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Abstract In this work optimum stiffness design of lami-
nated composite structures is performed using the commer-
cially available programs ANSYS and MATLAB. Within
these programs a Free Material Optimization algorithm is
implemented based on an optimality condition and a heuris-
tic update scheme. The heuristic update scheme is needed
because commercially available finite element analysis soft-
ware is used. When using a commercial finite element
analysis code it is not straight forward to implement a com-
putationally efficient gradient based optimization algorithm.
Examples considered in this work are a clamped-clamped
2D plate loaded in two load cases and a point loaded six
layered 3D double curved corner hinged shell. The first
example displays the effect of varying the size of patches
having the same parametrization, and the second illustrates
the benefit of using a layered free material parametrization.
The results provide information concerning topology, mate-
rial anisotropy, and the direction having the maximum stiff-
ness. The obtained results are compared to gradient based
optimization solutions using Discrete Material Optimiza-
tion and Continuous Fiber Angle Optimization implemented
in a research code, where full access to the finite element
analysis core is granted. This comparison displays the possi-
bility of using commercially available programs for stiffness
design of laminated composite structures.
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1 Introduction

This work considers optimum stiffness design of laminated
composite structures using commercially available finite
element analysis software. Design of structures using lami-
nated composite materials (here: fiber reinforced polymers)
has gained an increasing use in industry when manufactur-
ing high performance structures like aeroplanes and wind
turbine blades. The use of composite materials enables the
ability to tailor both the material and the structure to the spe-
cific loading conditions, thus providing a large design space
compared to isotropic materials. Design based on engineer-
ing intuition requires much experience, and may result in
suboptimal designs. Thus, rational design procedures are
needed to assist the designer. These procedures can be
used to generate new design suggestions, hereby broad-
ening the design space. Many optimization methods exist
for the optimum design of composites, but many of these
require full access to the finite element analysis software
to be efficient. However, many companies use commer-
cial available finite element software like Abaqus (Dassault
Systemes 2013) and ANSYS (ANSYS Inc 2013b) where
access to the backbone of the finite element analysis tool is
not granted, thus disabling the possibility of using many gra-
dient based optimization methods efficiently. Commercial
optimization tools capable of conducting laminate opti-
mization are available. One program which provides these
capabilities is OptiStruct (Altair 2013). The optimization
follows a three phase procedure (Zhou et al. 2011; Zhou
and Fleury 2012). Phase I is to optimize the thickness of
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a predefined set of “superplies”, Phase II is to translate
the “superplies” into discrete plies, and finally in Phase
IIT the fiber layup is shuffled based on a set of design
rules. This method, however, does not take structural bend-
ing into account when determining the relative percentage
of each “superply”. In the research community, many opti-
mization methods exist for design of laminated composite
structures. Ghiasi and co-workers (Ghiasi et al. 2009, 2010)
provide a comprehensive overview of laminated composite
optimization methods for both constant and variable stiff-
ness design. The direct search algorithms constitute one
group of methods. Methods in this group include Genetic
Algorithms, Particle Swarm Optimization, and Ant Colony
Optimization. Common for these is that full access to the
finite element analysis software is not necessary. In Bloom-
field et al. (2010) a comparison of the state-of-the-art for
direct search algorithms is given. Here the Particle Swarm
Optimization is shown to provide the best performance
of the tested algorithms. However, as the design space
increases the effectiveness of the direct search algorithms
decreases.

When designing laminated composite structures, the
designer is often limited to e.g., a predefined set of sand-
wich core materials and laminated composite plies oriented
in a predefined set of angles. The design task is then to
select the optimum material among the available candidates.
One method which has proven efficient for solving these
kinds of problems is the Discrete Material Optimization
(DMO) approach developed by Lund and co-workers (Lund
and Stegmann 2005; Stegmann and Lund 2005; Hvejsel and
Lund 2011). DMO is a generalization of multiphase topol-
ogy optimization by Sigmund and Torquato (1997) into any
distinct set of materials. However, the DMO method intro-
duces a large amount of design variables, since each can-
didate material has an individual design variable. To reduce
the number of design variables Bruyneel (2011) and Gao
et al. (2012) introduce the shape functions with penalization
and bi-value coding parametrization methods, respectively.
Here each candidate material is given a unique coding.
This coding gives a logarithmic increase in the number of
design variables, when additional candidate materials are
defined.

Relaxing the requirement of the fiber angles such any
value is allowable gives a new problem. Optimum ori-
entation of orthotropic materials (here: Continuous Fiber
Angle Optimization (CFAO)) constitutes some of the ear-
liest work in optimization of laminated composite struc-
tures. Optimal orientation of orthotropic materials is con-
sidered in Pedersen (1989), where the optimum angle
for orthotropic materials with high and low shear stiff-
ness is derived. Furthermore, Pedersen (1990) derives the
bounds on the elastic energy for an orthotropic mate-
rial assuming a constant strain field, hereby showing the
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extremum angles and whether it is a minimum or maximum.
Later, Cheng and Pedersen (1997) derived the sufficient
conditions for optimal orientation of orthotropic materi-
als under stiffness considerations. Thomsen and Olhoff
(1990) extended the work by Pedersen (1989, 1990) to
encompass orientation and fiber concentration of a lam-
inate having three orthogonal plies. Bruyneel and Fleury
(2002) conduct stiffness optimization of laminated com-
posite structures considering both fiber angles and ply
thickness as design variables. In Abrate (1994) a review
of different formulations for CFAO is presented, these
formulations display optimization strategies for stiffness,
linear buckling, thermal, eigenfrequency, and multicriteria
optimization.

