methodologically lacking rationality, occasion-
ally unreliable, with highly chaotic convergence curves.”

This paper presents a framework in which the ESO
approach can be mathematically justifiable. We start by
proposing a problem statement for ESO (Section 2) fol-
lowed by an accurate sensitivity analysis which overcomes
the Zhou-Rozvany problem (Section 2.2). A complementary
discussion on some other proposed strategies to overcome
the Zhou-Rozvany problem and relevant communications is
also presented (Section 4). It is discussed that the proposed
accurate sensitivity analysis can ensure that ESO always
reaches a local optimum. Finally we will show that even this
rigorous ESO approach can result in highly inefficient local
optima (Section 5). The reasons behind this behaviour are
discussed. It is concluded that the ESO method should only
be used on a very limited class of optimisation problems. It
is also discussed that the BESO method is not prone to this
problem.

2 A problem statement for ESO

In order to investigate the theoretical background of the
ESO method, it is necessary to know what sort of optimisa-
tion problems are actually solved when implementing this
method.

Consider a design domain which is discretised using
finite element method intoN elements. To be able to modify
the topology of the design domain, consider the following
linear material interpolation scheme,

Ke(xe) = K(0)
e + xe

(
K(1)

e − K(0)
e

)
, e = 1, . . . , N (1)

where Ke is the stiffness matrix of element e and xe is the
design variable of this element which can vary continuously
between 0 and 1. K(0)

e and K(1)
e are the stiffness matrices of

the same element if it was made of two different materials,
namely, material 0 and material 1 respectively. For single
material-void designs,K(0)

e is a zero matrix of the same size
as K(1)

e . In this case, (1) simplifies to Ke = xeK
(1)
e .

To simplify the matters hereafter we limit our study
to compliance-based ESO. Starting from the full design
domain, in each step ESO removes one or more elements
which are considered to be inefficient. Throughout this
procedure the function which is constantly reduced is the
volume of the structure. It is thus reasonable to think of
volume as the objective function for ESO. Based on this
fact, we propose the following problem statement for the
compliance-based ESO method:

min
x1,...,xN

V =
N∑

e=1

vexe

such that c ≤ c̄

and xe ∈ {0, 1}, e = 1, . . . , N (2)

where V is the total volume of the design domain, ve is the
volume of element e, and c is the mean compliance of the
structure defined as

c = fT u (3)

with f and u representing the nodal force and displacement
vectors respectively. c̄ is a predefined upper limit for the
mean compliance. It should be noted that the only allow-
able values of design variables in problem (2) are the binary
values of 0 and 1.

Based on the fact that removal of any element will
increase the value of mean compliance ( ∂c

∂xe
< 0), it is obvi-

ous that the problem stated in (2) does not always have a
solution. Solutions can only exist if c̄ is not smaller than
the compliance of the full structure. Also, it is obvious that
the optimal solution requires the compliance to attain its
maximum feasible value because otherwise it is possible to
obtain a better solution by removing more elements.

2.1 Sensitivity numbers in ESO

The ESO procedure approaches the optimal point from one
side. In order to find a solution for problem (2), in each
step ESO needs to remove the element (or elements) which
results in the smallest increment to c. The procedure should
be stopped when the condition becomes active (i.e. c = c̄)
or when even the smallest increment to c caused by removal
of the least efficient element violates the condition.

