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Abstract Gradient-based optimization for large-scale, mul-
tidisciplinary design problems requires accurate and effi-
cient sensitivity analysis to compute design derivatives.
Presented here is a nonintrusive analytic sensitivity method,
that is relatively easy to implement. Furthermore, it can
be as accurate as conventional analytic sensitivity methods,
which are intrusive and tend to be difficult, if not infeasible,
to implement. The nonintrusive local continuum shape sen-
sitivity method with spatial gradient reconstruction (SGR) is
formulated for nonlinear systems. This is an extension of the
formulation previously published for linear systems. SGR, a
numerical technique used to approximate spatial derivatives,
can be leveraged to implement the sensitivity method in a
nonintrusive manner. The method is used to compute design
derivatives for a variety of applications, including nonlin-
ear static beam bending, nonlinear transient gust response
of a 2-D beam structure, and nonlinear static bending of
rectangular plates. To demonstrate that the method is nonin-
trusive, all analyses are conducted using black box solvers.
One limiting requirement of the method is that it requires
the converged Jacobian or tangent stiffness matrix as out-
put from the analysis tool. For each example the design
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derivatives of the structural displacement response are veri-
fied with finite difference calculations.
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Nomenclature

αeff Effective angle of attack
A General time-space differential operator
b Design variables
B General boundary operator

CLα Lift curve slope
f Body forces)
F Applied load vector

Ff Quasi-steady lift force
� Spatial boundary
g Applied boundary forces

[K] Stiffness matrix
M Internal bending moment
N Internal axial force
� Spatial domain
ψ Rotational degree of freedom

q∞ Dynamic pressure
Q Secondary response variables
s Effective lifting area
t Time variable

[T ] Tangent stiffness matrix
u x-dispacement
u Primary response variables

Ug Gust velocity
v y-displacement
V Design velocity
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V Internal shear force
w z-displacement
x Vector of Cartesian coordinates
∇ Gradient operator

(·)′ Local design derivative
˙(·) Total design derivative

1 Introduction

In Cross and Canfield (2013) a nonintrusive local contin-
uum shape design sensitivity formulation was presented and
implemented for linear transient beam and linear static plate
models. The work presented here extends this formulation
to nonlinear systems and is implemented for the same mod-
els with the inclusion of geometric nonlinearity. This marks
the first nonintrusive analytic shape design sensitivity for-
mulation for nonlinear structural problems. By nonintrusive
it is meant that the analysis tool can be treated as a black box
for which source code is not modified. Successfully imple-
menting gradient-based optimization for large-scale design
problems requires an accurate and efficient method for com-
puting design derivatives. The process of calculating design
derivatives is commonly referred to as sensitivity analysis,
or more specifically as design sensitivity analysis (DSA).

Various methods for conducting DSA may be classified
as either numerical or analytical DSA methods. The most
common numerical method is the finite difference method.
It is very popular because it is nonintrusive, which makes it
easy to implement with any analysis tool. However, it is well
known that, because this method requires a baseline analy-
sis and an analysis for each perturbed design variable, it is
computationally expensive. Furthermore, it can be innacu-
rate due to roundoff and truncation errors. Therefore, much
attention has been given to analytical methods, because they
are more efficient and robust than numerical methods, and
are often more accurate. However, unlike the finite differ-
ence method, analytical methods generally are intrusive.

The intrusive nature of conventional analytic methods
stems from the fact that analytic sensitivity equations must
be derived by differentiating the governing equations. In
addition, the sensitivity equations are specific to approx-
imations made by the analysis tool (e.g. finite element
discretization, numerical integration, linearization, etc.).
Therefore, analytic methods are typically difficult to imple-
ment with general purpose codes, especially for nonlin-
ear analysis, because it requires “intimate knowledge” of
how the problem is formulated and solved by the analy-
sis tool (Haftka and Adelman 1989). Oftentimes, this type
of information is not provided in the manuals of gen-
eral purpose analysis tools, making them true black boxes.

Furthermore, different models and variable fidelities require
separate formulations of the sensitivity equations. The ana-
lytical method presented by Cross and Canfield (2013)
largely overcomes the disadvantages of conventional ana-
lytical methods, because the unique formulation of the local
continuum shape sensitivity method is nonintrusive. This
work extends that local continuum formulation and fulfills
a critical need for a nonintrusive analytic sensitivity method
for nonlinear problems. The primary limitation of the non-
intrusive method is that it requires access to the Jacobian
matrix used by the iterative nonlinear solver. Sometimes the
analysis tool may not provide the ability to output the Jaco-
bian matrix. For many CFD codes the Jacobian is never fully
assembled or used in any form. Therefore, this method is not
immediately applicable to such codes. However, the terms
needed to form the tangent stiffness are often computed in
many Newton-type solvers. Making use of them nonintru-
sively, if available, is a topic currently being investigated.

Continuum sensitivity analysis (CSA) is a specific type
of analytical sensitivity method. Arora and Haug (1978,
1979), Dems and Mroz (1985), and Dems and Haftka
(1989) were among the first to introduce CSA for structural
problems. Haug and Arora (1978) were the first to imple-
ment CSA for shape design problems. Choi and Kim (2005)
extensively documented CSA formulation for structural
optimization, and Jameson (1988) pioneered the adjoint
formulation of CSA for aerodynamic shape optimzation.
Borggaard and Burns (1994, 1997) applied CSA for fluid
flowwith a direct formulation for aerodynamic design. They
followed up this work with other applications of CSA to
fluid flow optimization, as did Stanley and Stewart (2002).
Turgeon et al. (1999) and Etienne and Pelletier (2005) have
applied CSA to numerous fluid-structure interaction (FSI)
problems, focusing on sensitivities of fluid flow param-
eters for nearby problems. Most recently, Wickert, Liu,
Canfield, and Cross have employed CSA for shape opti-
mization of nonlinear structures subject to an aeroelastic
gust response (Wickert and Canfield 2008; Wickert et al.
2008, 2009; Wickert 2009; Liu and Canfield 2012, 2013a, b;
Cross and Canfield 2012a, b).