The DMO and CFAO approaches are based on the use of
predefined materials, whereas Free Material Optimization
(FMO) is used to design the optimum constitutive proper-
ties. Furthermore, FMO can be regarded as a relaxation of
topology optimization, where both the topology within the
domain is determined, but also the optimum constitutive
parameters for the domains with material. The initial work
in FMO is conducted in Ringertz (1993) and by Bendsge
and co-workers (Bendsge et al. 1994; 1995; 1996). Common
for these two approaches is that the resulting problem is a
convex positive semi-definite problem, where the constitu-
tive matrix is symmetric. Ringertz (1993) used the entries
in the full symmetric constitutive matrix as design vari-
ables resulting in 6 design variables for 2D problems per
design domain. This parametrization is used by Kocvara
et al. (2008) as a part of the PLATO-N research project
(PLATO-N 2013). One focus point of the project work
was to develop semi-definite programming methods appli-
cable for FMO. Furthermore, free material formulations for
compliance and stress criteria are presented in the paper
by Kocvara et al. (2008). Bendsge et al. (1994) general-
ized the work by Pedersen (1989, 1990) and showed that
the optimum free material is orthotropic with the princi-
pal material directions aligned and scaled with respect to
the principal strains. This reduces the optimization task to
determine the material stiffness multiplier throughout the
design domain. Recently, Pedersen and Pedersen (2013)
extended this work by defining an upper bound on the
stiffness, hereby changing the design variables into topol-
ogy variables. This parametrization changes the stiffness
distribution problem from Bendsge et al. (1994) into a
material distribution problem. None of the presented FMO
formulations impose any constraints on the material except
for (semi-)positive definiteness of the constitutive stiffness
matrix, thus solutions from FMO must be post processed
before these can be used for manufacturing. Hornlein et al.
(2001) use an initial FMO design for subsequent post pro-
cessing into fiber paths for manufacturing using a tape
laying machine.
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In this work, an optimization framework is presented
based on a commercially available finite element anal-
ysis software. The optimization process should rely on
quantities which are available from the finite element anal-
ysis software for efficiency. As an example, the design
sensitivities for eigenfrequency and compliance topology
optimization can be determined using the strain energy
and kinetic energy, see Kim and Kim (2000). From this
efficient gradient based optimization can be conducted.
However, as the sensitivity of each component in the con-
stitutive matrix is needed for gradient based FMO, and
since these cannot be extracted directly the sensitivities
must be determined using finite difference approximations.
This requires several calls to the finite element analysis
software, rendering such a method inefficient. Instead, the
optimization is based on an optimality criterion using a
heuristic update scheme. A stiffness optimality criterion
is considered within the current framework. The opti-
mization is build into an ANSYS-MATLAB environment.
These programs are considered being industry standard
programs. Within these programs FMO is implemented
based on the work by Pedersen and Pedersen (2013). This
work is extended to accommodate patches and multilay-
ered structures. Multilayered structures provide information
concerning the required bending stiffness of a structure.
Numerical examples will display the capabilities of the
implemented optimization method. The results obtained are
compared to results from the gradient based optimization
methods DMO and CFAO. DMO and CFAO are imple-
mented within the special purpose analysis and optimiza-
tion research code MUST (the MUItidisciplinary Synthe-
sis Tool) developed at the Department of Mechanical and
Manufacturing Engineering at Aalborg University (MUST
2014). The outcome of these examples displays the capa-
bilities of using optimality criteria and heuristic update
methods for the design of laminated composite structures if
commercially available finite element analysis software is
used.

The remainder of the paper is organized as fol-
lows; in Section 2 we present the FMO formulation
and implementation hereof. A presentation of the gra-
dient based algorithms DMO and CFAO is given in
Section 3. The implemented FMO formulation is com-
pared to DMO and CFAO through two examples in Sec-
tions 4 and 5, and finally we sum up the findings in
Section 6.

2 Free material optimization; formulation
and implementation

The basis for the results obtained in Sections 4 and
5 is presented in this and in the following section.

First the maximum stiffness (or minimum compliance)
optimization problem is presented. Equations (la—d) dis-
plays the minimum compliance problem.

min €= d’t=d"Kd (1a)
s.t. f=Kd (1b)
M<M (1c)
Yk < Yk <k (1d)

Here C is the compliance of the structure, d and f
are the global displacement and load vectors, respec-
tively. The global stiffness matrix is represented by K,
M and M are the current and maximum allowable mass
of the system, respectively. Lastly yi, yr, and yi rep-
resent a set of generalized design variables and bounds
which will be defined for FMO, DMO, and CFAO indi-
vidually. Equation (1b) is not directly included into the
optimization problem, but will be solved explicitly when
needed, thus a nested analysis and design approach is used
(Arora and Wang 2005).

In this work so-called patches will be used. Here,
this defines a group of elements which is forced to
have the same properties with respect to material prop-
erties and fiber orientation. The advantage of using
patches is the possibility of having a fine finite ele-
ment discretization while limiting the number of design
variables.

2.1 Free material optimization

The free material optimization formulation is based on
the work by Pedersen and Pedersen (2013), and is in this
work extended to encompass patches and layered structures.
The formulation is based on a combination of topology
optimization and the optimum orthotropic material from
Bendsge et al. (1994). The optimum orthotropic mate-
rial defines the relative constitutive parameters in a unit
norm anisotropy matrix, and the topology variable deter-
mines whether material is present or not. This resulting
anisotropy matrix is multiplied by a free material scalar
stiffness constituting the upper bound on the stiffness for
the material. The generalized design variables y; are the
topology variables within the patches, and will be denoted
by xs. Due to the single design variable per patch, the
FMO formulation is easily implemented in a heuristic
update scheme based on the optimality criterion: if the
strain energy density is constant throughout the struc-
ture, it is the stiffest possible. This optimality criterion
is derived by Prager and Taylor (1967) for a single load
case and no bounds on the design variables, and will here
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be applied for bounded design variables and multiple load
cases.

In the following, we will show the FMO formulation
by Pedersen and Pedersen (2013) extended to encompass
patches and multilayered structures. A plane stress assump-
tion is applied during the optimization. The used update
scheme only takes inplane effects into account, conse-
quently this will only provide suboptimal designs. This
method was tested in Pedersen (2006) where it is shown
that the designs obtained using this assumption are close to
those where out of plane effects are considered. The fol-
lowing terms will be used throughout the description of
the FMO formulation; the subset of patches for which the
topology variable is not at the boundaries is defined as
the free patches i.e., x; < x; < X;. A quantity of this
subset will be denoted by the notation ~. Inner and outer
iterations can be defined using Fig. 1. The inner iterations
are performed in the box denoted [B] where the new set
of topology variables are determined, these iterations are
denoted by j. The outer iterations are related to the closed
loop constituted by the boxes [C]-[A]-[B], and is denoted
by i.