The sensitivity number defined for each element in this
problem should thus reflect the effect of removing that ele-
ment on the mean compliance of the system. Considering a
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single material-void design, the sensitivity number used by
ESO for this problem is defined as

αe = uK(1)
e u (4)

This sensitivity number is consistent with the results of first
order sensitivity analysis. Using Taylor’s series, the change
in c due to a change in the value of xe can be expressed as

�
e
c = ∂c

∂xe

�xe + 1

2!
∂2c

∂xe
2
�xe

2

+ · · · + 1

m!
∂mc

∂xe
m

�xe
m + · · · (5)

In ESO, like nearly all other gradient-based topology opti-
misation methods, only the first term in the above series is
considered and it is assumed that

�
e
c = ∂c

∂xe

�xe (6)

Because the elements can only be totally removed in ESO,
we always have �xe = 0 − 1 = −1. Hence, we have

�
e
c = − ∂c

∂xe

= uK(1)
e u = αe

The problem in the above sensitivity analysis is the
assumption made in (6). Looking at (5), for |�xe| � 1,
the higher powers of �xe can be neglected and the change
in c is approximately equivalent to the first term. In this
case, assumption (6) is valid. In the ESO method, how-
ever, �xe = −1 and the higher powers of �xe can not be
neglected. In fact, in some cases, when �xe → ±1 the con-
tribution of higher order terms becomes quite considerable.
This effect is demonstrated in Section 3.1.

2.2 Accurate sensitivity numbers

As discussed above, from (5), it is clear that when �xe →
±1, for obtaining an accurate estimate of �

e
c, one has to

consider the higher order terms.
In order to calculate ∂mc

∂xe
m , we differentiate (3) several

times. Noting that the force vector does not depend on
design variables, we have

∂mc

∂xe
m

= fT
∂mu
∂xe

m
(7)

To calculate ∂mu
∂xe

m , we need to use the equilibrium equation.
In linear systems, this equation can be expressed as

Ku = f (8)

where K is the global stiffness matrix of the system which
can be obtained by assembling the elements’ stiffness matri-
ces in the following form:

K =
N∑

e=1

Ke(xe) (9)

Rearranging the equilibrium equation and differentiating
it several times, noting that the force vector is not dependent
on design variables, we obtain1

∂mu
∂xe

m
= ∂mK−1

∂xe
m

f (10)

On the other hand, using the definition KK−1 = I and
differentiating, we have

∂K−1

∂xe

= −K−1 ∂K
∂xe

K−1 (11)

The term ∂K
∂xe

is calculable from (1). Noting that a linear

relationship is used in (1), ∂mK
∂xe

m = 0 for any m > 1. Now by
further differentiation of (11) we can obtain the following
general expression

∂mK−1

∂xe
m

= m!
(

−K−1 ∂K
∂xe

)m

K−1 (12)

Substituting from (12) into (10) and then into (7), we can
write

∂mc

∂xe
m

= m! fT
(

−K−1 ∂K
∂xe

)m

K−1f (13)

which can be written in terms of displacement as

∂mc

∂xe
m

= (−1)mm! uT ∂K
∂xe

(
K−1 ∂K

∂xe

)m−1

u (14)

Noting that �xe = −1, the m-th term in the Taylor series
(5), is

δm
e c = uT ∂K

∂xe

(
K−1 ∂K

∂xe

)m−1

u, m ∈ N (15)

Noting the positive-definiteness of ∂K
∂xe

and K−1, it is clear
that for any m the above term is positive. This means that in
ESO, using the first order sensitivity number always results
in an underestimation of the actual change in c. Moreover, it
is also clear that the variation of c with respect to any single
design variable is completely monotonic and thus the Tay-
lor’s series is converging. In mathematical terms we have2

δm
e c > δm+n

e c > 0, ∀e ∈ {1, . . . , N}, m, n ∈ N (16)

The convergence of the series in (5) will be also demon-
strated numerically in Section 3.1. Due to convergence of
the Taylor’s series, it is clear that by using enough terms
in the Taylor’s series, one can approach the most accurate
sensitivity numbers with any arbitrary tolerance.

