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Abstract A multi-objective vibro-acoustic design opti-
mization of straight or curvilinearly stiffened panels excited
by an acoustic diffuse field is performed. During design
optimization, the panel mass and the radiated acoustic
power are the two objectives to be minimized while satisfy-
ing constraints on buckling, von Mises stress and crippling.
Based on the concept of plane wave propagation, a diffuse
acoustic field is developed for use along with a finite ele-
ment model. To represent the panel’s structural behavior, the
dynamic analysis of the panel is performed for the devel-
oped diffuse acoustic excitation and the radiated acoustic
power is calculated using the velocities obtained from the
dynamic analysis. A baseline design is obtained by opti-
mization study with mass as an objective to be minimized
while constraints are put on buckling, von Mises stress
and crippling. The obtained baseline grid stiffened panel is

P. Joshi (�)
Virginia Polytechnic Institute and State University,
Blacksburg, VA 24060, USA
e-mail: pjoshi81@vt.edu

S. B. Mulani
Department of Aerospace and Ocean Engineering, Virginia
Polytechnic Institute and State University, 460 Old Turner St.,
Blacksburg, VA 24060, USA

R. K. Kapania
Department of Aerospace and Ocean Engineering, Virginia
Polytechnic Institute and State University, Blacksburg, VA 24060,
USA

Present Address:
P. Joshi
Heinkel Engineering GmbH Co. KG, Hamburg, Germany

S. B. Mulani
Department of Aerospace Engineering and Mechanics, University
of Alabama, Tuscaloosa, AL 35487, USA

used for a comparative study of a panel with curvilinear
stiffeners in vibro-acoustics with diffuse sound field as the
source of the excitation.
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Nomenclature
M Mass Matrix
K Stiffness Matrix
C Damping Matrix
F External Dynamic Force, N
m Mass, kg
p Pressure at the data recovery point, N/m2

vn Surface normal velocity of the plate, m/s

a Length of the plate, m
b Width of the plate, m
W Radiated acoustic power, Watt

1 Introduction

The noise regulations around the world have increased
the need to design aircraft panels to have reduced sound
radiation (Graham 1996a, 1996b). In the past, the design-
ers used to design an aircraft panel for structural perfor-
mance only and then an acoustic treatment was employed
to reduce the sound radiation characteristics of these pan-
els. The new trend is to design an aircraft panel hav-
ing a reduced sound radiation performance during the
design stage itself (Koopmann and Fahnline 1997). This
approach of designing panels for reduced sound radiation
at the design stage itself, makes the whole design pro-
cess more complex as the designer needs to know the
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trade-off between the mass of the structure and the vibro-
acoustic performance.

Minimizing acoustic response of a structure can be done
using two approaches (Denli et al. 2005). In the first
approach, response of a structure to the excitation is calcu-
lated and then the acoustic power radiated from the struc-
ture is obtained. Now, optimization is done by changing
the design parameters. The second approach decouples the
acoustic and structural domains. In the second approach the
surface velocity profile of the structure for minimum acous-
tic response is found first and then the design parameters
are calculated to meet the desired velocity profile. Optimal
structural design problems to reduce sound radiation are
computationally expensive and highly nonlinear in design
variables and acoustic response; even most of the conven-
tional methods such as gradient based design optimization,
are difficult to apply. Jeon and Okuma (2004) used a particle
swarm optimization (PSO) algorithm for optimal bending
design of a vibrating plate to minimize noise radiation.

Belegundu, (Salagame and Koopmann 1994) designed a
baffled plate excited by single frequency and broadband har-
monic excitation to minimize the radiated acoustic power
using a gradient-based optimization algorithm. Lu-yun and
De-yu (2007) used the finite element method (FEM) to
obtain structural frequency response, the boundary element
method (BEM) for low frequency acoustic radiation, and
genetic algorithm (GA) for structural-acoustic optimization.
In the work done by Lu-yun and De-yu (2007), the authors
assumed that the structural and the acoustic responses are
uncoupled. Fourie and Groenwold (2002) presented an
application of PSO algorithm to the optimal shape and size
design with respect to static load. Fourie and Groenwold
(2002) reported that PSO yielded better solutions than GAs
for geometry optimization of simple truss structures.