The basis of the FMO formulation is the optimum
orthotropic material a1y originally derived by Bendsge
et al. (1994) and shown in (2). It defines the optimum
material properties in the local principal strain coordinate
system.

2
1 61’3’[ 61,6,2162,6,1 0

A2l =55 | €lei€el €, 0 (2
€1t € 0 0 0

Here €1,2),¢,1 is the first or second principal strain in ele-
ment e for load case /. a7 .,; defines the element anisotropy
matrix in the element inplane principal strain 1-2 coordi-
nate system. The trace and Frobenius norm of the a2,
matrix are equal to 1, see (2). These anisotropy matrices are
rotated into the element inplane structural x-y coordinate
system, and in order to construct the anisotropic matrix for
patch s, atyy 5, a weighted sum over the anisotropy matrices
is conducted:

Oyy,s =

Zzue 10xy. el 3)
Z 1uele 1I=1

Here u.; is the strain energy density for element e and
load case I. n! is the number of load cases and the sum
e = 1,...,n°is the sum over the elements in patch s. The
inner loop is shown in Algorithm 1. This loop updates the
topology variables.
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Algorithm 1 Inner loop for updating topology vari-

ables.
1: j=1
2: Initialize: F'' = 1, dV! some large number

FE . FE —
3: Calculate: V1 = S°7° {ggsz Vs ims < <Ts

s=1 : otherwise

4 while || > 1071 do

DoJ=i+1 V
6:  Calculate: a:gy = a:SF‘ZE (%) Fi—-1 vs
7: Calculate: VI = S 1 TyiVo 1 2s < xs i <Ts

S= 0 : otherwise

8: Calculate: dVJ = s—l ( 5, mf‘?) Vs
9: if Vi=0or VI +dVi < 0 then
10: repeat ]
11: Calculate: 27 ; = «I'F +0. 95(:15S s —all)
12: Calculate: VJ and dVJ
13: until Vi #£0 and Vi +dVJ >0
14: end if ~

. . a _ i—1 VJ
15: Calculate. FI = FJ m

16: end while
17: xiﬁrl = x;l

In the algorithm x £ is the topology variable for outer
iteration i in patch s. uA is the maximum of the strain energy
densities over all load cases in patch s, and i is the mean
of all the free ;. To dampen fluctuations in the design vari-
able update, a constant ¢ is introduced and given a value
such the total

change in volume dV/ ~ 0, hence F/ can be interpreted
as a kind of Lagrange multiplier for the mass constraint
(Pedersen and Pedersen 2013). Since the mass constraint is
implicitly controlled by securing that the change in volume
is negligible between two outer iterations, it is important to
initialize the topology variables such the mass constraint is
fulfilled. V is the sum of all free volumes and dV is the
total change in volume. The work-wise of the algorithm is
as follows; F! is initialized to 1 because the mass constraint

initially is fulfilled. V! is given a sufficiently large number
v/

below 1. F/ scales the topology variables x{ ;

such ’ ‘ > 107! and the while loop on line 4 is entered.

The whlle loop secures that the change in mass between two
outer iterations is sufficiently low i.e., dV =~ 0, thus ful-
filling the mass constraint. The first step in the loop is to
determine a new temporary set of topology variables xsj ;
This is based on the assumption that an increase in topdl-
ogy variable will result in a decrease in strain energy density
and vise-verse. From this set of design variables the free
volume and the change in volume are calculated, and F J
is updated. The update of F/ is based on a proper scal-
ing between the remaining (free) volume V and the change
in volume dV. In lines 8 to 13 a check of the temporary
design variables is implemented. This is done to secure a
positive value for the denominator in F/, since a negative



Free material stiffness design of laminated composite structures 1101
Flg'. 1. Fl.owchart of . Bdit analysis %
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ANSYS and MATLAB enela‘m‘ ¢ model into Generate pdate analysis of Write
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performed in ANSYS, gray in data files ata files
A
MATLAB =
Terminate |« Yes
A 4
[B] Read in
Plot results [« Perform |« analysis
optimization result files
value will result in xs] ; = Xg for all s. If this is the case,  stiffness entrance is divided by the trace of the matrix as in
we recommend a relaxation of the temporary design change (7).
as: xsji = xsFl.E + 0.95(xsji — xfiE) to avoid the afore- o
mentioned problem. When the algorithm has converged, the 4 = _“1Ls.i+l (7
temporary set of topology variables is accepted, and the Tr (E‘f ; +1>
FE ’

design variables x' ;" |
variables, xsf ilil’ are used to update the constitutive matrix
E; i+1 in a two step procedure. The first step is to calculate
an intermediate constitutive matrix E; based on the updated
topology variables and the anisotropy matrices calculated in
(3). However, as the applied update scheme has no infor-
mation of prior outer iterations a constant § is introduced
in the second step. This limits the design change between
two outer iterations, and the resulting constitutive matrix is
given in (5).

are updated. The updated topology

E, =Eo+wx/F DErpayy, @)
E, i1 = BE, + (1 - B)E,, 5)

In (4) Eg is a low stiffness material which ensures positive
definiteness for I:]S, Er is the free material stiffness, and w
is a weighting function for the topology variable given as,
see Pedersen and Pedersen (2013) for details:

2
w(xs) =rg (1 —1(x5)) 1 (x5) + 1 (x5) (6)
where:
t(xs) =711 — /72 + 13Xs
ki—1 _ .2

n ko+ki—2 rn=r

_ _ko=k _ 1—k;
3 = kotki-2 14 = 2kog—p;

Here ko and k; are the slopes of the interpolation function
at x; = 0, 1, respectively. The bounds on x; are given as
Xy = 1073 and Xy = 1, respectively. Finally, Pedersen and
Pedersen (2013) define a measure of the anisotropy, Ay, of
a patch. The anisotropy is determined by rotating the con-
stitutive matrix E; ;1 counterclockwise with steps of %
[rad] between O [rad] and 7 [rad], and selecting the first (if
multiple) angle ¢ which maximizes entrance (1,1). This

Since E{; is maximized A; has a value in the interval
[1/3;1]. Additionally, Ay is a measure of the properties of the
strain field within a patch. If the strain field is highly uni-
directional, A is approaching 1 and the resulting material
only has stiffness in one direction. If the strain field is highly
varying within a patch, A will approach 1/3, thus a mate-
rial with equal shear and normal stiffnesses is approached.
The multilayered FMO formulation relies on the same equa-
tions as the single layered formulation. The only difference
between the two formulations is that each step must be
conducted layer-wise.