There are two general classes of CSA, the local contin-
uum method, which poses the sensitivity equations in terms
of local design derivatives, and the total continuum method,
which poses the sensitivity equations in terms of total design
derivatives. The local continuum method is most commonly
used by the fluids community, who typically work with
Eulerian reference frames. Early on, the structures commu-
nity largely abandoned the local continuum method, opting
for the total continuum method instead. The reason for
this was three-fold. First, total design derivatives typically
are required for shape design. Second, as discussed by
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Liu and Canfield (2013a), the continuity requirements for
total derivatives are the same as for the original field vari-
able. Third, the boundary conditions of the local continuum
method contain high-order spatial derivatives that can be
difficult to accurately recover. However, the total continuum
method is intrusive, while the local continuum method pro-
vides an opportunity for a nonintrusive formulation. Cross
and Canfield (2013) presented a local continuum method
that is nonintrusive and eliminates the need to approximate
high-order derivatives from primary variable output.

Duvigneau and Pelletier (2006) developed a technique to
provide accurate approximations of first- and higher-order
spatial derivatives of primary variables, which are used
to formulate the boundary conditions of local continuum
sensitivity equations (CSEs) for fluid flow applications.
Their technique stemmed from work done by Zienkiewicz
and Zhu (1992). In this research, as presented by Cross and
Canfield (2013), the derivative recovery technique, which is
being called spatial gradient reconstruction (SGR), is used
to approximate only first-order spatial derivatives, but of
both primary and secondary variables. This eliminates the
need to recover high-order derivatives of primary variables
directly, and enables a nonintrusive local CSA formulation
that can be as or more accurate than conventional methods.

The structures community typically opts for total CSA
for another reason: the presence of strain discontinuities at
structural interfaces causes the local design derivative vari-
ables to be discontinuous also. Choi and Kim (2005) and
Liu et al. (2010) point out that when using local CSA, spe-
cial boundary conditions must be enforced at the structural
interfaces to account for possible strain discontinuities. This
is an inconvenience not inherited by total CSA, but one that
must be accepted in order to use the nonintrusive local CSA
formulation. An added advantage of local CSA is that the
design velocity only needs to be defined on the boundary,
and unlike discrete sensitivity analysis, it does not require
mesh sensitivities.

The next section extends the local CSA formulation with
SGR from Cross and Canfield (2013) to nonlinear analysis.
The remaining sections provide several examples where
the method is implemented for nonlinear static bending
of a 1-D cantilevered beam, nonlinear transient gust anal-
ysis of a 2-D beam model, nonlinear static bending of a
rectangular plate with out-of-plane loading, and nonlinear
static bending of a beam-stiffened rectangular plate with
coupled out-of-plane and in-plane loading. All analyses
are conducted with black box tools, which demonstrates
the nonintrusive nature of the method. The design deriva-
tive solutions are compared to finite difference results.
Lastly, throughout the paper the advantages as well as the
limitations of the method are discussed.

2 Local continuum shape sensitivity formulation

2.1 Governing equations and the material derivative

Figure 1 represents the domain, �, in Cartesian space, with
essential (geometric) boundary conditions specified on �e,
and non-essential (natural) boundary conditions specified
on �n of a boudary value problem

A(u, t; b) = f (x, t; b) on � (1)

B(u, t; b) = g(x, t; b) on � (2)

where A and B are the time-space differential operator and
the boundary condition operator, respectively. In addition,
u = u(x, t; b) is a vector of the state or response variables,
b is a vector of design variables, x is a vector of spatial
coordinates, and t is a temporal variable. The total design
derivative of response variables, u with respect to the i-th
design parameter, bi is the material derivative.

Du

Dbi

= ∂u

∂bi

+ ∂u

∂x
· ∂x

∂bi

(3)

This material derivative consists of the local design deriva-
tive, ∂u

∂b
, plus a convective term, ∂u

∂x
· ∂x

∂bi
. The convective

term captures material movement of the domain, which only
occurs when the design variable is a shape parameter. It
consists of two parts, spatial derivatives of the response vari-
ables and design derivatives of the spatial variables. The
latter is often referred to as the design velocity (Arora and
Haug 1979; Choi and Kim 2005). Subsequent derivations
use the following compact notation of (3) (Wickert and
Canfield 2008).

u̇ = u′ + ∇xu · V (4)

The convective term plays a vital role in local CSA, because
it relates the local and total design derivatives to one
another. CSA can be conducted using either direct or adjoint

Fig. 1 Domain, �, with boundaries �e and �n
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formulations. Only the direct method will be discussed
here.

2.2 Local continuum shape sensitivity equations

The formulation for linear problems was presented in Cross
and Canfield (2013). A convenience of linear problems is
that the local CSEs maintain the same left-hand side differ-
ential operators as the governing equations. This is not the
case for nonlinear problems. By factoring out a u from (1)
and (2), the governing equations of the nonlinear boundary
value problem can be rewritten as

A(u, t; b) = ANL(u, t)u = f (x, t; b) on � (5)

B(u, t; b) = BNL(u, t)u = g(x, t; b) on � (6)

where ANL and BNL are nonlinear differential operators
that are functions of u. Following the derivation in Cross
and Canfield (2013) and being mindful of the chain rule,
partial differentiation of (5) yields

(ANL(u, t))′ u + ANL(u, t)u′ = f ′(x, t; b) on �

(7)

where, because ANL has an implicit dependence on b

through u,

(ANL(u, t))′ = A′
NL(u, t) + ∂ANL

∂u
(u, t)u′ (8)

Substitution of this definition and rearrangement yields the
local CSE’s(

ANL(u, t)+ ∂ANL

∂u
(u, t)

)
u′ = f ′(x, t; b)

−A′
NL(u, t)u on � (9)

Total differentiation of (6) yields

˙(
BNL(u, t)

)
u + (BNL(u, t)) u̇ = ġ(x, t; b) on �

(10)

where
˙(

BNL(u, t)
)

= B ′
NL(u, t) + ∂BNL

∂u
(u, t) u′

+∇x (BNL(u, t)u) · V (11)

Equation (10) can be expressed as the local CSE boundary
condition by expanding the total design derivatives on the
left hand side according to (4) and rearranging terms.(

BNL(u, t) + ∂BNL

∂u
(u, t)

)
u′ = ġ(x, t; b)

−B ′
NL(u, t)u − ∇x (BNL(u, t)u) · V on � (12)

Equations (9) and (12) are the local CSEs and their sensitiv-
ity boundary conditions, respectively. If non-differentiable

concentrated loads are present, then they must be defined as
domain interfaces with appropriate interface boundary con-
ditions. The governing equations over each domain and all
associated boundary conditions can then be differentiated
according to (9) and (12).