1It should be noted that K is only invertible when the components cor-
responding to the restrained degrees of freedom are eliminated from it.
Hereafter, by K we are actually referring to this reduced matrix.
2In general we have δmc ≥ δm+nc, but the equal sign is only applicable
when the whole structure is removed resulting in �c → ∞.
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Fig. 1 The Zhou-Rozvany
problem

3 The Zhou-Rozvany problem

The Zhou-Rozvany problem is shown in Fig. 1. As noted by
Zhou and Rozvany (2001), when applied on this problem,
both stress-based and compliance-based ESO approaches
will eliminate the top-most element resulting in a non-
optimal solution (Fig. 2). Because ESO cannot reintroduce
the removed elements, obviously the problem cannot be
fixed by further iterations.

Zhou and Rozvany (2001) correctly mentioned that in
ESO, such a failure can occur “if the sensitivity for the
rejected element increases significantly as its normalized
density (ti) [(here xi)] varies from 1 to zero”. It is also shown
in the previous section that in ESO the first order sensitiv-
ity analysis may not be sufficiently accurate. In the next
section, we study the effects of considering higher order
terms in sensitivity analysis of some of the elements in the
Zhou-Rozvany problem.

3.1 Sensitivity numbers of some of the elements
in the Zhou-Rozvany problem

To observe the effects of higher order terms in (5), in this
section we study the variation of the mean compliance of
the Zhou-Rozvany system due to gradual changes in design
variable of some elements. Three elements are considered
individually and their design variable is gradually reduced
from 1.

For each value of the design variable the actual value of
the mean compliance is calculated using finite element anal-
ysis. For each value, we also estimated the value of c using
the Taylor’s series (5) with different number of terms. Using
M terms, for example, we have the following approximation

c = c0 +
M∑

m=1

δm
e c

Fig. 2 The solution obtained by ESO for the Zhou-Rozvany problem
after removing 1 element

where c0 is the mean compliance of the full design where
xe = 1, ∀e ∈ {1, . . . , N}.

The results are shown in Fig. 3. The 100th element is the
top most element which is removed by ESO in its first iter-
ation. It can be seen in Fig. 3 that for this element the value
of c shows a significantly steep increase when the design
variable approaches zero. Only after considering 3000 terms
in the Taylor’s series, the relative error between the pre-
dicted and actual values of c|x100=0.001 becomes negligible.
For x100 < 0.001, even more terms need to be considered.

The values of the first 10 terms of the Taylor’s series (5)
for the three considered elements are reported in Table 1.
Considering the first term only, the 100th element shows the
lowest value (and hence is considered the least efficient by
ESO if only first order sensitivity numbers are considered).
From this table, and also from Fig. 3, it is obvious that even
second-order sensitivities (as suggested by Rozvany 2009)
would not rectify ESO’s problem. It is only after considering
7 terms, that it is revealed that the 95th element is in fact the
correct choice for removal.

Despite the fact that several thousand terms are needed
to correctly calculate �

100
c from (5), it should be noted that

no further calculations is required once the Taylor’s series
for at least one of the elements is converged. For exam-
ple, considering a relative error tolerance of 1% for Taylor’s
series convergence, by calculating 10 terms of the series one
already ensures that element 95 is the suitable candidate for
removal.

Solutions obtained by using ESO with an accurate sensi-
tivity numbers on the Zhou-Rozvany problem are reported
in Section 5.1. Before presenting those results, however, in
the next section some comments are made on some of the
other treatments suggested for this problem.

4 Complementary comments on treatments suggested
for ESO failure in the Zhou-Rozvany problem

Rozvany (2009) reviewed some of the most important sug-
gested treatments for ESO failure in the Zhou-Rozvany
problem. Apart form using soft-kill BESO, which is actually
solving the problem using a different optimisation method,
the other key suggested solutions involve using accurate
sensitivity numbers (as was followed herein) and mesh
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Fig. 3 Variation of the actual and predicted values of c using differ-
ent number of terms (M) in (5) with respect to changes in xe for e ∈
{94, 95, 100} in the Zhou-Rozvany problem. The considered elements

are highlighted at the top of the legends. For e = 100, due to extremely
steep changes, the variations are only plotted for x100 ∈ [0.001, 1] and
with logarithmic scale

refinement. Although Rozvany covered many aspects of the
suggested treatments and discussions on ESO, this author
identifies some important points which need to be addressed
about these communications.