2.2 Implementation

For the optimization using ANSYS and MATLAB an inter-
face is programmed. The MATLAB code is used to update
the analysis model and get the new model response from
ANSYS. The full simulation flow is depicted on Fig. 1.
Most of the work is conducted in MATLAB as seen on
Fig. 1, since the optimization is performed herein along with
the update of the model. ANSYS is called once per outer
iteration, and it is only used to evaluate the updated model
and output the relevant model data i.e., the layer principal
strains (and stresses in the case of a multilayered formu-
lation), element principal angles, the layer strain energy
densities, and layer volumes for each layer in the model.

Fig. 2 Sketch of stacked solid elements, the colors define the individ-
ual layers/elements
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P ‘]T Table 1 Material properties used for the clamped-clamped plate and
ESL shell Top _- | _- T, corner hinged shell
element -7 - -~ - I g
- i r “l I g Parameter GFRP Foam M
| 1.8
I | _ =
+ IR T T A Bk [GPa] 38.0 0.148 38.0
- - o
: /1 L : | — | § E,, E, [GPa] 9.0 0.148 -
) S Y —— _/: : Gyy, Gy, [GPa] 3.60 0.05 -
c= = I | Gy; GPa 3.46 0.05 -
—/—,' I J _ J— ————— /_,ll yz [ ]
== B 4T svene Ll 03 oas -
- -7 o kg 1870 130 1870
Lz L m

Fig. 3 Sketch of integration of shell layers, parallelograms display
points where the stresses and strains are calculated. Top, Mid, and
Bottom defines the top, middle, and bottom part of a layer, respectively

Composite structures rarely consist of a single layer so
a multilayered finite element model is needed. Applying a
multilayered FMO formulation provides information con-
cerning the required bending stiffness. This information
would not be available when using a single layer model.
One way of modeling a layered structure is to stack solid
elements where one element represent one layer, see Fig. 2.
Consequently, this results in a model having many degrees
of freedom, which quickly becomes inefficient. Another
method is to use equivalent single layer (ESL) elements.
Here the layers are assumed to be perfectly bonded together,
such that the strains are continuous through the laminate
thickness. Using shell elements only the geometrical mid-
plane is modeled, hereby the model is more efficient. How-
ever, in ANSYS volumes and strain energies are considered
being element quantities and cannot be extracted layer-wise.
Thus, for layered elements these data must be computed in
MATLAB. It is chosen to use the super convergent Gauss
Point stresses and strains to calculate the strain energy den-
sities. These Gauss Point strain energy densities are then
averaged to form top, middle, and bottom strain energy
densities for each layer. Subsequently, the strain energy

y
Yy
B t = 10‘[/mm} B
A I
Prci = 10 [kN]
g
El |
= |
S
= I
Il
- TP 10 [kN
5 o Lc2 = 10 [kN] x
A [ C
|
L = 1000 [mm]

Fig. 4 Boundary conditions and dimensions for clamped-clamped
plate. ¢ defines the rotation angle for the fibers
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densities for the entire layer, u,, is calculated by averag-
ing previous calculated strain energy densities employing
a Simpson-based integration scheme, see Fig. 3 (ANSYS
Inc 2013a). The result of this has been verified by compar-
ison with results from ANSYS by calculating the total and
element strain energy for a structure similar to the layered
corner hinged shell presented in Section 5.

3 Sensitivity based methods

This section provides a short summary of the DMO and
CFAO methods along with the design sensitivity analysis.
For a more thorough description of the methods we refer to
the provided references. The optimization problem in (la—
d) is used as the basis for the methods, and is solved using
sequential linear programming with a global convergence
filter based on Chin and Fletcher (2003). The sensitivities
of the objective function and constraints are needed in order
to update the design. As the mass constraint is linear in or
independent of the design variables the mass sensitivities
are not shown. For compliance minimization problems hav-
ing design independent loads, it is advantageous to calculate
the sensitivity of the objective function using the adjoint
approach described in e.g., Bendsge and Sigmund (2003).
The result is restated here.

dc dK
— =Y 'dT—4q, vs (8)
dys Z s ¢

Here K, and d, are the element stiffness matrix and dis-
placement vector for element e in patch s, respectively.
Furthermore, the derivative of the element stiffness matrix
is given as:

dK dE,
e _ / BT —Bdv )
dys Ve dys

Here B is the strain-displacement matrix and V, is the ele-
ment volume. The derivative of the constitutive matrix is
needed to conduct gradient based optimization using DMO
and CFAO. This is evident from (9).
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Fig. 5 DMO results for clamped-clamped plate having 72 x 36 patches and material constraint of 50 %. Left: 13 candidate materials, Right: 5
candidate materials

with orthotropic materials as presented in Hvejsel and Lund
(2011). As for all DMO schemes, the generalized design
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Here AE.; = E.; — Eo, E. is candidate c in the patch,

n¢ is the number of candidate materials, and p is the SIMP

penalization factor. Since the SIMP weighting functions are

not self balancing an extra constraint is introduced which

3.1 Discrete material optimization controls the total amount of candidate material available in
a domain.

Fig. 6 FMO result for clamped-clamped plate having 72 x 36 patches
and material constraint of 50 %

The basic idea of the DMO approach is to convert the dis-
crete problem of selecting the best candidate material to a
continuous problem where weighting functions with penal- Z Xes =1 Vs (11)
ization are used to obtain a distinct choice of material.
Candidate materials are often layers of composites aligned
at different orientations and sandwich core materials, but
all materials can be used as long as the stiffness matrices
between these are distinct. The DMO scheme used is the
“Solid Isotropic Material with Penalization” (SIMP) based ~ dEs
scheme generalized to multi-phase topology optimization dxc.s

Thus, x. s can be considered as volume fractions of the
associated candidate materials. Lastly, the sensitivity of the
constitutive matrix needed in (9) is given by:

= pxlT'AE., Ve,s (12)
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Fig. 7 Result for clamped-clamped plate having 36 x 18 patches and material constraint of 50 %. Left: FMO, right: DMO
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Fig. 8 Result for clamped-clamped plate having 18 x 9 patches and material constraint of 50 %. Left: FMO, right: DMO
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Fig. 9 Color index of anisotropy for free material, GFRP ~ 0.75

Using this method the bounds on the candidate materials x
can be chosen as: 0 < x. < 1.

