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Abstract Hybrid reliability analysis (HRA) with both ran-
dom and interval variables is investigated in this paper. Firstly,
it is figured out that a surrogate model just rightly predicting
the sign of performance function can meet the requirement of
HRA in accuracy. According to this idea, a methodology
based on active learning Kriging (ALK) model named ALK-
HRA is proposed. When constructing the Kriging model, the
presented method only finely approximates the performance
function in the region of interest: the region where the sign
tends to be wrongly predicted. Based on the constructed
Kriging model, Monte Carlo Simulation (MCS) is carried
out to estimate both the lower and upper bounds of failure
probability. ALK-HRA is accurate enough with calling the
performance function as few times as possible. Four numeri-
cal examples and one engineering application are investigated
to demonstrate the performance of the proposed method.

Keywords Hybrid reliability . Randomvariable . Interval
variable . Active learning . Krigingmodel

1 Introduction

Probabilistic reliability analysis (PRA) requires precise prob-
abilistic models of uncertain variables, which may be impos-
sible for some uncertainties because of limited experimental
data. Unwarranted assumptions during constructing a proba-
bilistic model may bring about misleading results with PRA
(Elishakoff 1995a; Elishakoff 1999). Thus, the non-
probabilistic interval model was proposed to describe the

uncertain variables with incomplete information. Compared
with random variables, for an interval variable, nothing is
known about it except that it lies within a certain interval.
During the past decades, non-probabilistic approaches based
on the interval model have been deeply investigated (Luo et al.
2009; Elishakoff 1995b; Wang et al. 2008; Qiu and Elishakoff
2001; Möller and Beer 2008), and they have provided alter-
native ways for reliability analysis.

Inmany engineering applications, a frequently encountered
situation is that (Guo and Du 2009; Qiu and Wang 2010;
Wang and Qiu 2010): some of the uncertainties can be char-
acterized with precise probabilistic model and others have to
be treated with interval model. HRA with both random
variables and interval variables has attracted much attention
in such circumstance. Guo and Lu (2002) proposed a proba-
bilistic and non-probabilistic hybrid model. However, only the
solution to linear performance function was proposed in this
research. Qiu andWang (2010), Wang and Qiu (2010) respec-
tively developed a hybrid reliability model with interval arith-
metic method. However, interval arithmetic is not applicable
to black-box performance functions (Du 2007). Du (2007;
2008) advanced a sequential single-loop optimization method
based on the first-order reliability method (FORM). It was
named FORM-UUA. Guo and Du (2009) took advantage of
this FORM-UUA method to carry out sensitivity analysis for
hybrid reliability with both random and interval variables.

Compared with PRA, HRA is a nested procedure with
interval analysis (IA) and PRA (Du 2007). IA is entailed to
search for the extreme responses with respect to interval
variables in the inner loop and PRA is needed to estimate
the lower and upper bounds of failure probability in terms of
random variables in the outer loop. Both the inner and outer
loops can affect the accuracy of results. It is known that in
PRA, FORM is very inaccurate for performance functions
which are highly nonlinear or have multiple design points
(Qin et al. 2006; Au et al. 1999). When the performance
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function is highly nonlinear or has multiple design points in
terms of random variables, even if the extreme responses are
exactly worked out in the inner loop, the results could be much
too inaccurate in HRA. Therefore, FORM-UUA behaves very
poorly in such cases. In addition, as FORM-UUA is a gradient-
based optimization method, its efficiency depends upon the
number of uncertain variables and the extent of nonlinearity
of the performance function. That means, for a practical struc-
ture with a little many uncertain variables or a performance
function which is highly nonlinear, FORM-UUA can also be
inefficient. Moreover, to obtain the lower and upper bounds of
failure probability, FORM-UUA entails to be respectively
performed and thus the computational burden is doubled.

Jiang et al. (2012) proposed a newmethod based on FORM
which can only estimate the upper bound of failure probabil-
ity. This method is more robust and efficient while much less
accurate than FORM-UUA as revealed from his paper. Xiao
et al. (2012) proposed a mean value first order saddle-point
approximation (MVFOSPA) method to analyze the hybrid
reliability. In the inner loop, the performance function was
linearized by the first order Taylor series, and then the interval
arithmetic was employed to search for the maximum and
minimum responses. In the outer loop, MVFOSPAwas used
to perform the PRA. When the performance function is non-
linear in terms of interval variables, the methodwith first order
Taylor series and interval arithmetic cannot obtain the exact
extreme responses and consequentially MVFOSPA cannot
obtain accurate bounds of failure probability. Therefore,
MVFOSPA is less accurate than FORM-UUAwhen the per-
formance function is nonlinear as revealed from that paper.

Faced with a black-box function, it is available to use a
surrogate model to approximate the unknown implicit function.
In this field, the proposition of active learning Kriging (ALK)
model is a major step forward. Active learning means that the
Kriging model is iteratively updated by adding a new training
point to the design of experiment (DoE), until the Kriging model
satisfies necessary accuracy. In each iteration, the new point is
selected because it is probably located in some region of interest.
Therefore the ALK model focuses much attention on approxi-
mating the black-box function in the region of interest. Different
kinds of ALK models have been proposed, and they have been
applied to different fields, like the global optimization (Jones
et al. 1998), the contour estimation (Ranjan et al. 2008), PRA
(Bichon et al. 2008; Bichon et al. 2011; Echard et al. 2011),
reliability-based design optimization (Dubourg et al. 2011) and
the inspection of large surfaces (Dumasa et al. 2013). However,
few studies have considered the application of surrogatemodel to
HRA so far, let alone the ALK model.