4.1 ESO breakdown in statically determinate problems

The treatments suggested by Huang and Xie (2008) are
based on monitoring the boundary conditions to detect
breaking of supports. In their paper, Huang and Xie (2008)
stated that “failure of ESO may occur when a prescribed
boundary support is broken for a statically indeterminate
structure. When a boundary support is broken, the structural

system could be completely changed from the one originally
defined in the initial design and even BESO would not be
able to rectify the nonoptimal design. To avoid this prob-
lem, it is imperative that the prescribed boundary conditions
for the structure be checked and maintained at each iter-
ation during the optimization process.” Presumably based
on the nature of the Zhou-Rozvany problem, it seems to be
believed that the ESO breakdown can only happen in similar
statically indeterminate problems. Here we show that ESO
failure can also happen in statically determinate problems.

The finite element model of the Zhou-Rozvany problem
can be considered to be a half domain of a symmetric stati-
cally determinate problem shown in Fig. 4a. Obviously the

Table 1 The values of first 10 terms of the series (5) for elements 94, 95, and 100

e = 94 e = 95 e = 100

M δM
94c

∑M
m=1 δm

94c δM
95c

∑M
m=1 δm

95c δM
100c

∑M
m=1 δm

100c

1 4.165 4.165 2.894 2.894 0.996 0.996

2 3.329 7.494 1.560 4.453 0.995 1.992

3 2.815 10.309 0.864 5.317 0.994 2.985

4 2.437 12.746 0.485 5.803 0.993 3.978

5 2.131 14.877 0.275 6.078 0.991 4.969

6 1.873 16.750 0.156 6.234 0.990 5.960

7 1.649 18.399 0.089 6.323 0.989 6.948

8 1.454 19.853 0.050 6.374 0.988 7.936

9 1.283 21.137 0.029 6.403 0.986 8.923

10 1.133 22.270 0.017 6.420 0.985 9.908
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Fig. 4 Some statically
determinate problems in which
ESO fails

same problem will occur if ESO is tried on this problem.
Figure 4b, c illustrate other statically determinate problems
in which ESO will fail.

Clearly the technique suggested by Huang and Xie
(2008) cannot detect the failure of ESO in these statically
determinate problems.

4.2 Detecting ESO failure by comparing predicted change
to actual change

Restating the conclusions from Rozvany and Querin (2002),
Rozvany (2009) argues that “ESO would give a correct
‘iteration-wise optimal element change’, if for all rejected
elements of that iteration the relevant sensitivities did not
change significantly as their thickness varies from unity
to zero.” Similar point was also mentioned by Zhou and

Rozvany (2001). At least for compliance-based ESO, the
correctness of this statement is apparent from (5) and (16).
If, after removing an element, the actual change in the mean
compliance is not significantly different from the first order
sensitivity number used by ESO, it means that the higher
order terms in (5) were in fact negligible.

Based on this, Rozvany suggests that this difference is
“checked in each iteration by comparing the sensitivity
value with the actual change caused by a unit change in the
density of the rejected elements. If the difference is large,
the corresponding elements could be stopped from being
eliminated.” Two points need to be mentioned here about
this proposal:

1. Although this approach is overall reasonable, it is
arguable that how can one ensure that the difference
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between the sensitivities and actual change in the objec-
tive function is significant enough to consider the elim-
ination as erroneous? Is there any guarantee that a
certain threshold value which works for one specific
problem can work well on other problems as well?

2. Moreover one can think of some problems in which this
approach fails to work (or prevents ESO to proceed).
Consider, for example, the problem depicted in Fig. 5b.
In this problem elimination of any element will result in
a significant variation between the predicted and actual
values of the objective function. Nevertheless, one can
obtain a design with smaller volume if a sufficiently
large upper limit for compliance is adopted.