3.2 Continuous fiber angle optimization

CFAO is a standard gradient-based fiber angle optimization
algorithm. This implies that no material distribution is pos-
sible while using this method, thus only the stiff orthotropic
material is present. The task of the optimization is to rotate
the material into the angle ¢ which minimizes the objective
function, thus the generalized design variables yj are the
rotation angles ¢ of the orthotropic material within patch
s. The sensitivity of the constitutive matrix E; is calculated
using central difference approximations. The bounds on the
design variables ¢, are chosen such that these will not be
reached during the optimization. This is done by choosing
¢s < ¢o — 180° and ¢ + 180° < ¢, where ¢y is the initial
fiber angle.

4 Clamped-clamped plate

In the first example we consider a clamped-clamped plate
loaded by two independent load cases of equal impor-
tance and loads of equal magnitude. The plate is con-
sidered as a 2D problem and is shown on Fig. 4. This
plate has previously been studied by Bendsge et al.
(1995) and is here used to compare results from FMO,
DMO, and CFAO for a multiple load case scenario. At
the same time, the effect of varying the patch size is
shown.

@ Springer
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The plate is discretized using 72 x 36 quadratic ele-
ments. Through convergence studies, this mesh is found to
yield a sufficient representation of the structural response
and the constitutive properties. The number of patches is
either 72 x 36, 36 x 18, or 18 x 9. The material prop-
erties are displayed in Table 1. A Glass Fiber Reinforced
Polymer (GFRP) is used as a stiff orthotropic material for
DMO and CFAO, FM represents the free material, and when
a material constraint is imposed the foam material is used
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Fig. 10 Optimization history for compliance of the free material
optimized clamped-clamped plate having 72 x 36 patches. The con-
vergence limit is max (Ax;) < 0.01. 40 iterations are used before
convergence
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Fig. 11 Convergence of material for DMO having 18 x 9 patches.
White: Foam, Black: GFRP, gray: Not converged

as the compliant material. Hence, the low stiffness mate-
rial is a foam material, so the “white” elements which in
classical topology optimization represent void material here
represent an isotropic material which still has load carrying
capability. In this work the compliance values are not com-
pared since the same stiffness is not available in the two
material models. This can be realized by constructing the
plane stress reduced stiffness matrix for GFRP (here E®)
using the data in Table 1, see e.g., Jones (1999), and the free
material using (2) and (4) with Eg = 0, w = 1. Select-
ing {e1, €2} = {,/ElGl/EgZ, 1} gives an equal ratio between
entrance (1,1) and (2,2) in the two plane stress reduced
stiffness matrices, respectively. The two matrices are given
in (13).
[38.82.8 0
28 92 0
| 0 0 3.6
[30.7 15.0 0
EfM = 1150 73 0
0 0 0
Evident from the equation is that a simple scaling of the
free material stiffness Ef cannot provide a free mate-
rial which represents the GFRP. Additionally, in the free
material no shear stiffness is present, and rotation of the

EG = [GPa]
(13)

[GPa]

free material stiffness matrix such that the shear stiffness
is raised will result in non-zero shear-extension couplings
which are not present in GFRP. Consequently, only the
topologies and the fiber angles are compared through the
structure.

4.1 Comparison of FMO and DMO

In the comparison between FMO and DMO a material con-
straint of maximum 50 % of the stiff material is imposed
since both of these methods are capable of optimizing
the topology. For FMO the material properties are directly
interpolated between foam and free material using (4). A
total of five DMO candidate materials are available; GFRP
with the possible orientations of {0°, 45°, 90°} consti-
tutes four of the candidates while the foam constitutes
the fifth. This number of candidate materials is sufficient
for representing the optimum topology and fiber distribu-
tion for the plate. A comparison of the optimum topology
and fiber distribution using 13 candidate materials (GFRP
aligned at {0°, 15°, £30°, £45°, £60°, £75°,90°} and
foam) and the selected five candidate materials is shown
on Fig. 5. Negligible differences are observed in the
obtained designs. Furthermore, all the presented results
have been compared to results obtained using 9 (GFRP
aligned at {0°, £30°, £45°, +£60°, 90°} and foam) and 13
candidate materials to secure the validity of the previous
conclusion.

The results obtained from the different patch sizes are
shown on Figs. 5, 6, 7, and 8. Similar topologies are
obtained both when varying the patch size and switching
between FMO and DMO. The topology is composed of two
arches combining e.g., the points A-B-C on Fig. 4. Further-
more, a reinforcement is present at the center region for
the models having 72 x 36 and 36 x 18 patches. These
results fit well with the result from Bendsge et al. (1995).
On the figures depicting the FMO results black lines rep-
resent the maximum stiffness direction used in (7), and in
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Fig. 12 Result for clamped-clamped plate having 72 x 36 patches and no material constraint. Left: FMO, right: DMO having 12 candidate
materials i.e., GFRP aligned at {0°, £15°, £30°, £45°, +60°, £75°, 90°}
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Fig. 13 Effect of initial angle, ¢¢, for CFAO. The red circles display
Left: Initial angle 0°, right: Initial angle 90°

the remainder of the paper these are referred to as fiber
angles. Additionally, the colors on the figures give the cor-
responding value of the anisotropy visualized for all FMO
results. The color index for the anisotropy is shown on
Fig. 9. For GFRP an estimate of the anisotropy can be
calculated by (14).