The static version of the linearized system can be dis-
cretized using the Galerkin finite element method to give

[K
(
{u}(r−1)

)
]{u}(r) = {F } (13)

where ur denotes the solution at the r-th iteration of the iter-
ative nonlinear solver. Borggaard and Burns (1994), Liu and
Canfield (2013c), and Wickert (2009) all showed that, if the
same discretization used for the analysis is used to discretize
the local CSEs, then the static version of the discretized
local CSEs is

[T ({u})] {u′} = {FLocal} (14)

where [T ({u})] is the tangent stiffness matrix of a Newton-
Raphson solver and {FLocal} is the reduced vector of local
CSE boundary conditions. The tangent stiffness matrix is
defined in relation to the nonlinear stiffness matrix as

Tij (u) = Kij (u) +
n∑

m=1

∂Kim

∂uj

um (15)

Notice the similarity between (15) and the left-hand sides of
(9) and (12). The only differences between the local CSEs
presented in Cross and Canfield (2013) for linear problems
and the local CSEs presented here for nonlinear problems
are the definitions of the differential operators. The next
subsection discusses how this effects the implementation of
the local continuum method.

2.3 Implementation and solution of the local continuum
sensitivity equations

For linear problems, the analysis tool used to solve the origi-
nal system can also be used to solve the local CSEs, because
the corresponding local CSEs are governed by the same
differential operators that appear in the governing equa-
tions. After conducting the original analysis, the output can
be used to formulate the boundary conditions of the local
CSEs. These can then be applied to a second analysis which
yields the local design derivative solution. Another option is
to solve the local CSEs externally, which requires that the
analysis tool provide the system matrices used to solve the
original analysis.

It is not as straightforward for nonlinear problems,
because the differential operators of the local CSEs are not
equivalent to those of the governing equations. Therefore,
the primary option is to solve the local CSEs for nonlinear
problems externally by having the analysis tool provide the
converged tangent matrix, such as the one in (14).
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For the essential and non-essential boundary conditions
it can be stated that

B(e)
NL

u
NL

= u
NL

= ġ�e
(x, t; b) on �e, (16)

and

B(n)
NL

u
NL

= Q
NL

= ġ�n
(x, t; b) on �n (17)

where B(e)
NL

and B(n)
NL

are the essential and non-essential
nonlinear boundary condition operators, respectively, and
u

NL
and Q

NL
are the primary variable (e.g. displacement)

and secondary variable (e.g. element force) responses of the
nonlinear analysis, respectively. Assuming that B ′

NL
van-

ishes from (12) (discussed in Cross and Canfield 2013), it
follows that the local CSE boundary conditions for nonlin-
ear problems, can be rewritten as
(

B
(e)
NL(u

NL
) + ∂B

(e)
NL

∂u

(
u

NL

))
u′

NL
= u′

NL
= ġ�e

(x, t; b)

−∇xu
NL

· V on �e (18)

(
B

(n)
NL(u

NL
) + ∂B

(n)
NL

∂u

(
u

NL

))
u′

NL
= Q′

NL
= ġ�n

(x, t; b)

−∇xQ
NL

· V on �n (19)

In order to solve the local CSEs, the system matrix
of the original analysis is used as the sensitivity coeffi-
cient matrices of the local CSEs. The possibility of saving
the decomposed matrix to solve the sensitivity equations
for subsequent design variables provides computational
efficiency that numerical methods cannot. The ġ terms
in boundary conditions (18) and (19) can be formulated
directly from the enforced displacements and applied loads.
The V term in boundary conditions (18) and (19) is the
design velocity, which can be formulated directly from the
geometric parameterization. Lastly, the spatial derivatives
that appear in boundary conditions (18) and (19) can be
approximated using spatial gradient reconstruction (SGR).
The details of implementing SGR, which originated from
work previously done by Duvigneau and Pelletier (2006)
and Zienkiewicz and Zhu (1992), are provided in Cross and
Canfield (2013). In short, Duvigneau and Pelletier (2006)
used this approach to recover high-order derivatives of the
primary variables, but here, (18) and (19) only require first-
order derivatives of both primary and secondary variables.
The first-order derivatives of a state or response variable at
a particular finite element node are approximated through
a least-squares match of the response data and a Taylor
series approximation of the response data expanded around
the node of interest. The response data that is included in
the least-squares match is determined by the definition of a
patch. A patch is a local region comprised of nearby finite

elements. Qualitatively speaking, the accuracy of SGR is
improved by increasing the nodal density of the patches
and by increasing the order of the Taylor series expansions.
For subsequent examples, illustrations of patches and the
corresponding least-squares match are shown.

As discussed in Cross and Canfield (2013) conventional
analytic sensitivity methods are intrusive, meaning that
formulation of the boundary conditions requires “intimate
knowledge” of the source code and numerical formula-
tion (Haftka and Adelman 1989). However, this particular
method can be implemented nonintrusively, if the following
data can be provided by the analysis tool:

1. linear system matrices and converged tangent system
matrices

2. primary variable response data (e.g. displacements)
3. secondary variable response data (e.g. element forces)

If these data can be provided by the analysis tool as output,
then the boundary conditions can be formulated nonin-
trusively. Then, the local CSEs can be solved, and the
local design derivative solution can be transformed into
a total design derivative solution via (4). A flowchart of
the approach is provided below (Cross and Canfield 2013)
(Fig. 2).

Conventional implementation of local CSA (Liu and
Canfield 2013a) uses only primary variable response data,
which results in an intrusive method, because the defini-
tion of the boundary condition operator, B

NL
, is required.