St. Pierre and Koopmann (1993) used a more direct
optimization process resulting in surface velocity pro-
files having the same characteristic as the weak radiators
(Koopmann and Fahnline 1997). (Cunefare 1990,
Naghshineh 1992; St. Pierre and Koopmann 1993) reported
that the radiated acoustic power reduction can be accom-
plished by surface velocity redistribution such that adjacent
areas of high and low acoustic pressure on the bound-
ary surface balance each other. A single area of balanced
high and low acoustic pressure radiates sound as a dipole
source (Pierce 1989) while an area of unbalanced high
and low acoustic pressure radiates more like a monopole
(Pierce 1989). Thus changing radiation from a collection
of monopole sources to a collection of dipole sources can
bring a large change in power output.

Hekamati, Ricot, and Druault (2010) studied the vibro-
acoustic behavior of plate excited by aero-acoustic pressure
field and used the combination of turbulent boundary layer
(TBL) pressure and acoustic diffuse field as the source

of excitation. They found that the radiated acoustic (pres-
sure) field associated to the diffuse field excitation is almost
10 dB higher than the TBL excitation. In a similar study,
(Maury, Gardonio and Elliott 2002) used the wavenumber
approach to study the vibro-acoustics of the plate. Maury,
Gardonio and Elliott (2002) observed that the modes that
contribute to the panel response under a diffuse field exci-
tation are more efficiently excited than in the case of TBL
excitation. They also concluded that the levels for the vibra-
tion response (radiated acoustic power) of the panel excited
by diffuse field are higher by up to 20-25 dB than those
observed for TBL excitation. In a previous work, (Joshi et al.
2010a) have designed a stiffened panel with point excita-
tion only. Later on the authors also extended this work and
developed a framework (Joshi et al. 2010b) to design panels
with curvilinear stiffeners subjected to turbulent boundary
layer excitation. It was observed that it is very expensive
and hard to simulate the TBL excitation in a test environ-
ment while diffuse field can be simulated with relatively
less cost and effort. The diffuse field is the simplest way to
simulate an excitation in an acoustic environment such as
the shuttle launch (Faust and Piret 1996). Moreover, to the
best of authors’ knowledge, the design optimization study of
a panel with curvilinear stiffeners under diffuse field exci-
tation has not been addressed in the literature. Therefore,
in this paper we perform design optimization of stiffened
panels excited by a diffuse acoustic field.

The diffuse acoustic field is generated following the
approach suggested by Buehrle et al. (2003) The objectives
of this design optimization study are to reduce the mass
and the sound radiation due to vibro-acoustic phenomena
while meeting all the structural requirement such as buck-
ling, von Mises stress and crippling stress in the structure.
Due to conflicting nature of objectives, non dominated sort-
ing genetic algorithm-II (NSGA-II) (Deb et al. 2002) in
VisualDOC 6.2.2 (2010) is used to perform the multi-
objective design optimization using the developed frame-
work (Joshi et al. 2010a, b, Mulani et al. 2013), termed as
EBF3PanelOpt, for the diffuse field excitation. The work in
the rest of the paper is discussed in six sections. Follow-
ing the introduction, Section 2 explains the approach for the
construction of diffuse field excitation. Section 3 discusses
the vibro-acoustic response calculation for the used dif-
fuse field excitation. Section 4 deals with structural-acoustic
optimization problem formulation. Results are discussed in
Section 5 followed by a section on conclusions and future
work in Section 6.

2 Construction of diffuse acoustic field

To capture the effect of the diffuse field excitation, a large
number, N, of plane waves with random angles of incidence,
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Fig. 1 The plane wave propagating in the x-z plane and incident at
angles θ and ψ on the stiffened panel

random magnitude and random temporal phase angles were
summed. A similar approach is used by Buehrle et al.
(2003). The plane wave, incident on a panel at angles θq and
ψq , is shown in Fig. 1. The angles θq and ψq are uniformly
distributed random numbers on the intervals [-π/2, π/2]
and [0, 2π ] respectively and represent the angles of prop-
agation in spherical coordinates. The qth plane wave has
a magnitude of Pqcos(θq ), where Pq is a uniformly dis-
tributed random number in the interval [0,1]. With this
analogy, the pressure due to a single plane wave is given as:

Pq(x, y, z; t) = Pqcos(θq)e−i(kxx+kyy+kzz)ei(ωt+βq) (1)