This paper aims to develop an efficient and accurate meth-
od for HRA based on ALKmodel. When creating the Kriging
model, we do not approximate the performance function in the
whole uncertain space, but only in the region where the sign of
the function tends to be wrongly predicted. That is based on

the idea that a Kriging model only rightly predicting the sign
of performance function can help to obtain the signs of its
extrema and accurately estimate the bounds of failure proba-
bility. Then Monte Carlo Simulation (MCS) method can be
effectively carried out based on the Kriging model. The pro-
posed method is characterized with its local approximation to
the performance function.Moreover, the single Krigingmodel
can be employed to estimate both the lower and upper bounds
of failure probability. ALK-HRA is accurate enough with
calling the performance function as few times as possible.

This paper is outlined as follows. HRA with both random
and interval variables is introduced in Section 2. MCSmethod
is presented in Section 3. In Section 4 the proposed ALK-
HRAmethodology is elaborated. Five case studies are utilized
to demonstrate the effectiveness of the proposed method in
Section 5. Conclusions are made in the last section.

2 HRAwith both random and interval variables

When only random variables appear in an uncertain structure,
the reliability can be analyzed by traditional probabilistic
reliability methods. The performance function is denoted as

G(X), with X ¼ x1; x2;⋯; xnX½ �T the vector of random vari-
ables. The failure probability Pf is defined as

Pf ¼ P G Xð Þ < 0f g ¼ ∬
G Xð Þ<0

⋯
Z

f Xð ÞdX ð1Þ

where P{•} denotes the probability of an event, f(•) is the joint
probability density function (PDF).

When both random variables and interval variables are
present, the performance function of an uncertain structure is

expressed as G(X,Y), where Y ¼ y1; y2;⋯; ynY
� �T

represents
the vector of interval variables. The lower and upper bounds of
Yare YL and YU respectively. The space defined by the interval
variables is denoted by C=[YL,YU]. Because of the presence of
interval variables, the failure probability is not a determinate
value but an interval variable. The lower and upper bounds of
Pf are obtained by (Guo and Du 2009; Du 2008)

Pmax
f ¼ P min

Y
G X ; Yð Þ < 0 Y∈Cj

� �
ð2Þ

and

Pmin
f ¼ P max

Y
G X ; Yð Þ < 0 Y∈Cj

� �
ð3Þ

respectively, where min
Y∈C

G X ; Yð Þ and max
Y∈C

G X ; Yð Þ; are the
extreme responses of a structure in terms of interval variables.
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The main work of HRA is to calculate the bounds of
Pf, i.e. to solve Equations. (2) and (3). Each of them is
a double-loop procedure: an optimization problem
should be solved to find the maximum (minimum) re-
sponse with respect to Y in the inner loop and PRA
needs to be performed to estimate the failure probability
with respect to X in the outer loop.

3 HRAwith Monte Carlo simulation (MCS)

In this work, results obtained by MCS are considered as the
references for other approaches. In addition, our proposed
method is based on MCS. Therefore, HRA with MCS is
offered in this section. Equation (2) can be rewritten as

Pmax
f ¼ ∬⋯

Z
IUF Xð Þ f Xð ÞdX ð4Þ

where IF
U(•) is the failure indicator function for the minimum

response and it can be expressed as

IUF Xð Þ ¼
1min

Y∈C
G X ; Yð Þ≤0

0min
Y∈C

G X ; Yð Þ > 0

(
ð5Þ

In the same way, Equation (3) can be rewritten as

Pmin
f ¼ ∬⋯

Z
ILF Xð Þ f Xð ÞdX ð6Þ

where IF
L(•) is the failure indicator function for the maximum

response and it can be expressed as

ILF Xð Þ ¼
1max

Y∈C
G X ; Yð Þ≤0

0max
Y∈C

G X ; Yð Þ > 0

(
ð7Þ

Then MCS can be used to estimate the bounds of failure
probability through the following three steps:

(1) Generate a large number of simulated samples for ran-
dom variables according to their PDFs.

(2) At each simulated sample, solve the optimization prob-
lems in Equations (5) and (7). Obtain the signs of extre-
ma, and then the failure indicator functions at this sample
can be obtained. To obtain the optimal solutions, global
optimization algorithm is needed and in this paper the
DIRECT algorithm (Gablonsky 1998) is adopted.

(3) Pf
max and Pf

min can be respectively estimated by

Pmax
f ¼ 1

N

X
j¼1

N

IUF X jð Þ
� �

ð8Þ

and

Pmin
f ¼ 1

N

X
j¼1

N

IUF X jð Þ
� �

ð9Þ

where N is the total number of samples and X(j) is the jth

sample.

4 ALK for HRA

4.1 Basic idea

It will become impossible to implement MCS when the per-
formance function needs to be calculated with time-
consuming simulation methods such as finite element (FE)
analysis, computational fluid dynamics, etc. SoKriging model
is employed to approximate the performance function, and
then compute Pf

max and Pf
min with MCS based on the Kriging

model. In this paper, our aim is to construct a Kriging model
providing a right prediction for the sign of G(X,Y) rather than
its true value. Therefore, the Kriging model only locally
approximates the performance function rather than in the
whole uncertain space.