Furthermore, it results in local CSE boundary conditions
that depend on high-order derivatives of the primary vari-
ables. Approximation of these high-order derivatives can
introduce numerical error into the design derivative solu-
tion. As previously mentioned, this is one reason that local
CSA has largely been ignored by the structures commu-
nity. Using the secondary variable response data provides
two unique advantages. First, a nonintrusive implementation
is achieved, and second, only first-order derivatives need
to be approximated. Many analysis tools use techniques to
improve the accuracy of the secondary variable response
data (MSC Software Corporation 2010), which could result
in a more accurate boundary condition formulation.

Furthermore, because conventional methods are intru-
sive, separate derivations of the local CSEs are required
for different models. In contrast, the local CSA with SGR
method presented here is nonintrusive and element agnos-
tic. Therefore, if the local CSA with SGR algorithm takes
the system matrices, primary variable response data, and
secondary variable response data as input, then information
redarding the analysis source of the input is not required
by the algorithm. For example, the same algorithm can be
used for DSA of linear and nonlinear problems; problems
that use Euler-Bernoulli or Timoshenko beam theories; or
problems solved using different orders of nodal based shape



854 D. M. Cross, R. A. Canfield

Fig. 2 Detailed flow chart of
local continuum shape
sensitivity method with spatial
gradient reconstruction (Cross
and Canfield 2013)

functions. This advantageous characteristic is demonstrated
in the remaining sections with several examples.

3 Euler-Bernoulli vs. Timoshenko beam theory

This section presents design derivative results for a short,
thick cantilevered beam that is modeled in Nastran (SOL
400) using both Euler-Bernoulli and Timoshenko beam the-
ories (MSC Software Corporation 2010). The beam has
Young’s modulus, E = 70GPa, a shear modulus, G =
26GPa, a cross-sectional area, A = 0.0015m2, a area
moment of inertia, I = 4.3×10−5m4, and a shear correction
factor, ks = 5/6. The beam, which has a length, L = 0.5m,
is subjected to an end load, P = 1MN . Geometric nonlin-
earity is included in the analyses. The design derivative of
the displacement response is calculated with respect to the
length of the beam, L. The design velocity vector, with unit
normal coordinate directions x̂, ŷ, and ẑ, is defined as

V = x

L
x̂ + 0ŷ + 0ẑ (20)

The sensitivity system is solved in the global reference
frame. The global displacement degrees of freedom are
u = {u, w, ψ}, where u is horizontal displacement, w is
vertical displacement, and ψ is rotation. The forces are
Q = {N, V, M}, where N is the horizontal force, V is the
vertical force, and M is the bending moment. Therefore, the
local CSEs simplify to

(
ANL(u) + ∂ANL

∂u
(u)

)
u′ = 0 on � (21)

u′(0) = −∇xu(0) · V(0) = 0 (22)

Q′(L) = −∇xQ(L)·V(L) = −{N,x(L), V,x(L), M,x(L)}T
(23)

SGR was used to approximate the spatial derivatives that
appear in (23) and that appear in the convective term used
to transform the local design derivative solution into a total
design derivative solution. Five-layer patches and fourth-
order Taylor series expansions were used to conduct SGR.
Figure 3 illustrates how a five-layer patch and fourth-order
Taylor series expansion are used to approximate the first-
order spatial derivative of the axial force at the end of the
beam.

Both Euler-Bernoulli and Timoshenko beam theory
results are shown in Fig. 4, with vertical displacement on

A
xi

al
 F

o
rc

e,
 N

Axial Force, 5 Layer Patch and 4th−Order Taylor Series Expansion

Nastran Axial Force Output

Expansion Point

4th−Order Taylor Series Approximation

Data Points Included in Patch

0 0.1 0.2 0.3 0.4 0.5
3.05

3.055

3.06

3.065

3.07

3.075

3.08

3.085 x 10
4

X

Fig. 3 SGR of axial force employed with a five-layer patch and
fourth-order Taylor series expansion
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Fig. 4 Vertical displacement
(left) and design derivative of
vertical displacement w.r.t. L
(right) for a cantilevered beam
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Euler−Bernoulli −− Local CSA w/ SGR

the left, and the total design derivative of vertical displace-
ment on the right. Again, the total design derivatives were
calculated with respect to the length of the beam, L, and are
compared to finite difference results with a relative step size
of 10 − 3. The displacement results indicate that the Euler-
Bernoulli beam behaves more stiffly, because shear effects
are neglected. As a result its design derivative solution is
less sensitive to the length of the beam. The absolute per-
cent relative difference between the local continuum results
and finite difference results were calculated using (24) and
are tabulated in Table 1.

εφ =
∥∥φ

LC
− φ

FD

∥∥∞∥∥φ
FD

∥∥∞
× 100 (24)

Here, φ is a general design derivative variable, and the
subscripts LC and FD indicate coming from the local
continuum and finite difference solution, respesctively.

The same algorithm was used for the Euler-Bernoulli
and Timoshenko design derivative calculations. Although,
different nonlinear operators are used for the analyses, the
same type of data feeds into the local CSA with SGR
algorithm. Conventional analytic sensitivity methods would
require different calculations, based on the specific def-
initions of the nonlinear operators. For this reason, the
nonintrusive nature of this method is advantageous. Further-
more, so long as accurate derivative approximations can be

Table 1 Absolute percent relative difference of design derivative
results

ε u̇ ẇ ψ̇

Timoshenko 0.142 0.081 0.030

Euler-Bernoulli 0.234 0.109 0.029

made using SGR, then one can expect similarly accurate
design derivative solutions (Cross and Canfield 2013).