G
Ey
G G G
EY + E) + Egg
Ey

= ~ 0.75
E, + Ey + (1 - nyvyx) ny

AGFRrp =

(14)

Here Eg are the plane stress reduced stiffnesses. vy, is
the minor Poisson’s ratio. Agrrp corresponds to a yel-
low color by comparison of this value to Fig. 9, so the
anisotropy for GFRP is optimum only at a minority of the
structure. For the 72 x 36 patch models shown on Figs. 5
and 6 the optimum fiber angles are similar for the two opti-
mization methods. The center sections for FMO and DMO
are different since the FMO result has two bars, whereas
DMO only has one. This difference is a consequence of
the materials used by FMO and DMO shown in (13).
The anisotropy of the FMO results shows that the structure
primarily consist of material having highly unidirectional
properties. The exception is in the area where the two arches

the areas where main differences from the FMO result on Fig. 12 appear.

coincide, here the anisotropy drops to a value around 0.5. In
these areas a bi-axial ply or an isotropic material would con-
stitute a good material choice in stead of the uni-directional
GFRP used for the presented DMO parameterization due to
the loading conditions. It should be noted that the areas with
unidirectional properties (red) resemble the anisotropy of a
carbon fiber reinforced polymer which has an anisotropy of
approximately 0.9 assuming E, = 137.9 [GPa], E, = 9.0
[GPa], Gy = 7.1 [GPa], and v,y = 0.3. For both FMO
and DMO the fiber angles are primarily oriented approx-
imately at £45° and 90°. The 90° fibers are used in the
center region, and the £45° fibers are used in the rest
of the structure. On Fig. 10 the optimization history for
the compliance of the 72 x 36 patch plate is depicted.
As expected the compliance is decreasing as the itera-
tion number is increased until a value of approximately 4
[Nm] is reached, whereafter the compliance of the struc-
ture cannot be lowered further and the convergence limit:
max (Axg) < 0.01 is reached. Throughout the iterations the
total volume of the free material is not changing signifi-
cantly. A change in volume of 1.5 - 102 between iteration
1 and 40 is observed when normalizing with the element
volume.

For the 36 x 18 patch model the resulting topologies
and fiber directions are displayed on Fig. 7, and here the
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Fig. 14 Result for clamped-clamped plate having 36 x 18 patches and no material constraint. Left: FMO, right: CFAO
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Fig. 15 Result for clamped-clamped plate having 18 x 9 patches and no material constraint. Left: FMO, right: CFAO

same tendencies as for the 72 x 36 models are observed.
However, material is moved from the center region to the
arches. This is done in order to compensate for the larger
patches in the structure.

On Fig. 8 the results from the 18 x 9 patch models
are depicted. Not enough material is present to result in
a pure candidate selection for the DMO approach for the
coarse model. This is seen on Fig. 11 where the conver-
gence of the candidate materials is depicted as an inter-
polation between white (foam) and black (GFRP), thus
gray displays a patch which is not converged to a distinct
material choice. Consequently, a large part of the struc-
ture has converged to an intermediate material containing
a mixture of the candidates. The cause of this is the com-
bination of patch size and material constraint. A unique
choice of material could be obtained by using penalty meth-
ods to prevent intermediate-valued designs as described in
Hvejsel et al. (2011). However, as patches with interme-
diate design values provide valuable information regarding
the best anisotropy for the given patch, this has not been
performed.

The general level of anisotropy for the FMO results is
lower when the patch size is raised. The cause of this is
that more elements are grouped within the patches which
allow for a possible larger variation of the strain field within
the patches, consequently, the result is a free material with
lower anisotropy.

Fig. 16 Boundary conditions and dimensions for corner hinged shell.
¢ defines the inplane rotation angle for the fibers

4.2 Comparison of FMO and CFAO

In the second part FMO is compared to CFAO. Only stiff
material is present in the design domain. Consequently,
the resulting fiber angles are optimized, and for FMO also
the anisotropy. Since CFAO is known to provide differ-
ent results based on the initial angle, ¢g, the effect of
the initial fiber angle is evaluated by choosing an ini-
tial angle of either 0° or 90°, and optimizing the 72 X
36 patch model. The results are compared to the opti-
mum fiber angles using FMO and DMO (12 GFRP can-
didate materials). The results from the optimizations are
depicted on Figs. 12 and 13 for FMO and DMO and CFAO,
respectively. The resulting fiber angles for FMO and DMO
are in good agreement, which is shown on Fig. 12. The
red circles on Fig. 13 display the areas where the CFAO
results are different from the fiber angles obtained using
FMO. Furthermore, the angles from CFAO are close to per-
pendicular to the corresponding FMO fiber angles, which
is a consequence of the initial angle. The differences in the
optimum fiber angles for the CFAO results lead to differ-
ent compliance values. The stiffest design is obtained with
an initial angle of 90°, therefore, the CFAO results used
as a basis of comparison for the remainder of the paper
are based on the results having an initial fiber angle of
90°.

The same patch sizes as in Section 4.1 are used. On
Figs. 12, 13, and 15 the results are shown. For all patch
sizes regardless of the optimization method some tenden-
cies can be observed; in the center region the fibers are
aligned at 90°, and most of the remaining fibers are aligned
at approximately +45°. The 72 x 36 patch models are
depicted on Figs. 12 and 13. As stated previously the differ-
ences in the fiber angles between the methods are present at
the corners and at the load introductions. Regardless, CFAO
produces a symmetrical design, which is not the case for
FMO, which is slightly non-symmetric due to the method
used when determining the fiber angle. Additionally, the
structure optimized using FMO consists of material having
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Fig. 17 Result for layer 1 (bottom) to 3 of the corner hinged shell optimized using FMO
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Fig. 18 Result for layer 1 (bottom) to 3 of the corner hinged shell optimized using DMO

with a material constraint large areas contain material with
lower anisotropy. This is due to the difference in topology,

s

anisotropy similar to and below that of GFRP. As expected
this is the case in areas where both load cases are hav-

ing similar influence. Furthermore, compared to the cases

where the topologies in e.g., Fig. 6 consist of a beam like

19 Result for layer 4 to 6 (top) of the corner hinged shell optimized using FMO
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Fig. 20 Result for layer 4 to 6 (top) of the corner hinged shell optimized using DMO

structure primarily loaded in a single direction as opposed
to the full material plates, where larger areas are loaded
bidirectionally.