Now we give the reason for which a Kriging model pro-
viding a right prediction for the sign of G(X,Y) can meet the
demand of HRA in accuracy. Conveniently, the Kriging mod-
el is denoted as Ĝ(X,Y) and it satisfies the following two
properties:

Property1 If sign(Ĝ(X,Y))=sign(G(X,Y)), then sign min
Y∈C

�
G

X ; Yð ÞÞ ¼ sign min
Y∈C

bG X ;Yð Þ
� �

, where sign(•) is the sign

function.
Proof1 Denote bY �

1 ¼ argminY∈C bG X ; Yð Þ
� �

and Y �
1 ¼ arg

minY∈C G X ; Yð Þð Þ , n a m e l y bG X ; bY 1
�� �

¼ minY∈CbG X ; Yð Þ
� �

and G X ; Y �
1

� 	 ¼ minY∈C G X ; Yð Þð Þ . Note that
Ŷ1
* is not equal to Y1

* definitely, because Ĝ(X,Y) can only
rightly predict the sign of G(X,Y) rather than its true value.
So it is hard to say that sign(Ĝ(X,Ŷ1*))=sign(G(X,Y1*)). Then
we will prove that even though Ŷ1

* is not surely equal to Y1
*,

there is sign(Ĝ(X,Ŷ1*))=sign(G(X,Y1*)).
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If Ĝ(X,Ŷ1*)<0, then G(X,Ŷ1*)<0 because sign(Ĝ(X,Ŷ1*))=
sign(G(X,Ŷ1

*)). Then G(X,Y1
*)<0 because G(X,Y1

*)≤G(X,Ŷ1*)
<0. In the other case, if Ĝ(X,Ŷ1*)>0, then Ĝ(X,Y1*)>0 because
Ĝ(X,Y1

*)≥Ĝ(X,Ŷ1
*) >0. And then G(X,Y1

*)>0 because
sign(Ĝ(X,Y1

*))=sign(G(X,Y1
*)). That is sign(Ĝ(X,Ŷ1*))=

s i g n ( G ( X , Y 1 * ) ) o r sign maxY∈C G X ; Yð Þð Þ ¼ sign

maxY∈C bG X ; Yð Þ
� �

.

Property2 If sign(Ĝ(X,Y))=sign(G(X,Y)), then sign maxY∈Cð
G X ; Yð ÞÞ ¼ sign max

Y∈C
bG X ; Yð Þ

� �
Proof 2 Denote bY �

2 ¼ argmax
Y∈C

bG X ; Yð Þ
� �

and Y �
2 ¼ arg

max
Y∈C

G X ; Yð Þð Þ , namely bG X ; bY 2
�� �

¼ max
Y∈CbG X ; Yð Þ

� �
and G X ; Y �

2

� 	 ¼ maxY∈C G X ; Yð Þð Þ .
And also note that Ŷ2* is not surely equal to Y2

*. If
Ĝ(X,Ŷ2

*)<0, then Ĝ(X,Y2
*)≤Ĝ(X,Ŷ2*)<0. And then

G(X,Y2
*)<0 because sign(Ĝ(X,Y2*))=sign(G(X,Y2*)).

In the other case, if Ĝ(X,Ŷ2
*)>0, then G(X,Ŷ2

*)>0
because sign(Ĝ(X,Ŷ2

*))=sign(G(X,Ŷ2
*)). And then

G(X,Y2
*)>0 because G(X,Y2

*)≥G(X,Ŷ2*)>0. That is

sign max
Y∈C

G X ; Yð Þ
� �

¼ sign max
Y∈C

bG X ; Yð Þ
� �

Property 1 and 2 indicate that if the Kriging model can rightly
predict the sign of performance function, the minimum
(maximum) of the true performance function and that of the
Krigingmodel will have the same sign even though their optimal
solutions are different. Obtaining the signs of the extrema of the
Kriging model, the signs of the extrema of the true performance
function can be obtained. Therefore, constructing a Kriging
model providing a right prediction for the sign of G(X,Y) can
meet the demand of HRA in accuracy.

Then we will focus on constructing a Kriging model which
can rightly predict the sign of G(X,Y). It should be noted that
many ALK models have been proposed to improve the pre-
diction for the sign of objective function until now. They have
been well integrated with many sampling procedures like
MCS (Echard et al. 2011), importance sampling methods
(Echard et al. 2013; Balesdent et al. 2013), subset simulation

(Dubourg et al. 2011) and largely improved the efficien-
cy of PRA. However, as far as we know, all of them
were proposed for PRA where there are no interval
variables in the performance function and no searches
for extreme responses at each simulated sample. And
they may not be perfectly applicable to HRA. In this
paper, we advance a new ALK model for HRA.

The general procedure to construct an ALK model is
summarized as follows (Jones et al. 1998; Bichon et al.
2008; Ranjan et al. 2008):

(1) Build an initial Kriging model by a DoE with a small
number of training points.

(2) Find a new point with a so-called learning function. The
learning function is a function that judges whether a
point is located in some region of interest. If the learning
function satisfies some condition, stop.

(3) Evaluate the response at the chosen point and add the point
to the DoE. Update the Kriging model and go to Stage (2).

In each iteration, the new point is chosen because it
is probably situated in some region of interest.
Therefore ALK model can only finely approximate the
objective function in the specific region of interest.
During this procedure, the learning function plays the
key role for an ALK model. It judges which point
should be added into the DoE and when the iterative
process should be stopped. In this paper we propose a
new learning function called expected risk function
(ERF). Based on ERF, ALK-HRA is constructed.