4 Nonlinear transient gust response of 2-D beam model

4.1 Model information

The joined-beam model presented in Cross and Canfield
(2013) is again presented here, but is now modeled using
a nonlinear transient gust analysis. Liu et al. (2010) intro-
duced the aeroelastic model shown in Fig. 5 in the context of
CSA. The model consists of a long and slender cantilevered
beam with a typical section airfoil mounted at the free end.
An angled bracing member supports the cantilevered beam.
The aeroelastic structure is submerged in a free stream flow
and during a specified period of time encounters a one-
minus-cosine vertical gust load. The system is aeroelastic
because the beam deformation and the aerodynamic load
are coupled. The objective is to compute the design deriva-
tives of the transient gust response with respect to the length
of the cantilevered beam, L. The geometry is parameterized
such that the angle, β, remains constant for a perturbation in

Fig. 5 Typical section airfoil mounted on the free end of a braced
cantilever beam
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L. The angle, β has been treated as a shape variable by Liu
and Canfield (2013a).

In Cross and Canfield (2013) the linear aeroelastic gust
response was calculated using Nastran’s OpenFSI interface.
This allows Nastran’s SOL 400 transient solver to com-
municate with an externally defined C++ code, where the
quasi-steady aerodynamics load is defined (MSC Software
Corporation 2010). The local CSEs were then solved out-
side of Nastran using a linear transient solver. This required
Nastran to provide the mass matrix, the converged tan-
gent stiffness matrices (global and elemental) at each time
step, and the time histories of displacements and element
forces. Unfortunately, for the nonlinear transient gust prob-
lem, Nastran does not provide element forces as output.
Therefore, Nastran does not meet the previously defined
requirements for the nonlinear transient problem. A non-
linear transient aeroelastic analysis tool, provided by Liu
and Canfield (2013a), was used to compute the nonlinear
gust response and design derivative results shown here. This
tool was treated entirely as a black box, but was chosen
because it could provide the necessary output data required
to perform local CSA with SGR.

4.1.1 The structural parameters

The cantilevered beam has the following properties: the
length of the beam, L = 6m, the axial stiffness, EA =
1.0556 × 108N , the bending stiffness, EI = 3.0023 ×
106Nm2, the shear stiffness, GA = 3.9208 × 107N , the
shear correction factor, k = 5/6, the mass per unit length,
ρA = 307kg/m, and the mass moment of inertia, Im =
52.4 kg m2. The properties of the bracing member (strut)
are: the strut angle, β = 45o, the strut location, ε = 1/2,
the axial stiffness, EAs = 7 × 106N , the bending stiffness,
EIs = 6.5023 × 104Nm2, the mass per unit length, ρAs =
34N/m, and the mass moment of inertia, Ims = 1.3 kg m2.

4.1.2 The typical section aerodynamics

The lift force, Ff (t), is modeled using typical section,
quasi-steady aerodynamics.

Ff (t) = q∞sClααeff (t) (25)

In (25), q∞ is the dynamic pressure, s = 6m2 is the effective
lifting area (the chord multiplied by the span of the airfoil
section), Clα is the lift curve slope, and αeff is the effective
angle of attack. The dynamic pressure is defined as

q∞ = 1

2
ρ∞U2∞ (26)

where, ρ∞ is the air density and U∞ is the free stream
velocity. The effective angle of attack is defined as

αeff = αi + θtip + Ug

U∞
+ h,t

U∞
(27)

In (27), αi is the incidence angle of attack (orientation of
the airfoil relative to the beam frame), θtip is the rotation
of the beam at the free end, Ug is the gust velocity, and
h,t is the plunge velocity at the free end of the beam. The
plunge velocity has a damping effect, which causes the gust
response to dissipate, returning the system to the steady state
solution. The gust velocity is defined as

Ug(t) =
{

1
2Ug,max

(
1 − cos

(
2π(t−τi )

τf

))
τi ≤ t ≤ τf

0 otherwise

(28)

The aerodynamic parameters are the air density, ρ∞ =
1.2kg/m3, the free stream velocity, U∞ = 70m/s, the
effective lifting area, s = 6m, the lift curve slope,Clα = 2π ,
the incidence angle of attack, αi = 3o, the peak gust veloc-
ity, Ug,max = 20m/s, and the gust period, τi = 3s and
τf = 4s.

4.2 Design derivative results

The design velocity takes the same definition as the previ-
ous example, (20), and the system has the same degrees of
freedom, u = {u, w, ψ} and Q = {N, V, M}. The local
CSEs also take a similar form, only now they are dynamic
equations.(

ANL(u, t) + ∂ANL

∂u
(u, t)

)
u′ = 0 on � (29)

u′(0, t) = −∇xu(0, t) · V(0) = 0 (30)

Q′(L, t) = ġ(L, t) − ∇xQ(L, t) · V(L)

= {−N,x(L, t), Ḟf (t)− V,x(L, t), −M,x(L, t)}T
(31)

where the total design derivative of the aeroelastic load, Ḟf

is defined as

Ḟf (t) = q∞sClα

(
θ̇t ip + 1

U∞ ḣ,t

)
= q∞sClα

(
ψ ′ + ψ,x + 1

U∞
(−w,′t −w,tx

))∣∣∣
x=L

(32)

Furthermore, strain discontinuities at the joint of the main
beam and the strut require the following boundary con-
ditions to be enforced. Details concerning these boundary
conditions can be found in Liu and Canfield (2013a).

u′(x+
j ) = u′(x−

j ) −
(
u,x(x

+
j ) − u,x(x

−
j )

)
V(xj ) (33)
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Q′(xj ) = −
∑

Q,x(xj )V(xj ) (34)

where xj is the joint location and is equal to εL and ε =
1/2. A ()+ indicates the evaluation is from the right, and a
()− indicates the evaluation is from the left. These boundary
conditions require that SGR be used to reconstruct spatial
derivatives of u from both the left and right sides of the joint
and Q from each of the three structural elements adjacent
to the joint. When conducting SGR to approximate these
terms, it is essential that the patches are adjacent to the joint,
but do not cross over it. This is necessary to capture any
discontinuities that may be present.

A more detailed derivation of the local CSEs is included
in Cross and Canfield (2013). The results are shown in Fig. 6
with vertical displacement on the left and the design deriva-
tive of vertical displacement on the right. Again, design
derivatives were calculated with respect to the length of
the beam, L, and are validated by comparison to finite
difference results (10−3 was the converged step size). In
addition to the results for the nonlinear gust response, the
results for the linear gust response presented in Cross and
Canfield (2013) are also shown. Four-layer patches and
third-order Taylor series expansions were used to conduct
SGR. Furthermore, the same linear transient solver was used
to solve the local CSEs for both the linear and nonlinear gust
problems.