We will come across this class of problems again in
Section 5.1. In these problems, removing any element will
change the connectivity of the system. We denote this class
of problems by S. The S problems can be divided further
into two subclasses. In some S problems, removal of any
element results in instability of the system. In other words
the mean compliance of the system approaches infinity by
removing any element from it. We denote this subclass by
S0. The other subclass, denoted hereafter by S1, includes all
S designs which do not belong to S0. Figure 5 illustrates
examples of both subclasses.

It is clear that once ESO reaches a S0, no further solutions
can be obtained. However, if a S1 design is reached, depend-
ing on the condition of the problem, it is possible to obtain
further solutions by removing elements until reaching a S0.
The problem with the approach suggested by Rozvany and
Querin (2002) and Rozvany (2009) is that if the initial prob-
lem is a S1 design, no solution can be found using this
approach.

4.3 Non-optimal or local optimal solution?

In an interesting observation, Huang and Xie (2010b) noted
that the solution obtained by ESO for the Zhou-Rozvany
problem after eliminating four elements (Fig. 6) is a “highly
inefficient local optimum” rather than a non-optimal
solution.

To prove their statement, Huang and Xie (2010b) used
the Solid Isotropic Microstructure with Penalisation (SIMP)

Fig. 5 Examples of problems in which the first order sensitivity of
compliance in all the elements are significantly smaller than the actual
change caused by their removal (S problems)

method (Bendsøe 1989; Rozvany and Zhou 1991; Rozvany
et al. 1992) to solve the Zhou-Rozvany problem starting
from the initial design shown in Fig. 6 “with xi = 1 for all
elements in the horizontal beam and xi = xmin = 0.001
for the four elements in the vertical tie”. They report that
with a penalty factor of p ≥ 3.1 the SIMP method cannot
improve this initial design any further and then concluded
that because “the SIMP method with continuous design
variables guarantees that its solution should be at least a
local optimum” this design is a local minimum. There are
a number of points which need to be mentioned about this
approach and conclusion:

1. Although the design shown in Fig. 6 is in fact a local
minimum (as will be demonstrated soon), the approach
used by the authors to prove this is arguable. The results
obtained by the SIMP method depend on its algorith-
mic parameters; most importantly the penalty factor
(p), the minimum allowable value of design variables
(xmin), the move limit (m), and the regulating power
(η) (here we adopted the notation used by Sigmund
2001). By playing with these parameters, one can force
the SIMP method to lock on many clearly non-optimal
initial designs.

2. More importantly, the problems solved by SIMP and
ESO are different from each other. Even if a particular
design is a local minimum in SIMP, one cannot readily
conclude that it is a local minimum for ESO.

3. As will be soon demonstrated, some of the solutions
obtained by the ESO method cannot be considered as
local minimum. Thus the conclusion made by Huang
and Xie (2010b) cannot be generalised.

In the following we elaborate more on points 2 and 3 above.

4.3.1 Local minima for problems with continuous variables

A compliance minimisation problem with continuous vari-
ables can be expressed as follows.

min
x1,...,xN

c

such that V ≤ V̄

and xe ∈ [0, 1], e = 1, . . . , N (17)

Fig. 6 The solution obtained by ESO for the Zhou-Rozvany problem
after removing 4 elements
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where V̄ is a predefined upper limit on the volume of the
structure. The typical problem solved by the SIMP method
is a penalised version of the above form with a typical
power-law interpolation scheme in the form

Ee(xe) = x
p
e E, p > 1

where Ee is the Young’s modulus of element e, and E is the
Young’s modulus of a base material.

A feasible neighbourhood with radius ε > 0 about a fea-
sible point like x for problem (17) takes the following simple
form.