4.2 Kriging theory reminder

For the sake of convenience, we use the vector x to denote all
the uncertain variables, i.e. x=(X,Y), and then the performance
function becomesG(x). Note that x is an n-dimensional vector
and there is n=nX+nY. With a Kriging model,G(x) is generally
expressed as

R(x)

P

0

(a)

ˆ (x)G (x)G

R(x)

0

P

(x)Gˆ (x)G

(b)Fig. 1 Risk of sign of response
wrongly predicted by a Kriging
model: a the sign is predicted to
be negative b the sign is predicted
to be positive
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G xð Þ ¼ bβ þ z xð Þ ð10Þ

where bβ is the overall mean and z(x) is a Gaussian process
with the following statistical characteristics:

E z xð Þ½ � ¼ 0
E z að Þ; z bð Þ½ � ¼ σ2ℜ θ; a; bð Þ

�
ð11Þ

where E[•] is the expectation operator, σ2 is the variance of
z(x), a and b are two arbitrary points in the real space,ℜ(θ,a,
b) is a correlation function with parameter θ which reads:

ℜ θ; a; bð Þ ¼ exp −
X
i¼1

n

θi ai−bið Þ2
" #

ð12Þ

Kriging model needs a DoE to determine its parameters. Then
predictions for the objective function can bemade at unknown
points. Given a DoE: [x(1),x(2),⋯,x(m)]Twith x(j) the jth train-
ing point, and the vector of corresponding responses
g=[G(x(1)),G(x(2)),⋯,G(x(m))]T, at any unknown point x, the
predicted value Ĝ(x) for G(x) is

bG xð Þ ¼ bβ þ r xð ÞTR−1 g−bβ1� �
ð13Þ
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Fig. 2 DoE of the mathematical
problem obtained with ALK-
HRA

Min       0G
ˆMin  0G
ˆMin 0<

>
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G
Wrong Prediction

Fig. 3 Predicted sign of
minimum response at each
sample with ALK-HRA
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The corresponding predicted variance s2(x) is given as

s2 xð Þ ¼ σ2 1þ 1TR−1r xð Þ−1� 	2
1TR−11

−rT xð ÞR−1r xð Þ
" #

ð14Þ

In Equation (13), 1 is an m-dimensional unit vector, r(x) is the
correlation vector between x and each training point which is
defined as

r xð Þ ¼ ℜ θ; x; x 1ð Þ
� �

;ℜ θ; x; x 2ð Þ
� �

;⋯;ℜ θ; x; x mð Þ
� �h iT

ð15Þ
In Equations (13) and (14),R is the correlation matrix between
each pair of training points which is defined as

R ¼
ℜ θ; x 1ð Þ; x 1ð Þ
� �

… ℜ θ; x 1ð Þ; x mð Þ
� �

⋮ ⋱ ⋮
ℜ θ; x mð Þ; x 1ð Þ
� �

⋯ ℜ θ; x mð Þ; x mð Þ
� �

0B@
1CA ð16Þ

The parameters bβ and σ2 can be respectively estimated
asbβ ¼ 1TR−11

� 	−1
1TR−1g ð17Þ

σ2 ¼ 1

m
g−bβ1� �T

R−1 g−bβ1� �
ð18Þ

The parameter θ is determined with maximum likelihood
estimation. Thus the following optimization problem should
be solved:

θ� ¼ argmin
θ

Rj j 1mσ2
� �

ð19Þ

The ALK models in Echard et al. (2011), Dumasa et al.
(2013) and Balesdent et al. (2013) were all performed
with the MATLAB toolbox DACE (Lophaven 2002). In
DACE, a pattern search method was employed to search
for the optimal parameter θ*. Nevertheless, this method
is easily trapped in local minima (Luo et al. 2012). As
revealed in Kaymaz (2005), θ has the largest effect on
the accuracy of a Kriging model. Only the Kriging
model with the optimal parameter θ* can give the best
predictions in Equations (13) and (14). Therefore, θ* in
Equation (19) is explored by global optimization strate-
gy and again the DIRECT algorithm (Gablonsky 1998)
is adopted.

4.3 ALK-HRA

4.3.1 Expected risk function

To improve the prediction for the sign of objective function,
the point at which the sign of objective function has the largest
risk being wrongly predicted should be picked out. Add this
point into the DoE, and then the prediction for the sign of
objective function will be largely improved. To identify such a
point, a learning function is entailed in ALK-HRA and we
propose the ERF in this paper. ERF is elaborated inspired by
the so-called expected improvement function for global opti-
mization in Jones et al. (1998) At a point x, Kriging model
provides a predicted value Ĝ(x) for G(x), whereas Ĝ(x) is not
the true value of G(x). And thus there is a risk that the sign of
G(x) is wrongly predicted.Consider the case that the predicted
value is negative, i.e. Ĝ(x)<0. Even though Ĝ(x)<0, there
exists some extent of risk that G(x)>0, because G(x) is

Table 1 Results of the mathe-
matical problem using different
methods

Method Pf
max Pf

min Function calls Error(upper bound / lower bound)

MCS 0.03122 0.00572 2×100×105 –

ALK-HRA 0.03117 0.00573 51 0.160 %/0.175 %

FORM-UUA 0.1178 0.00587 140+53=193 277.3 %/2.58 %

Fig. 4 A roof truss structure (Wang et al. 2013)

Table 2 Uncertain variables of the roof truss structure

Variables Variables type Parameter 1 Parameter 2

q (N/m) Normal 20000 1600

l (m) Normal 12 0.24

ES (N/m
2) Normal 1.2×1011 8.4×109

EC (N/m2) Normal 3×1010 2.4×109

AS (m
2) Interval 9.3×10−4 9.5×10−4

AC (m2) Interval 0.033 0.035

For the normal distribution, parameters 1 and 2 denote the mean and
standard deviation, respectively; for the interval variable, parameters 1
and 2 denote the lower and upper bounds, respectively