Where ω is the angular frequency, k is the ratio of the
angular frequency and the speed of sound in the acoustic
medium, βq is a random temporal phase angle uniformly
distributed on the interval of [0, 2π ]; and kx , ky and kz are
the wavenumber in the x, y and z directions, respectively,
and can be written as:

kx = ksin(θq)cos(ψq) (2)

ky = ksin(θq)sin(ψq) (3)

kz = kcos(θq) (4)

Assuming a steady state simple harmonic motion, and
furthermore a rigid boundary condition at the interface
between the panel and the acoustic medium, the spatial dis-
tribution of the sound field pressure exciting the panel is
given as:

P̄q(x, y, z; ω) = 2Pqcos(θq)e−i(kxx+kyy+kzz−βq) (5)

The total pressure at the centroid of the element, Pe, due to
N incident plane waves, can be given as:

Pe(x, y, z; ω) =
N∑

q=1

2Pqcos(θq)e−i(kxx+kyy+kzz−βq) (6)

In a similar work to construct the diffuse field, (Rafaely
2000) used the value of N to be 1145. Due to large number
of frequencies, any value of N which is higher than 1000
created memory problem in generating the acoustic diffuse
field. Therefore, for the research work in this paper, the
value of N is assumed to be 1000. The total pressure at the
centroid of each element in a finite element model is cal-
culated using (6). A coarse finite element model is used for
the calculation of the acoustic diffuse field at the centroid
of each element. A coarse mesh is used to make the design
optimization task affordable from CPU time point of view
for each analysis. Once the diffuse field is generated, the
design optimization study is performed using this diffuse
field as the source of excitation.

For every velocity response calculation during the opti-
mization, the generated pressure field at the centroid of each
element of the coarse mesh is applied to the elements of the
refined mesh of the stiffened panel using PLOAD4 card in
MD NASTRAN. The velocity response due to this pressure
excitation is calculated for a frequency range from 20 Hz
to 1000 Hz with a step size of 5 Hz. This velocity data is
then used to calculate the radiated acoustic power from the
stiffened panel.

3 Vibro-acoustic response calculation

The structural vibration response analysis is the basis of
structural-acoustic optimization. In the present work, the
structural-acoustic optimization is carried out using a phi-
losophy called noise-control-by-design (Constans et al.
1998) wherein the radiated sound from a vibrating struc-
ture is treated as an objective during structural-acoustic
design optimization study. The aim of this design phi-
losophy is to reduce the noise generated by the struc-
ture by changing the structural design itself. To achieve
this goal, optimization techniques are used and an opti-
mal design is obtained. During the optimization process,
structural and acoustic responses are calculated and sent
to the optimizer and the optimizer generates next set of
design points such that there is an improvement in both,
the structural and the acoustic responses. Structural and
acoustic response calculations are discussed in following
subsections.

3.1 Structural response

The equation of motion for a multi-dimensional vibrating
structure, �S under a dynamic load, F(t), if fluid medium
influence is not considered, can be represented as:

MÜ + CU̇ + KU = F(t), t > 0. (7)
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Where U is the nodal displacement vector, M is the struc-
tural mass matrix, C is the viscous damping matrix, and K
is the structural stiffness matrix. If we assume a harmonic
excitation, F(t) can be expressed as:

F(t) = f(ω)eiωt (8)

Where f (ω) is the magnitude of the harmonic load, ω

is the frequency of excitation, i is the imaginary number
(i2 = −1). The nodal displacement vector can be expressed
as U(t) = u(ω)eiωt , where u(ω) is the nodal complex dis-
placement vectors. Time dependency of the dynamic prob-
lem can be eliminated using U(t) = u(ω)eiωt as the dis-
placement vector and (8) as a harmonic excitation. The fre-
quency response equation, thus obtained, can be written as:
{
−ω2M + iωC + K

}
u(ω) = f(ω) (9)

In shorthand, frequency response equation can be expressed
as: A(ω)u(ω) = f(ω). Where, A(ω) = −ω2M + iωC + K.
Using (9), the nodal displacement vector matrix is written
as:

u(ω) = A(ω)−1f(ω) (10)

Using displacement vector, the velocity vector v(ω) can
be expressed as v(ω) = iωu(ω). At the interface between
the structure and the fluid, with the assumption that the
structure and the fluid are uncoupled, the nodal particle
normal velocity vector can be written as:

vn(ω) = iωTA(ω)−1f(ω) (11)

In (11), T is a transformation matrix which converts the
velocity vector to a velocity vector normal to the sur-
face of the structure. MD NASTRAN (1999) is used to
calculate the nodal velocities as the response quantity of
interest to the applied diffuse field excitation for a range
of frequencies from 20 Hz to 1000 Hz in a step of 5 Hz.
The diffuse field pressure excitation is given by (6) in the
Section 2 and applied to the elements in the finite element
model. The nodal particle normal velocity is obtained using
nodal velocity and used as the input for acoustic response
calculation.