For the 36 x 18 patch models shown on Fig. 14 sim-
ilar conclusions as for the 72 x 36 model can be made,
just with the difference that the model has a coarser grad-
uation of the contours due to the 2 x 2 element patch
size. On Fig. 15 the coarse 18 x 9 patch results are
depicted. As with the other models good coherency
between the fiber angles exist. Furthermore, the general
level of anisotropy is lower than for the models having
more patches. This supports the conclusion from Section
4.1.

These comparisons demonstrate the possibility of
conducting stiffness design optimization of laminated

(3 S &) )
T T T T

Compliance [Nm)]

N}
T

0 I I L I I I L
25 30 35

15 20
Iteration number

Fig. 21 Optimization history for compliance of free material opti-
mized corner hinged shell. The convergence limit is max (Axs) <
0.005. 37 iterations are used before convergence

composites by FMO for 2D structures using a commer-
cial finite element analysis code. Additionally, the exam-
ples have illustrated multiple load case problems and the
effect of varying patch size. In the following a multilay-
ered shell structure is considered using the commercial
environment.

S Corner hinged shell

The second example is a square corner hinged shell hav-
ing the dimensions and boundary conditions as depicted on
Fig. 16. The surface of the shell can be described using
2(x,y) =h— Qh/L*((x — L/2)> + (y — L/2)?). For the
second test case, the size of the patch is fixed, and the lay-
ered formulation is used. To optimize the structure FMO and
DMO are used. The shell is modeled using 40 x 40 9-noded
ESL shell elements employing a First-order Shear Defor-
mation Theory. The shell consists of 6 layers and 20 x 20
patches per layer. The material properties from Table 1 are
used and the same five DMO candidates as in Section 4 are
available. Optimization using the DMO approach with 9 and
13 candidate materials has been conducted, and the result-
ing topologies are similar to the topology obtained using
5 DMO candidate materials, hence, only results from the
5 candidate model are shown. The structure is restricted to
contain at least 65 % foam material.

On Figs. 17, 18, 19, and 20 the results from the FMO and
DMO optimizations are shown. Here layer 1 represents the
bottom layer and layer 6 the top layer. The shell is primarily
loaded in bending, so the stiff material is mainly located at
the outer layers for both methods in order to provide bend-
ing stiffness. The stiff material is located at the center region
and at the supports for the inner layers. The results obtained
using DMO are not completely symmetric in-plane. This is
due to the mass constraint of at least 65 % foam material
which with the applied parametrization does not result in
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a completely symmetric design. Assuming a polar coordi-
nate system with origin at the center of the shell the fiber
angles are primarily oriented in the radial or circumferen-
tial direction for FMO and for DMO a candidate material
with an orientation close to these directions. Comparing the
anisotropy of the shell, Figs. 17 and 19, to the plate given in
Fig. 7, it is observed that the general level of anisotropy is
lower for the shell than for the plate. The optimization his-
tory for the compliance of the corner hinged shell is shown
on Fig. 21 for the free material optimized case. Convergence
is reached within 37 iterations where the convergence limit:
max (Axg) < 0.005 is reached. The compliance is rapidly
dropping to a value of approximately 1.5 - 10~* [Nm]. As
this value is reached the change in compliance between two
iterations decreases. The relative change in volume between
the first and last iteration is 3 - 10713

From this example the benefit of a multilayered Free
Material Optimization is evident, since the variety in topol-
ogy, fiber angle, and anisotropy between the layers is signif-
icant, rendering it difficult to interpret an equivalent single
layered FMO model into a similar laminate configuration.

In this section it is demonstrated that the implemented
code is also capable of determining designs for multilayered
structures and obtaining designs similar to DMO available
in a research code. We have shown that a simple heuristic
method implemented in a commercial environment can be
used to design multilayered laminated composite structures
for stiffness.

6 Conclusion

In this study we have implemented Free Material Opti-
mization in an ANSYS-MATLAB environment in order
to demonstrate the capabilities of performing stiffness
design optimization of laminated composite structures using
commercially available finite element analysis codes. An
optimality criteria based approach has been applied in the
design optimization using a heuristic update scheme due to
the restrictions in access to the finite element backbone in
ANSYS. This approach is used to minimize the compliance
of the considered structures. Examples considered in this
work are; a single layered plate having multiple load cases
and a multilayered shell. In the first example the effect of
grouping elements into patches suitable for manufacturing
of laminated composite structures is considered, whereas
for the second example the benefits of using a multilayered
Free Material Optimization formulation is demonstrated.
The results obtained are compared to results using Discrete
Material Optimization and Continuous Fiber Angle Opti-
mization approaches implemented in the in-house research
code MUST (the MUItidisciplinary Synthesis Tool) MUST
2014). Through the study it is concluded that the results

@ Springer

obtained from the commercial and the research codes are
similar with respect to topology and optimum fiber angles.
From this it is apparent that commercial codes can be used
to generate initial stiffness design estimates of laminated
composite structures which can aid the designer during the
design phase. This enables the possibility for applying opti-
mum design procedures for laminated composite structures
without the access to a special purpose research code.

Furthermore, the use of Free Material Optimization
allows the designer to assess the optimum material stiff-
nesses to be used throughout the structure, thus providing
valuable knowledge in the initial design phase.

Acknowledgments This research is sponsored by The Danish
National Advanced Technology Foundation (DNATF) Grant no. 107-
2012-2. This support is gratefully acknowledged.