1008 X. Yang et al.



uncertain and G(x)~N(Ĝ(x),s(x)) (Jones et al. 1998; Ranjan
et al. 2008). We define an indicator to measure such risk as
R xð Þ ¼ max G xð Þ−0ð Þ; 0½ � ð20Þ
R(x) measures the extent that G(x) is larger than zero when
Ĝ(x)<0. Obviously, as illustrated in Fig. 1a, the larger R(x) is,
the more likely the sign of G(x) is to be wrongly predicted.
However, R(x) is a random variable because G(x) is a random
variable. Therefore, R(x) is averaged throughout the real space
inspired by Jones et al. (1998) and the expected risk that the
sign of G(x) is wrongly predicted for the case Ĝ(x)<0 is
obtained as

E R xð Þ½ � ¼ E max G xð Þ−0ð Þ; 0ð Þ½ �

¼
Zþ∞

0

G xð Þϕ G xð Þ−bG xð Þ
s xð Þ

 !
dG

¼ s xð Þϕ
bG xð Þ
s xð Þ

 !
þ bG xð ÞΦ

bG xð Þ
s xð Þ

 !

ð21Þ

In the sameway, as depicted in Fig. 1b, we define the indicator
of risk in the case Ĝ(x)>0 as
R xð Þ ¼ max 0−G xð Þð Þ; 0½ � ð22Þ

And the expected risk in the case Ĝ(x)>0 is derived as

E R xð Þ½ � ¼ E max 0−G xð Þ; 0ð Þ½ �

¼
Zþ∞

0

G xð Þϕ G xð Þ þ bG xð Þ
s xð Þ

 !
dG

¼ −bG xð ÞΦ −
bG xð Þ
s xð Þ

 !
þ s xð Þϕ

bG xð Þ
s xð Þ

 !
ð23Þ

Equations (21) and (23) can be uniformly written into an
equation as

E R xð Þ½ � ¼ −sign bG xð Þ
� �bG xð ÞΦ −sign bG xð Þ

� �bG xð Þ
s xð Þ

 !

þ s xð Þϕ
bG xð Þ
s xð Þ

 !
ð24Þ

where ϕ(•) and Φ(•) are the PDF and cumulative distribution
function (CDF) of the standard normal distribution, respec-
tively. Equation (24) is called ERF in this study. ERF indicates
the extent of risk that the sign of objective function at a point is
expected to be wrongly predicted by a Kriging model. When a

Table 3 Results for the roof truss
structure using different methods Method Pf

max Pf
min Function calls Error(upper bound / lower bound)

MCS 0.01878 0.00851 2×200×105 –

ALK-HRA 0.01875 0.00854 50 0.160 %/0.353 %

FORM-UUA 0.017462 0.007849 173+176=349 7.02 %/7.77 %
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Fig. 5 DoE of the roof truss
structure obtained with ALK-
HRA
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point maximizes ERF, the sign of response at this point has the
largest expectation to be wrongly predicted. So the point
should be added to the set of training points.Note that different
kinds of learning functions have been proposed to improve the
prediction for the sign of objective function with a Kriging
model (Ranjan et al. 2008; Bichon et al. 2008; Picheny et al.
2010; Dubourg et al. 2011; Echard et al. 2011; Balesdent et al.
2013). However, they were all employed in PRA. A compar-
ison of different learning functions used in PRA can be found
in Bect et al. (2012). ERF provides an alternative way to
identify the point enriching the DoE and improve the predic-
tion for the sign of objective function. ERF is proposed for
HRA and the comparison of ERF to other learning functions
used in PRA has been beyond our scope.

4.3.2 Summary of ALK-HRA

(1) Define the initial DoE.

(a) The number of training points in the initial DoE
should be a little small. According to the experience
in Echard et al. (2011) and Dubourg et al. (2011), 12
is chosen as the number in this study.

(b) Latin hypercube sampling (LHS) is employed to gen-
erate points uniformly distributed in the uncertain
space. For random variables, the bounds are chosen
as Fi

−1(Φ(±5))(i=1,2,⋯,nX), where Fi
−1(•) is the in-

verse CDF of xi. For interval variables, the lower and
upper bounds are chosen as YL and YU respectively.

(c) Evaluate the performance function at all those points
and construct a Kriging model with the DoE.

(2) Generate a large number of candidate points.

(a) The set of candidate points is denoted as Ω. For
random variables, Monte Carlo sampling is employed
to generate samples according to their PDFs. For
interval variables, LHS is used to generate samples
uniformly covering the space between their lower and
upper bounds.

(b) The number of samples in Ω is denoted as NΩ. NΩ

should be sufficiently large so that the points can fill the
whole uncertain space.WemakeNΩ=10

5 in this paper.
(c) It should be stressed that the performance function is

not evaluated in this stage. All the points are treated
as candidates and the new training points in the next
few stages will be chosen among them.

(3) Identify the new training point in Ω
The point in Ω with maximum ERF value will be

chosen as a new point. Denote the point as (X(*),Y(*)).
(4) Stopping condition.

If the maximum of ERF is less than a very small
tolerance, the Kriging model has been accurate enough to
predict the sign of performance function. Go to Stage (6).
Obviously, ERF is a dimensional function and the dimen-
sion could impact the convergence of iteration. To eliminate
this influence, ERF is scaled by the absolute nominal value
of performance function. The stopping condition used here

is E R X �ð Þ; Y �ð Þ� 	� �
= G X ; Y

� 	

 

� þεÞ ≤10−4 in which

X is the mean of X, Y is the nominal value of Y defined

by Y ¼ 1
2 YL þ YU
� 	

and ε is a small positive constant
(like 10−6) to prevent the denominator from being 0.