3.2 Acoustic response

The pressure radiated to a point in the acoustic medium from
a planar structure can be written solely in terms of the nor-
mal vibration of the radiating surface and it is calculated
using the following well-known Rayleigh integral (Wallace
1972)

p(r) = jωρ0

2π
ejωt

∫

S

vn(rs)e
−jk|r−rs |

|r − rs | dS (12)

Fig. 2 Simply supported rectangular panel on the x-y plane with the
origin at O

Where, r is the position vector of the point at which the
pressure is being determined and rs is the position vec-
tor locating a surface element of the vibrating structure as
shown in the Fig. 2 (Fahy 1985), A is the observation point
in far field, B is the location of elemental noise source (sim-
ple source), a and b are the length and the width of the
panel, respectively; and r, θ , and φ are spherical co-ordinate
centered at the origin O. The pressure is calculated using
Rayleigh integral as shown in (12).

The vibrational results are obtained by the FEM. From
a FEM representation of a vibrating structure, the veloc-
ity of the structure at a number of defined nodal locations
is known. Combining the nodal velocities with the knowl-
edge of the structure’s geometry, the normal surface velocity
may be computed for each element comprising the struc-
ture. This discretized normal surface velocity suggests that
Rayleigh integral can be calculated numerically by a sum-
mation over the elements comprising the complex structure.
This discretization takes the following form:

p(r) =
Nele∑

m=1

jωρ0

2π
Amvm

e−jkRm

Rm

(13)

where the index m identifies an element of the vibrat-
ing structure, Nele is the total number of elements, Am

is the area of the mth element, vm is the normal veloc-
ity of the mth element, and Rm is the distance between
the center of the mth element and the point in acoustic
medium at which the pressure is to be evaluated. Nor-
mal velocity, vm is calculated by taking the dot product
of average elemental velocity at the centroid and the unit
normal vector for the element under consideration. Aver-
age elemental velocity at the centroid of the element is
calculated by averaging nodal velocities obtained using
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triangular element (CTRIA3) in MD NASTRAN (1999).
Now, the radiated time average acoustic power (W) can
be calculated by summing the product of the radiated
intensity (Fahy 1985) at the centroid of an element and the
area of the corresponding element on a hemisphere enclos-
ing the vibrating structure. The radius of the hemisphere is
ten times the largest dimension of the vibrating structure.
Numerically, the radiated sound power can be calculated as:

W =
Nθ∑

i=1

Nφ∑

j=1

∣∣∣p(r, θ̃i , φ̃j )

∣∣∣
2

2ρc
r2 sin(θ̃i )δθδφ (14)

where,

δθ = π

2Nθ

; δφ = 2π

Nφ

; θ̃i = iδθ; φ̃j = jδφ (15)

All of the information necessary for implementation of this
approach is readily extracted from the FEM model. This
method is most appropriately applied to planar, baffled radi-
ators. In the present work, we have used Rayleigh integral
approach to calculate the acoustic pressure.

4 Optimization problem formulation

4.1 Problem definition

For the optimization problem in this paper, the velocity
response of a structure to the excitation is calculated first,
and then the acoustic power radiated from the structure is
obtained. Now, optimization is done by changing the design
parameters such that the radiated power from the structure

is minimized. In general, mathematically we can define the
optimization problem as follows.

min
x

f0 (x)

fi (x) ≤ 1, i = 1, · · · , Ncons

Aj ≤ xj ≤ Bj , j = 1, · · · , Ndvar

(16)

As given in (16), f0 is the objective function that has to
be minimized with respect to design variables x, while sat-
isfying the constraints fi shown in (16). In (16), Ncons is
the total number of constraint and Ndvar is the number of
design variables in the optimization problem at hand. The
design variables indicated by vector x are subjected to con-
straints (often called as side constraints) in the form of upper
limits (Bj ) and lower limits (Aj ). Theses are expressed in
(16). Mathematical correlation to the optimization problem
is explained in the following subsections.