Nε(x) =
{
x + �x ∈ [0, 1]N

∣∣∣∣∣||�x|| < ε,

N∑
e=1

�xe = 0

}

(18)

This set defines an open hyper-disk3 formed by intersection
of a hyper-ball with radius ε and a hyper-plane in an N-
dimensional space. A point x̄ (with c(x̄) = c̄ and V (x̄) = V̄ )
is a local minimum of problem (17) if

∃ε > 0 : (∀x ∈ Nε(x̄) : c(x) ≥ c̄) (19)

4.3.2 Local minima for ESO

The big difference between problems (17) and (2) is in the
last condition which changes from a continuous boxing con-
dition in SIMP to a binary condition in ESO. The feasible
domain of ESO problem is not continuous. Thus the concept
of neighbourhood needs to be considered carefully.

Consider the following problem which is the binary form
of problem (17).

min
x1,...,xN

c

such that V ≤ V̄

and xe ∈ {0, 1}, e = 1, . . . , N

(20)

A feasible neighbourhood about a feasible point x for this
problem can be defined based on (18) as

Mε(x) = Nε(x) ∩ {0, 1}N (21)

which only contains a finite number of points of the afore-
mentioned hyper-disk.

Because of its discrete nature, trivially the smallest
neighbourhood around each point contains only that point
(0 < ε <

√
2). Obviously we cannot accept this neighbour-

hood when assessing whether a point is a local minimum or
not. Neglecting this trivial case, the next smallest neighbour-
hood around each point is obtained when

√
2 < ε < 2, i.e.

3A hyper-ball in (N − 1)-dimensional space

when only two components of �x are non-zero4. For sim-
plicity we show this neighbourhood by M(x). Noting that
this is the smallest non-trivial feasible neighbourhood, we
can call a point x̄ a local minimum for problem 20 if

∀x ∈ M(x̄) : c(x) ≥ c̄ (22)

It can be easily shown that any local minimum point x̄
of problem 20 is also a local minimum point of problem 2.
Otherwise, problem 2 has a different local minimum x∗ in
the smallest non-trivial feasible neighbourhood with V ∗ <

V̄ and c∗ ≤ c̄. Now if we add an element to x∗ to increase
its volume (up to V̄ ), its compliance will decrease and we
obtain a solution for problem 20 with V ∗ < V ≤ V̄ and
c < c∗ ≤ c̄ in M(x̄) which contradicts our assumption that
x̄ is a local minimum of problem 20.

Now we can argue that a point x̄ is a local minimum for
ESO if (22) holds. In simple words, an ESO solution is a
local minimum if it yields the minimum value of c among
all designs obtained by switching one solid element to void
and one void element to solid.

It is now clear that the solution depicted in Fig. 6 is in
fact a local minimum for ESO. Because removing any of
the beam elements, increases the mean compliance to the
extent that turning none of the tie elements into solid can
sufficiently decrease it down to its initial value.

It should be noted however, that not all the solutions
obtained by ESO are local minimum. For example, it is
clear that the solution obtained after removal of the first ele-
ment from the Zhou-Rozvany problem (Fig. 2) is not a local
minimum and is in fact a non-optimal solution.

Based on this discussion, we can also readily conclude
that the solutions obtained by ESO through using accurate
sensitivity analysis are always locally minimum. Although,
as we will demonstrate in the next section, they may be
highly inefficient.

5 Another shortcoming of ESO

5.1 Solution to the Zhou-Rozvany problem using accurate
sensitivity numbers

The results obtained for the Zhou-Rozvany problem after
applying the ESO method with high-order sensitivity analy-
sis are illustrated in Fig. 7.