(5) Update the DoE and construct a new Kriging model.
If the stopping condition in Stage (4) is not satisfied,

compute the true performance function at (X(*),Y(*)). Add
(X(*),Y(*)) into the DoE and update the Kriging model
with the updated DoE. And then go to Stage (3).

(6) This Kriging model is accurate enough to estimate both the
lower and upper bounds of failure probability. Carry out
MCS presented in Section 3 based on the Kriging model.
Note that searching for the extreme responses at a large
number of simulated samples with DIRECT algorithm can

Fig. 6 A cantilever tube (Du 2007)

Table 4 Uncertain variables of the cantilever tube

Variables Variables type Parameter 1 Parameter 2

t/mm Normal 5 0.1

d/mm Normal 42 0.5

L2/mm Uniform 59.75 60.25

Sy/MPa Normal 200 20

F1/N Gumbel 3000 300

F2/N Gumbel 3000 300

P/N Normal 12000 1200

T/N·m Normal 90 9

L1/mm Interval 119.75 120.25

θ1/° Interval 0 10

θ2/° Interval 5 15

For the Gumbel distribution, parameters 1 and 2 denote the location
parameter and scale parameter, respectively; for uniform distribution,
parameters 1 and 2 denote the lower and upper bounds, respectively;
for other types, parameters 1 and 2 are the same as the ones in Table 2
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be a little time-consuming. Actually, there is no need to
search for both theminimumandmaximum responses at all

simulated samples. At a sample X(j), if minY∈C bG X jð Þ; Y
� 	

> 0 , obviously there is maxY∈C bG X jð Þ; Y
� 	

> 0 . And
then there is no need to search for the maximum response.
In addition, the parfor-loop in MATLAB which means
executing loop iterations in parallel is recommended in this
stage (Sharma and Martin 2009).

5 Numerical examples and discussions

In this section, five examples are researched to demonstrate
the efficiency and accuracy of the proposed method. In the
first four examples, MCS is implemented to independently
examine the results obtained by other methods. The perfor-
mance of ALK-HRA is illustrated through comparison with
FORM-UUA. The last example is a practical engineering case
to demonstrate the application of the proposed method to
black-box performance functions.

5.1 A mathematical problem

The first example is a mathematical problem modified from
Bichon et al. (2008). The performance function is defined as

G X ; Yð Þ ¼ sin
5x1
2

� �
−

x21 þ 4
� 	

x2−1ð Þ
20

þ y ð25Þ

where x1 and x2 are independent normal distributed random
variables and x1~N(μ=1.5,σ=1), x2~N(μ=2.5,σ=1); y is an
interval variable and y∈[2,2.5].To estimate the bounds of
failure probability for this problemwith ALK-HRA, a Kriging
model should be constructed to rightly predict the sign ofG(X,
Y). 12 training points are selected, and then the iterative
process starts to enrich the DoE. In each iteration, the point
at which the sign ofG(X,Y) has the largest risk being wrongly
predicted is added into the DoE. Then the prediction of the
sign is improved. After 39 iterations, the stopping criterion is
satisfied and 39 training points are added into the DoE. The
obtained DoE is illustrated in Fig. 2. It is observed that some
of the added points are far from the limit stateG(X,Y)=0 while

Table 5 Results for the cantile-
ver tube by different methods Method Pf

max Pf
min Function calls Error(upper bound

/lower bound)

MCS 0.00668 0.00583 2×400×105 –

ALK-HRA 0.00669 0.00585 82 0.150 %/0.343 %

FORM-UUA 0.003850 0.003337 260+221=481 42.5 %/43.0 %
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Fig. 7 DoE of the cantilever tube
with ALK-HRA
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more points are located in the vicinity. That is ALK-HRA
only locally approximates the performance function rather
than in the whole uncertain space.The reason why more
points are located in the vicinity of the limit state is that
even very low uncertainty may result in the sign of objec-
tive function being wrongly predicted in this region. There-
fore more training points should be added into this region
to decrease the uncertainty. As for other region, even large
uncertainty may not affect the prediction for the sign of
objective function. Consequently, only a small part of train-
ing points are located in the region far away from the limit
state.After the Kriging model is constructed, MCS can be
effectively implemented based on the Kriging model. 105

samples are generated and the extreme responses are re-
peatedly explored at every sample. The sign of minimal
response at each sample predicted by ALK-HRA is
depicted in Fig. 3. It is seen that only 5 signs are wrongly
predicted in this example. That demonstrates the accuracy
of the proposed method.Table 1 lists the results with all
methods. It is seen that very large errors occur with
FORM-UUA. For this highly nonlinear problem, ALK-
HRA provides much more accurate results with errors less
than 1 %. Moreover, only 51 function calls are needed with
the proposed method, which are much fewer than FORM-
UUA.

5.2 A roof structure

A roof truss structure modified from Wei et al. (2012) and
Wang et al. (2013) is investigated in this section. As shown in
Fig. 4, the bottom boom and the tension bars are made of steel
while the top boom and the compression bars are reinforced by
concrete. The roof is subjected to a uniformly distributed load q
which can be equivalently transformed into the nodal load P=
ql/4. The vertical deflection at node C can be obtained by

ΔC ¼ ql2

2

3:81

ACEC
þ 1:13

ASES

� �
ð26Þ

in which AC and AS respectively denote the sectional areas of
the concrete and steel bars; EC and ES respectively denote the
Young’s moduli of them. The vertical deflection at node C
should be less than 0.025 m, so the performance function is
constructed as G(X,Y)=0.025−ΔC. The random and interval
variables of the roof structure are listed in Table 2.