References

Abrate S (1994) Optimal design of laminated plates and shells. Com-
pos Struct 29(3):269-286

Altair (2013) Altair OptiStruct. http://www.altairhyperworks.com/

ANSYS Inc (2013a) ANSYS Release 14.0 Documentation

ANSYS Inc (2013b) ANSYS web page., http://ansys.com/

Arora J, Wang Q (2005) Review of formulations for structural
and mechanical system optimization. Struct Multidiscip Optim
30(4):251-272

Bendsge M, Sigmund O (2003) Topology optimization: theory, meth-
ods and applications, 2nd edn. Springer-Verlag, Berlin

Bendsge MP, Guedes JM, Haber RB, Pedersen P, Taylor JE (1994)
An analytical model to predict optimal material properties in the
context of optimal structural design. J Appl Mech 61(4):930-937

Bendsge MP, Diaz AR, Lipton R, Taylor JE (1995) Optimal design of
material properties and material distribution for multiple loading
conditions. Int ] Numer Methods Eng 38(7):1149-1170

Bendsge MP, Guedes JM, Plaxton S, Taylor JE (1996) Optimization of
structure and material properties for solids composed of softening
material. Int J Solids Struct 33(12):1799-1813

Bloomfield MW, Herencia JE, Weaver PM (2010) Analysis and bench-
marking of meta-heuristic techniques for lay-up optimization.
Comput Struct 88(5-6):272-282

Bruyneel M (2011) SFP-a new parameterization based on shape func-
tions for optimal material selection: application to conventional
composite plies. Struct Multidiscip Optim 43(1):17-27

Bruyneel M, Fleury C (2002) Composite structures optimization
using sequential convex programming. Adv Eng Softw 33(7-10):
697-711

Cheng G, Pedersen P (1997) On sufficiency conditions for optimal
design based on extremum principles of mechanics. J Mech Phys
Solids 45(1):135-150

Chin CM, Fletcher R (2003) On the global convergence of an SLP-
filter algorithm that takes EQP steps. Math Programm 96(1):161—
177

Dassault Systemes (2013) Abaqus Unified FEA. http://www.3ds.com/
products-services/simulia/portfolio/abaqus/overview/

Gao T, Zhang W, Duysinx P (2012) A bi-value coding param-
eterization scheme for the discrete optimal orientation design
of the composite laminate. Int J Numer Methods Eng 91(1):
98-114


http://www.altairhyperworks.com/
http://ansys.com/
http://www.3ds.com/products-services/simulia/portfolio/abaqus/overview/
http://www.3ds.com/products-services/simulia/portfolio/abaqus/overview/

Free material stiffness design of laminated composite structures

1111

Ghiasi H, Pasini D, Lessard L (2009) Optimum stacking sequence
design of composite materials Part I: constant stiffness design.
Compos Struct 90(1):1-11

Ghiasi H, Fayazbakhsh K, Pasini D, Lessard L (2010) Optimum
stacking sequence design of composite materials Part II: variable
stiffness design. Compos Struct 93(1):1-13

Hornlein H, Kocvara M, Werner R (2001) Material optimization:
bridging the gap between conceptual and preliminary design.
Aerosp Sci Technol 5(8):541-554

Hvejsel C, Lund E (2011) Material interpolation schemes for uni-
fied topology and multi-material optimization. Struct Multidiscip
Optim 43(6):811-825

Hvejsel CF, Lund E, Stolpe M (2011) Optimization strategies for
discrete multi-material stiffness optimization. Struct Multidiscip
Optim 44(2):149-163

Jones RM (1999) Mechanics of composite materials, 2nd edn.
Materials Science and Engineering Series. Taylor & Francis
Group

Kim TS, Kim YY (2000) Mac-based mode-tracking in structural
topology optimization. Comput Struct 74(3):375-383

Kocvara M, Stingl M, Zowe J (2008) Free material optimization:
recent progress. Optimization 57(1):79-100

Lund E, Stegmann J (2005) On structural optimization of composite
shell structures using a discrete constitutive parametrization. Wind
Energy 8(1):109-124

MUST (2014) The MUItidisciplinary Synthesis Tool. Department of
Mechanical and Manufacturing Engineering, Aalborg University,
http://www.must.m-tech.aau.dk/

Pedersen NL (2006) On design of fiber-nets and orientation for
eigenfrequency optimization of plates. Comput Mech 39(1):1-13

Pedersen P (1989) On optimal orientation of orthotropic materials.
Struct Optim 1(2):101-106

Pedersen P (1990) Bounds on elastic energy in solids of orthotropic
materials. Struct Optim 2(1):55-63

Pedersen P, Pedersen NL (2013) On strength design using free mate-
rial subjected to multiple load cases. Struct Multidiscip Optim
47(1):7-17

PLATO-N (2013) A platform for topology optimisation incorporating,
novel large-scale, free-material optimisation and mixed integer
programming methods. http://www.plato-n.org/

Prager W, Taylor J (1967) Problems of optimal structural design. J
Appl Mech 35:102-106

Ringertz U (1993) On finding the optimal distribution of material
properties. Struct Optimization 5(4):265-267

Sigmund O, Torquato R (1997) Design of materials with extreme ther-
mal expansion using a three-phase topology optimization method.
J Mech Phys Solids 45(6):1037-1067

Stegmann J, Lund E (2005) Discrete material optimization of gen-
eral composite shell structures. Int J Numer Methods Eng
62(14):2009-2027

Thomsen J, Olhoff N (1990) Optimization of fiber orientation and
concentration in composites. Control Cypernetics 19(3—4):321—
341

Zhou M, Fleury R (2012) Composite optimization — Ply drop-rate
constraints for concept and detailed design. In: Proceeding of the
23rd international congress of theoretical and applied mechanics
(ICTAM). Beijing, China

Zhou M, Fleury R, Kemp M (2011) Optimization of composite - recent
advances and application. In: Proceeding of the 7th altair CAE
technology conference. Warwickshire, United Kingdom

@ Springer


http://www.must.m-tech.aau.dk/
http://www.plato-n.org/

	Free material stiffness design of laminated composite structures
	Abstract
	Introduction
	Free material optimization; formulation and implementation
	Free material optimization
	Implementation

	Sensitivity based methods
	Discrete material optimization
	Continuous fiber angle optimization

	Clamped-clamped plate
	Comparison of FMO and DMO
	Comparison of FMO and CFAO

	Corner hinged shell
	Conclusion
	Acknowledgments
	References