The result obtained after removing 1 element expectedly
matches the global optimum for V = 99 (or for c = 395.31)
as reported by Stolpe and Bendsøe (2011). After that ESO
results slightly deviate from the global optima. Again, after

4Due to the binary nature of design variables, the only feasible non-
zero values in �x are ±1. Keeping the volume constant requires the
sum of the components in �x to vanish. Thus the smallest feasible
positive value of ||�x|| is √

2.
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Fig. 7 Solutions to the Zhou-Rozvany problem using accurate sensi-
tivity numbers with different compliance limits c̄

removing 31 elements (Fig. 7e) the ESO method reaches a
global optimum at V = 69, c = 579.93. The next point
at V = 68, c = 608.85 (Fig. 7f) also matches a global
optimum. This solution is clearly a S1 design. By further
removal of elements, ESO jumps to a S0 design at V =
65, c = 14747.5. Beyond this point, any further element
removal will result in an unstable system.

Fig. 8 An intuitively suggested solution by Zhou and Rozvany (2001)

The designs obtained after the S1 design (Fig. 7g–h) are
highly inefficient. In fact the intuitively suggested design
by Zhou and Rozvany (2001) depicted in Fig. 8 provides a
much better result of V = 40 at c = 11175.

Noting that accurate sensitivity numbers have been used
to obtain these results, it is obvious that this time ESO’s
problem is not due to using incorrect or inaccurate sensitiv-
ity numbers.

5.2 The reason behind this shortcoming of ESO

As seen in the previous section, ESO method can lead to
highly inefficient (locally optimum) solutions even if accu-
rate sensitivity numbers are used. Perhaps this shortcoming
of ESO is even more serious than the problem caused by
using inaccurate sensitivity numbers.

This shortcoming is due to the fact that ESO is restricted
to move in only one direction. In fact, ESO modifies
the problem as it proceeds. So, for example, the solution
obtained by removing 32 elements (Fig. 7f) is actually a
solution to the problem with the initial design depicted in
Fig. 7e, and likewise Fig. 7g is a solution to Fig. 7f. Using
accurate sensitivity analysis, one can ensure that the solu-
tion obtained in iteration i + 1 is the optimal solution to
the problem with the initial design equivalent to the solu-
tion obtained in iteration i. But this is not enough to ensure
that the solution obtained is an optimal solution to the initial
problem. Although Fig. 7g is the optimal solution to a prob-
lem with the design domain depicted in Fig. 7f, it is not an
efficient solution to the Zhou-Rozvany problem.

Even for statically determinate problems, ESO’s solution
may be far from optimum. Consider for example, the stati-
cally determinate problem shown in Fig. 4b. After removing
32 elements, for this problem ESO reaches the design illus-
trated in Fig. 9. As this is a S0 design, no further elements
can be removed by ESO. This is a good solution for c̄ = 616
(yielding the volume of 68 elements) but it is a highly inef-
ficient solution, for example, for c̄ = 2000. For this value
of c̄, an intuitive design similar to the one depicted in Fig. 8
(without the top rollers) would yield a considerably lower
volume of V = 40.

5The difference between this number and the value of c = 1121
reported for this design by Zhou and Rozvany (2001) is due to using
analytically integrated stiffness matrices for finite elements in this
paper. Also see Stolpe and Bendsøe (2011).
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Fig. 9 The solution obtained by ESO for the problem depicted in
Fig. 4b for all c̄ ≥ 615.31

5.3 Unreliable behaviours of ESO

Noting that ESO changes the problem as it proceeds, it
can be concluded that the solutions obtained by ESO are
only (locally) optimal in one branch of possible solutions.
It can then be expected that the overall behaviour of ESO is
extremely problem-dependent. In the following we mention
two interesting observations.

5.3.1 A more restricted version of the problem may lead
to better results

It is possible to obtain a better solution for the same prob-
lem if we force ESO to stick to another branch of solutions.
For example, if we start with the initial design depicted in
Fig. 10a (which is a subset of the Zhou-Rozvany problem),
we can obtain the result shown in Fig. 10b with V = 54, c =
931.81 which is obviously better than Fig. 7g and h. This
simple example shows that allowing more elements in the
initial design domain does not necessarily mean a better
solution can be obtained by ESO.