The relative difference between the local CSA and finite
difference solutions is calculated for the time integrated

design derivative of nonlinear displacement at both the end
of the beam

∫ t

0 ẇ
LC

(L, t)dt − ∫ t

0 ẇ
FD

(L, t)dt∫ t

0 ẇ
FD

(L, t)dt
= 0.0198 (35)

and the joint location.

∫ t

0 ẇ
LC

(x
J
, t)dt − ∫ t

0 ẇ
FD

(x
J
, t)dt∫ t

0 ẇ
FD

(x
J
, t)dt

= 0.0578 (36)

The finite element model consisted of 40 beam elements,
and the time integration consisted of 1500 time steps. When
investigated this 40 element mesh under static loading for
linear analysis, it was determined that four-layer patches
and third-order Taylor series produced the most accurate
results. Any more layers pollute the SGR calculations with
truncation error, becuase the data points are relatively far
from the expansion point. Therefore, four-layer patches and
third-order Taylor series were assumed to be the best SGR
parameters for local CSA of the linear and nonlinear tran-
sient gust responses. A finite element mesh with more
degrees of freedom would certainly improve the accuracy
but at an additional cost. Furthermore, the linear and non-
linear analyses are sufficiently converged using 1500 time

Fig. 6 Joined-beam aeroelastic
gust response. a Vertical
displacement at free end b
Sensitivity of vertical
displacement at free end w.r.t.
length, L cVertical displacement
at joint d Sensitivity of vertical
displacement at joint w.r.t.
length, L
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steps. However, a finer temporal mesh of 2000 time steps
reduced the relative differences reported in (35) and (36) to
0.0132 and 0.036 respectively.

The linear and nonlinear responses are critically differ-
ent. During the gust response, the bracing member (strut)
exhibits dramatic geometric nonlinearity, which minimizes
its load carrying capability. This softening effect results in
very large displacements and rotations, which are illustrated
in Fig. 7. The maximum vertical displacement that occurs
during the nonlinear response is approximately 70 percent
larger than that of the linear response. This is the same
type of behavior that was determined to be a critical design
condition for HALE aircraft such as Helios (NASA 2004)
and Sensorcraft (Johnson 2001). Furthermore, the design
derivative results indicate that the nonlinear repsonse is sig-
nificantly more sensitive to the geometry of the joined beam
configuration than the linear response. The maximum total
design derivative of vertical displacement that occurs during
the nonlinear response is approximately 560 percent larger
than that of the linear response. This is further evidence
that an accurate and efficient design derivative capability is
necessary for such nonlinear models.

5 Nonlinear static plate bending

5.1 Rectangular plate with mixed boundary conditions

The plate model from Section 5.2 of Cross and Canfield
(2013), which has two clamped edges and two simply-
supported edges, is modeled in Nastran with geometric
nonlinearity included. The in-plane degrees of freedom are
coupled with the out-of-plane degrees of freedom for the
nonlinear problem. The plate lies in the x-y plane with x-
dimension, a = 1m and y-dimension, b = 1.5m. The

0 1 2 3 4 5 6
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1.5
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2.5
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JOINED BEAM DEFORMATION at TIME, t = 3.72 sec

X

Y

Linear

Nonlinear

Fig. 7 Joined-beam deflection during the gust response at t = 3.72
seconds (blue: linear response, red: nonlinear response)

magnitude of the uniformly distributed out-of-plane load
is q0 = 100000N/m2, and the plate has Young’s modu-
lus, E = 7e10N/m2; thickness, t = 0.01m; and Poisson’s
ratio, ν = 0.25. The edges along x = 0 and x = a

are simply-supported, while the edges along y = 0 and
y = b are clamped. Design derivatives of the displacement
response are calculated with respect to the plate dimension
a. Therefore, the design velocity takes the form

V(x, y; a) = Vx x̂ + Vy ŷ = x

a
x̂ (37)

The displacement degrees of freedom are u(x, y) =
{u, v, w, ψx, ψy}T , where u and v are in-plane displace-
ments, w is the out-of-plane displacement, and ψi is the
rotation about the i-th axis. For this example the rotation
about the z-axis (drilling degree of freedom) is held fixed.
The forces are Q(x, y) = {Nx, Ny, V, Mx, My}T , where
Ni is axial force in the i-th direction, V is through-thickness
shear force, and Mi is the bending moment acting on a
face whose outward normal is in the i-th direction. The uni-
formly distributed transverse load is not dependent on the
shape change, thus f ′ = 0, and the local CSEs are

(
ANL(u) + ∂ANL

∂u
(u)

)
u′ = 0 on � (38)

Cross and Canfield (2013) derive the local CSEs for a linear
static plate problem where the load is shape dependent. The
local CSE boundary conditions along x = 0 are

u′(0, y) = u̇(0, y) − u,x(0, y)Vx(0, y) = 0 (39)

v′(0, y) = v̇(0, y) − v,x(0, y)Vx(0, y) = 0 (40)

w′(0, y) = ẇ(0, y) − w,x(0, y)Vx(0, y) = 0 (41)

ψ ′
x(0, y) = ψ̇x(0, y) − ψx,x(0, y)Vx(0, y) = 0 (42)

M ′
x(0, y) = Ṁx(0, y) − Mx,x(0, y)Vx(0, y) = 0 (43)

The local CSE boundary conditions along x = a are

u′(a, y) = u̇(a, y) − u,x(a, y)Vx(a, y) = −u,x(a, y) (44)

v′(a, y) = v̇(a, y) − v,x(a, y)Vx(a, y) = −v,x(a, y) (45)

w′(a, y) = ẇ(a, y) − w,x(a, y)Vx(a, y) = −w,x(a, y)

(46)

ψ ′
x(a, y) = ψ̇x(a, y) − ψx,x(a, y)Vx(a, y) = −ψx,x(a, y)

(47)
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M ′
x(a, y) = Ṁx(a, y)−Mx,x(a, y)Vx(a, y) = −Mx,x(a, y)