Results of this problem obtained by different methods are
listed in Table 3. It is seen that FORM-UUA behaves well in
accuracy for this simple example. However, ALK-HRA per-
forms much better than FORM-UUA no matter in efficiency
or accuracy. ALK-HRA obtains very accurate bounds of
failure probability with calling the performance function only
50 times. The DoE obtained by ALK-HRA is illustrated in
Fig. 5. It is seen that many training points are located in the
vicinity of G(X,Y)=0. Therefore ALK-HRA only finely ap-
proximates the performance function in the region of interest.
Moreover, when the Kriging model is constructed, it can be
used to obtain both the lower and upper bounds of failure
probability. However, to obtain the two bounds of failure
probability, FORM-UUA entails to be respectively per-
formed: it needs 173 function calls for Pf

max and 176 function
calls for Pf

min. Consequently, the proposed method can be so
efficient compared to FORM-UUA.

Fig. 8 A composite beam (Huang and Du 2008)

Table 6 Uncertain variables of the composite beam

Variable Variable type Parameter 1 Parameter 2 Variable Variable type Parameter 1 Parameter 2

L1/mm Normal 200 1 P4/KN Gumbel 15 1.5

L2/mm Normal 400 1 P5/KN Gumbel 15 1.5

L3/mm Normal 600 1 P6/KN Gumbel 15 1.5

L4/mm Normal 800 1 Ea/GPa Normal 70 7

L5/mm Normal 1000 1 Ew/GPa Normal 8.75 0.875

L6/mm Normal 1200 1 S/MPa Gumbel 24.5 2.45

L/mm Normal 1400 2 A/mm Interval 99.8 100.2

P1/KN Gumbel 15 1.5 B/mm Interval 199.8 200.2

P2/KN Gumbel 15 1.5 C/mm Interval 79.8 80.2

P3/KN Gumbel 15 1.5 D/mm Interval 19.8 20.2

For interval variable, parameters 1 and 2 denote the lower and upper bounds, respectively; for random variable, parameters 1 and 2 are the mean and
standard deviation respectively
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5.3 A cantilever tube

The third example is a cantilever tube, as shown in Fig. 6,
which was presented in Du (2007; 2008). The performance
function is created as

G X ; Yð Þ ¼ Sy−σmax ð27Þ

where Sy is the yield strength of the tube and σmax is the
maximum Von Mises stress which can be computed by

σmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
x þ 3τ2zx

q
ð28Þ

in which the torsional stress τzx is calculated by

τ zx ¼ Td

4I
ð29Þ

The normal stress σx is expressed as

σx ¼ P þ F1sin θ1ð Þ þ F2sin θ2ð Þ
A

þ Md

2I
ð30Þ

where

M ¼ F1L1cos θ1ð Þ þ F2L2cos θ2ð Þ
A ¼ π

4
d2− d−2tð Þ2
h i

I ¼ π
64

d4− d−2tð Þ4
h i

8>><>>: ð31Þ

Random and interval variables of the cantilever tube are
given in Table 4. There are more uncertain variables than the
numerical example in Section 5.2 and there exist several non-
normal random variables. The performance function is non-
linear and it is not monotonic in terms of the interval variables
θ1 and θ2 (Du 2007). Therefore, the extreme values of perfor-
mance function should be obtained with optimization strategy.

Results of this problem are summarized in Table 5. It can
be seen that FORM-UUA shows very poor performance for
this problem. It obtains the bounds of failure probability with
very large errors. That results from the nonlinearity of the
performance function. The nonlinearity comes from two
sources: the nonlinearity of the performance function itself
and the transformation of the non-normal random variables
into standard normal random variables. Additionally, as
FORM-UUA is a gradient-based optimization method, its
efficiency is affected by the number of uncertain variables
and the nonlinearity of the performance function. Hence the
efficiency of FORM-UUA for this problem is very low: it
needs 260 function calls for the upper bound of failure prob-
ability and 221 function calls for the lower bound.

However, ALK-HRA keeps very well both in accuracy and
efficiency. For this complicated problem, ALK-HRA

Table 7 Results for the composite beam by different methods

Method Pf
max Pf

min Function calls Error(upper bound /
lower bound)

MCS 0.00483 0.00312 2×400×105 –

ALK-HRA 0.00481 0.00314 93 0.41 %/0.64 %

FORM-UUA 0.00271 0.00164 330+286=616 43.5 %/47.9 %
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accurately obtains both bounds of failure probability with
calling the performance function only 82 times. The DoE
obtained by ALK-HRA is illustrated in Fig. 7. It is demon-
strated that ALK-HRA only locally approximates the perfor-
mance function in the region of interest. In addition, the
accuracy of ALK-HRA verifies the properties that the maxi-
mum (minimum) of the Kriging model in terms of the interval
variables will have the same sign with that of the true perfor-
mance function if the Kriging model is able to rightly predict
the sign of the true performance function.

5.4 A composite beam

A composite beam (Huang and Du 2008), as shown in Fig. 8,
is considered in this section to certify the application of ALK-
HRA to high-dimensional problems. 20 uncertain variables
exist in this problem and details of them are listed in Table 6.
The performance function is defined as

G X ; Yð Þ ¼ S−σmax ð32Þ

in which σmax is the maximum stress of the beam which
occurs in the M-M cross-section. σmax can be computed by

σmax ¼

X
i¼1

6Pi L−Lið Þ
L

L3−P1 L2−L1ð Þ−P2 L3−L2ð Þ
" #

Δ

1

12
AB3 þ AB Δ−0:5Bð Þ2 þ 1

12

Ea

Ew
CD3 þ Ea

Ew
CD 0:5Dþ B−Δð Þ2

ð33Þ

where Δ is defined as

Δ ¼
0:5AB2 þ Ea

Ew
CD Bþ Dð Þ

ABþ Ea

Ew
CD

ð34Þ

Different methods are employed to solve this complicated
problem and the results are listed in Table 7. The DoE obtain-
ed by ALK-HRA is illustrated in Fig. 9. It can be seen that
only 93 training points are chosen for a Kriging model to
predict the sign of G(X,Y). With only 93 function calls, the
proposed method obtains very accurate bounds of failure
probability. No matter in accuracy or efficiency, the proposed
method behaves much better than FORM-UUA.