5.3.2 Using accurate sensitivity analysis might lead
to worse results

Due to the above observation, it is expected that at some
point, an inaccurate first-order sensitivity analysis leads to
a better solution compared to more accurate higher-order
sensitivity analyses. In other words there is no guarantee that
a more accurate approach yields a better result.

Fig. 10 A modified version of the Zhou-Rozvany problem: a ini-
tial design, and b a solution found by ESO using accurate sensitivity
numbers

Fig. 11 A short cantilever beam problem

To illustrate this a short cantilever beam is considered
which is discretised into a finite element mesh of 30 × 20
square 9-node elements (Fig. 11). Some of the solutions
obtained by ESO using first order sensitivity numbers and
accurate sensitivity numbers are shown in Fig. 12.

When the condition c < c̄ = 40 is imposed, the results
obtained using accurate sensitivity numbers are better than
the ones obtained using first order sensitivity numbers. But
the first order sensitivity numbers yield better results when
the condition is changed to c < c̄ = 140.

The graph in Fig. 13 shows the relationship between
volume (V ) and compliance (c) for the solutions obtained
using the two sets of sensitivity numbers. It can be seen that
for almost all values of c̄ > 43 the first order sensitivity
numbers lead to better results. As explained before, such a
behaviour can be expected because ESO changes the prob-
lem as it proceeds. In the earlier stages, the problem is not
modified very much so the higher order sensitivity numbers
work better. But there is no guarantee that staying in the
branch followed by the accurate sensitivity numbers always
lead to better results.

Based on these unreliable behaviours, even when accu-
rate sensitivity numbers are employed, perhaps one can
argue that ESO method should be generally avoided.

6 What about BESO?

It should be noted here that BESO is essentially different
from its predecessor. By allowing elements to be added as
well, the initial problem is not modified at least for soft-
kill BESO.6 It is thus possible for BESO to move across

6In contrast to what seems to be generally believed, it can be shown
that the same can be true even for hard-kill BESO. This is how-
ever beyond the scope of this work and the author wishes to address
this matter in a separate communication. For the current discussion,
it is enough to accept that soft-kill BESO will not suffer from this
shortcoming of ESO.
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Fig. 12 ESO solutions obtained for the short cantilever beam problem
for different values of c̄ with first and higher order sensitivity numbers

Fig. 13 A comparison between ESO results obtained using first and
higher order sensitivity numbers

different branches of solutions and the method is not prone
to this shortcoming of ESO.

The other important difference between the two methods
is the range of problems that can be solved with them. Due
to its nature, ESO can only minimise the volume (weight)
of a structure but BESO (like SIMP) can be formulated to
minimise a wide range of objective functions.

Based on this discussion, this author suggests that ESO
and BESO methods are treated as completely separate and
distinct methods despite their historical relationship.

6.1 Is there any problem for which using ESO is preferred?

Generally for all problems using a bidirectional method
such as BESO (or SIMP) is preferable. Nevertheless, there
are some specific types of problems where the limitations of
the problem justify a unidirectional approach. A good exam-
ple is the problem of finding the next piece of ground to
be removed in an excavation project. In this case, once one
part of the domain is removed it cannot be physically rein-
troduced so the unidirectional approach of ESO fits well to
this problem (Ghabraie et al. 2008).

7 Conclusion

In this paper the ESO method and its shortcomings are stud-
ied. A problem statement is proposed for ESO. An accurate
sensitivity analysis is also proposed and accurate sensitiv-
ity numbers are calculated for compliance-based ESO. It
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is shown that the proposed approach can solve the Zhou-
Rozvany problem. It is then demonstrated that due to its
unidirectional approach to optimal points, even when using
accurate sensitivity numbers, the ESO method can lead to
highly inefficient solutions. Based on the observations and
discussions, it is concluded that

– ESO should only be used in problems where the limita-
tions justify a unidirectional approach to the solution.

– A distinction should be made between BESO and ESO,
and these two methods should be considered separately.
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