(48)

The local CSE boundary conditions along y = 0 are

u′(x, 0) = u̇(x, 0)−u,x(x, 0)Vx(x, 0) = −u,x(x, 0)
x

a
(49)

v′(x, 0) = v̇(x, 0)−v,x(x, 0)Vx(x, 0) = −v,x(x, 0)
x

a
(50)

w′(x, 0) = ẇ(x, 0) − w,x(x, 0)Vx(x, 0) = −w,x(x, 0)
x

a
(51)

M ′
y(x, 0) = Ṁy(x, 0) − My,x(x, 0)Vx(x, 0) = −My,x(x, 0)

x

a

(52)

ψ ′
y(x, 0) = ψ̇y(x, 0)−ψy,x(x, 0)Vx(x, 0) = −ψy,x(x, 0)

x

a
(53)

Lastly, The local CSE boundary conditions along y = b are

u′(x, b) = u̇(x, b) − u,x(x, b)Vx(x, b) = −u,x(x, b)
x

a
(54)

v′(x, b) = v̇(x, b)−v,x(x, b)Vx(x, b) = −v,x(x, b)
x

a
(55)

w′(x, b) = ẇ(x, b) − w,x(x, b)Vx(x, b) = −w,x(x, b)
x

a
(56)

M ′
y(x, b)=Ṁy(x, b)−My,x(x, b)Vx(x, b)=−My,x(x, b)

x

a
(57)

ψ ′
y(x, b) = ψ̇y(x, b)−ψy,x(x, b)Vx(x, b) = −ψy,x(x, b)

x

a
(58)

Nastran SOL 400 was used to conduct the nonlinear static
analysis on a 40-by-40 mesh of CQUAD4 bilinear elements.
SGR was used to approximate the spatial derivatives that
appear in the local CSE boundary conditions. Five-layer
patches and fourth-order Taylor series expansions were used
to conduct the SGR. Figure 8 illustrates a five-layer patch
and a fourth-order Taylor series reconstruction of transverse
displacement used to approximate the first-order spatial
derivatives of transverse displacement at a particular node.

Figure 9 shows the displacement response. The dots rep-
resent the result at the finite element nodes, the surface is

Fig. 8 SGR of vertical displacement employed with a five-layer patch
and fourth-order Taylor series expansion

an interpolation of the finite element solution, and the grey,
transparent surface is the linear static solution previously
presented in Cross and Canfield (2013).

The coupling between the in-plane and out-of-plane
degrees of freedom result in a hardening nonlinearity, mak-
ing the deformations for each of the primary out-of-plane
degrees of freedom roughly 55 percent smaller than the lin-
ear result (Cross and Canfield 2013). For nonlinear static
analysis, Nastran does support element force output. There-
fore, all of the output required to conduct local CSA with
SGR can be obtained from the Nastran analysis. Figures 10
and 11 show the local and total design derivative solutions
with respect to the plate dimension in the x-direction, a.
The color surfaces represent the local CSA solutions with
SGR, and the blue dots represent the finite difference solu-
tions using a 10−4 relative step size. A relative step size of
10−4 was determined to be optimal for linear static plate
bending using Nastran analyses by a convergence study of
finite difference calculations. Smaller step sizes in Nastran
introduced numerical round-off error or went unrecognized
due to single precision calculations. This step size was
determined to be converged for nonlinear problems as well.

The nonlinear plate response is less sensitive to the
design parameter than the linear response. This is the
expected result, given that the nonlinear response of the
plate is stiffer than the linear response of the plate. The total
design derivatives of the nonlinear response are roughly 80
percent smaller than the total design derivatives of the lin-
ear response (Cross and Canfield 2013). Quantifying the
accuracy is difficult, because an analytic solution is not
available for the nonlinear response. However, the absolute
percent relative differences between local CSA and finite
difference design derivatives were calculated using (24).
The results of this calculation, shown in Table 2, demon-
strate a strong agreement between the different calculations.
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Fig. 9 Displacements of a rectangular plate with two adjacent edges clamped and the other two adjacent edges simply-supported (grey surface:
linear analytic, color surface: finite element interpolation, dots: finite element)

Fig. 10 Local design derivatives of displacements with respect to plate length, a (color surface: local CSA with SGR, blue dots: finite difference)
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Fig. 11 Total design derivatives of displacements with respect to plate length, a (color surface: local CSA with SGR, blue dots: finite difference)

It also suggests that local CSAwith SGR can be used to non-
intrusively calculate design derivatives of nonlinear plate
displacements.

5.2 Combined loading of a beam-stiffened plate

The same rectangular plate is now modeled with the fol-
lowing changes. First, all edges of the plate are simply-
supported. Second, in addition to the uniformly distributed
transverse load, q0 = 5 × 104N/m2, an uniformly dis-
tributed in-plane load is applied in the positive y-direction,
p0 = 2 × 106N/m2. Third, the plate is modified by a stiff-
ener that is placed along the x = a/2 = 0.5m axis. The
stiffener is modeled as a beam having E = 7e10N/m2,
G = 26e9N/m2, A = 0.0025m2, and I = 1e − 6m4.
The structural nodes of the beam are coincident with the
structural nodes of the plate that lie on the x = 0.5m axis.
The neutral axis of the beam is not offset from the nodes,
but an offset would not affect the sensitivity formulation.
This plate model was previously presented by Cross and

Canfield (2013) for linear analysis with only out-of-plane
loading. The combined loading for the nonlinear analysis
creates significant coupling between the in-plane and out-
of-plane degrees of freedom. For the out-of-plane degrees of
freedom, the nonlinear response is roughly 15 percent stiffer
(smaller) than the linear response. For the in-plane degrees
of freedom, the nonlinear response is roughly 15 percent
softer (larger) than the linear response. The displacement
results shown in Fig. 12 illustrate the coupling effect. Nas-
tran was used to conduct the analysis on a 60-by-40 mesh of
CQUAD4 elements.