5.5 Engineering application

A missile wing structure, as shown in Fig. 10, is investigated
here to demonstrate the performance of the proposed method
when dealing with practical engineering problem. The wing
structure comprises four wing spars, five wing ribs, and the
upper and lower skins. Partial of the upper skin is hidden to
illustrate inner details of the wing in Fig. 10. The wing is fixed

Fig. 10 A missile wing structure

Table 8 Uncertain variables of the missile wing structure

Variables Parameter 1 Parameter 2 Variables type

s1/mm 1 0.05 Normal

s2/mm 1 0.05 Normal

t1/mm 2 0.1 Normal

t2/mm 2 0.1 Normal

t3/mm 2 0.1 Normal

t4/mm 2 0.1 Normal

t5/mm 2 0.1 Normal

t6/mm 2 0.1 Normal

t7/mm 2 0.1 Normal

t8/mm 2 0.1 Normal

t9/mm 2 0.1 Normal

E1/GPa 116.6 118.6 Interval

E2/GPa 69 71 Interval

P/MPa 0.178 0.180 Interval

Parameters 1 and 2 are the same as the ones in Table 2

Fig. 11 FE model of the missile wing structure
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on the missile body through a connector. The spars and ribs are
made of titanium alloy. The Young’s modulus is E1, the
Poisson’s ratio is 0.3 and the density is 4.5×103 Kg/m3. The
skins are made of some kind of composite material. The
Young’smodulus isE2, the Poisson’s ratio is 0.3 and the density
is 2.0×103 Kg/m3. The thicknesses of the skins are denoted as
s1 and s2; those of the ribs are denoted as ti(i=1,2,⋯,5); those
of the spars are represented by ti(i=6,7,8,9). A uniform air
pressure P is exerted on the upper skin during flight.

The uncertain variables are listed in Table 8. To guarantee
the accuracy of missile flight path, the vertical deformation of
the wing should not exceed 10.5 mm. Hence the performance
function is defined as

G X ; Yð Þ ¼ 10:5−Δ X ; Yð Þ ð35Þ

where X and Y denote the vector of random variables and that
of interval variables, respectively; Δ(•) is the maximum ver-
tical deformation of the wing. The performance function is a
black-box function which needs to be calculated by FE
analysis.

ALK-HRA is employed to solve this complicated engi-
neering problem. MSC. Nastran is used to calculate the verti-
cal deformation of the wing structure and the FE model is
shown in Fig. 11. The wing is meshed by 4,063 shell elements
and 840 solid elements. 80 MPC elements are created to
connect the shell elements and the solid elements. The interval
of the failure probability is [0.00585, 0.00932]. For this com-
plicated engineering problem, ALK-HRA obtains this result
with only 80 times of FE analysis. The DoE obtained with
ALK-HRA is shown in Fig. 12. Again it is observed that
ALK-HRA focuses much attention on the region of G(X,

Y)=0. That is why the proposed method can be so efficient.
From this example, it is demonstrated that ALK-HRA is
suitable to cope with many complex engineering problems
with black-box performance functions.

6 Conclusion

This paper develops an ALK model for HRA with both
random and interval variables. Firstly, it is figured out that a
surrogate model just rightly predicting the sign of perfor-
mance function can satisfy the accuracy demand of HRA.
Based on this idea, ALK-HRA is proposed to iteratively
construct a Kriging model only finely approximating the
performance function in the region where the sign is prone
to be wrongly predicted. Thus ALK-HRA is able to meet the
demand of HRA in accuracy with calling the performance
function only a few times.

The performance of the proposed method is tested with
four numerical examples and one engineering example.
Compared with FORM-UUA, no matter in efficiency or ac-
curacy, ALK-HRA behaves very well revealed from four
numerical examples. ALK-HRA is able to obtain very accu-
rate bounds of failure probability even when the performance
function is highly nonlinear. Moreover, the single Kriging
model can be used to obtain both the lower and upper bounds
of failure probability. Therefore ALK-HRA is generally more
efficient than FORM-UUA. From the last engineering appli-
cation, it is seen that ALK-HRA is an efficient technique that
is capable of dealing with complex engineering problems with
black-box performance functions.
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However, it should be pointed out that the proposed meth-
od has its own limitations. As revealed from the numerical
examples, the efficiency of the proposed method decreases as
the number of uncertain variables increases. When there are
too many uncertain variables, like 50 or100, much more
training points and iterations are needed to construct the
Kriging model. And then the proposed strategy loses its
numerical efficiency. This limitation requires further investi-
gation. In addition, ALK-HRA is not applicable to estimating
small probability of failure. When the bounds of failure prob-
ability are very small, a very large number of samples are
necessary and so many searches for the extreme responses by
global optimization algorithm need to be performed based on
the Kriging model. Although there is no need to call the
performance function in this process, it can also become very
time-consuming in practice. To overcome this curse, two
solutions will be researched in our future work: (1) combining
ALKmodel with importance sampling to reduce the simulated
samples; (2) introducing Karush-Kuhn-Tucker conditions like
Du (2007) did so that many searches of extreme responses can
be skipped.
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