Local CSA with SGR was implemented to calculate the
design derivatives of the plate displacements with respect to
the plate dimension, a. The local CSE boundary conditions
were derived in a similar fashion to those presented in (39)
through (58). The design velocity that was used is

V(x, y; a) = Vx x̂ + Vy ŷ = (x/a − 1/2) x̂ (59)

The strain discontinuities that occur at the stiffener are auto-
matically accounted for in the local CSE system, because

Table 2 Maximum absolute percent relative difference of design derivative results

u′ u̇ v′ v̇ w′ ẇ ψ ′
x ψ̇x ψ ′

y ψ̇y

ε 0.059 2.639 1.629 0.200 0.347 0.462 0.010 0.449 0.222 0.846
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Fig. 12 Displacements of a rectangular plate with two adjacent edges clamped and the other two adjacent edges simply-supported; combined
out-of-plane and in-plane loading (surface: finite element interpolation, dots: finite element)

Fig. 13 Local design derivatives of displacements for plate with combined loading (color surface: local CSA with SGR, blue dots: finite
difference)
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Fig. 14 Total design derivatives of displacements for plate with combined loading (color surface: local CSA with SGR, blue dots: finite
difference)

Table 3 Maximum absolute percent relative difference of design derivative results

u′ u̇ v′ v̇ w′ ẇ ψ ′
x ψ̇x ψ ′

y ψ̇y

ε 3.9 7.0 1.7 3.6 1.5 2.6 2.7 3.7 8.0 8.2

the design velocity at this point is equal to zero. Otherwise,
non-homogeneous interface boundary conditions would be
applied (Cross and Canfield 2013). Five-layer patches and
fourth-order Taylor series expansions were used to conduct
SGR. Figures 13 and 14 show a comparison of the local and
total design derivative solutions using local CSA with SGR
and finite differences with a 10−4 relative step size. The
finite difference calculations are converged for a relative
step size equal to 10−4.

Due to the coupling effects and the presence of the in-
plane load, the response is most sensitive to the design
variable in the 0.5 < y < b part of the domain. Table 3
contains the maximum absolute percent relative difference
between local CSA with SGR and finite difference design
derivative calculations. Figures 13 and 14 and the com-
parison below demonstrate that local CSA with SGR can
be used to nonintrusively calculate design derivatives of a
nonlinear plate response using a black box tool.

6 Conclusions

The nonintrusive local continuum formulation presented in
Cross and Canfield (2013) was extended to nonlinear prob-
lems. The structures community most commonly uses total
CSA; one reason being that approximations of high-order
derivatives of primary variables in the local CSA boundary
conditions introduce error. Duvigneau and Pelletier (2006)
used local CSA to calculate fluid flow design derivatives,
and achieved accurate derivative approximations by using
least-squares matching of Taylor series expansions to the
response data. This approach has been adapted to calculate
first-order derivatives of primary and secondary response
variables, needed for local CSA of structural problems.
This particular formulation in conjunction with SGR allows
shape design derivatives to be calculated accurately, effi-
ciently, and nonintrusively. The method was employed
for nonlinear static bending of beam models that used
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Euler-Bernoulli and Timoshenko beam theories. The exact
same algorithm was used for each beam model and did not
require any changes or modifications to the algorithm. This
example demonstrates that the approach is element agnostic.
The method was also used to calculate shape design deriva-
tives of a nonlinear transient gust response of a 2-D beam
model. Local CSA has not been commonly used for struc-
tural applications because of the strain discontinuities that
can occur at structural interfaces. The local CSE interface
boundary conditions, which account for the discontinuities,
presented in Liu and Canfield (2013a), require additional
spatial derivatives of the primary and secondary response
variables. This example demonstrates that as long as accu-
rate approximations of these derivatives can be obtained
from the analysis output, then accurate design derivatives
can be calculated using the local CSA method. Lastly, local
CSA with SGR was used to calculate shape design deriva-
tives for nonlinear static bending of a rectangular plate
with mixed boundary conditions and for a beam-stiffened
rectangular plate with combined loading. This example
demonstrates that local CSA with SGR can be used to non-
intrusively calculate design derivatives for nonlinear plate
analysis in a black box tool. Furthermore, both the gust
and plate examples demonstrated that nonlinear effects can
have a significant effect on the design derivative solutions.

Conventional analytic sensitivity methods cannot treat
the analysis tools as a black box, as numerical methods such
as finite difference do, and for that reason cannot be imple-
mented easily for nonlinear analysis conducted by a tool
like Nastran. Now, the nonintrusive local CSA method with
SGR can be used to more accurately calculate shape design
derivatives of black box solvers. The method is limited by
requiring that the analysis tool be able to provide system
matrices, primary variable response data, and secondary
variable response data. As evidenced by Nastran’s inability
to provide element force data for nonlinear transient analy-
sis, said requirements are not always satisfied. Lastly, it was
shown by Cross and Canfield (2013) that mesh refinement
may be required to achieve derivative approximations that
satisfy the desired error tolerance. However, Duvigneau and
Pelletier (2006) show that if the analysis converges asymp-
totically with mesh refinement, then so will the derivative
approximations by way of SGR. The authors plan to conduct
further studies to quantify the effects that patch parameters
have on the accuracy of local CSA with SGR.

Future work will also investigate applying the nonin-
trusive local CSA method with SGR to computational
fluid dynamics in an effort to support shape design of
systems with fluid-structure interaction (FSI). The FSI prob-
lem investigated in this research used quasi-steady typical
section aerodynamics. Therefore, the design derivative of
the aerodynamic load was trivial. This will not be the
case when higher-fidelity aerodynamic analysis is used. All

aeroelastic analyses with fluid-structure interaction possess
interface conditions which govern the physical interaction
between the fluid and structure. The sensitivity analysis
will always require that these interface conditons be dif-
ferentiated with respect to the design variables and serve
as sensitivity boundary conditions. In addition, of particu-
lar interest are practical design problems with many design
variables, where adjoint methods are much more efficient
than direct methods. For static and steady state problems,
Kulkarni et al. (2014) have extended the nonintrusive for-
mulation presented here to an adjoint method which is well
suited for large-scale design problems. The development of
nonintrusive CSA using an adjoint for transient problems is
a subject of ongoing research.
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