4.2 Design variables

The response of a structure to point excited harmonic
load depends on the local mass, stiffness and damping.
Thus by changing the thickness of a plate, crossection of
the curvilinear stiffeners and the orientation of the stiff-
eners we can optimize the acoustic response. Thus for a
panel with two stiffeners, we have thirteen design variables
x1, x2, x3 · · · , x13 as shown in Fig. 3. The placement design
variables for two stiffeners are from x1 to x8; x9 and x10
are used for height of two blade-type stiffeners; x11 is used
for plate thickness and x12 and x13 are used to represent
the thickness of two stiffeners. For a panel with six stiff-
eners, the design variables have increased from thirteen to

Fig. 3 Representative thirteen
design variables for a panel with
two stiffeners
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thirty seven as each stiffener has different thickness and
height. In the design optimization framework (code named
EBF3PanelOpt (Mulani et al. 2013) for a panel with more
than two stiffeners, the placement and shape design vari-
ables for a panel with six stiffeners are from x1 to x24; x25
to x30 are used for height of six blade-type stiffeners; x31
to x36 are used for the thickness of six stiffeners and x37 is
used to represent the thickness of the panel. The placement
design variables for stiffeners can be defined in clockwise
or anti-clockwise direction. The placement design variables
in Fig. 3 are in clockwise direction.

4.3 Objective function

There can be various possible objective functions for acous-
tic response of the panel with curvilinear stiffeners. The
Objective function for the current work is considered to be
frequency averaged radiated acoustic power, which can be
obtained from the area under the radiated acoustic power
versus frequency curve. Frequency averaged radiated acous-
tic power is defined as follows:

f0 = 1

fspan

∫ fmax

fmin

W df (17)

Frequency is varied from fmin = 20Hz to fmax = 1000Hz
with 196 increments.The fspan is given as the difference
between fmax and fmin.

4.4 Constraints

Optimizing a structure for minimum radiated acoustic
power results in an increased mass of the structure. There-
fore, a multi-objective design optimization problem is for-
mulated. The mass of the structure is treated as the sec-
ond objective function while constraints are placed on the
buckling eigenvalue, von Mises stress and crippling stress.
Table 1 shows the constraints on all the thirty seven design
variables used to obtain Pareto optimal designs. The base-
line design is a grid stiffened design with equal spacing
between stiffeners in both the x and the y directions. Also,
the stiffeners on the baseline design have a manufacturing
constraint with 0.045 m as an upper bound on the height.
The manufacturing constraint on the baseline design is put
so that it can be manufactured by using off the shelf material
(2 inch thick plate). The idea behind not having manu-
facturing constraint for panel with curvilinear stiffeners is
to find out the potential benefit with no constraint from
manufacturing (i.e. without straight stiffeners and without
pre-defined size constraint).

4.5 Optimizer and optimization framework

For the present optimization problem, a framework in
PYTHON (code named EBF3PanelOpt Mulani et al.
2013) has been used. This framework provides a flexi-
bility of using MD NASTRAN (1999) for finite element

Table 1 Constraints on design variables

Design variable Lower bound (m) Upper bound (m) Design variable Lower bound(m) Upper bound (m)

x1 1.0668 2.1336 x20 2.1336 3.2004

x2 0.0 1.0668 x21 0.0 1.0668

x3 0.0 1.0668 x22 0.0 1.0668

x4 3.2004 4.2672 x23 0.0 1.0668

x5 1.0668 2.1336 x24 2.1336 3.2004

x6 0.0 1.0668 x25 0.02 0.06

x7 0.0 1.0668 x26 0.02 0.06

x8 3.2004 4.2672 x27 0.02 0.06

x9 1.0668 2.1336 x28 0.02 0.06

x10 0.0 1.0668 x29 0.02 0.06

x11 0.0 1.0668 x30 0.02 0.06

x12 3.2004 4.2672 x31 0.002 0.006

x13 0.0 1.0668 x32 0.002 0.006

x14 0.0 1.0668 x33 0.002 0.006

x15 0.0 1.0668 x34 0.002 0.006

x16 2.1336 3.2004 x35 0.002 0.006

x17 0.0 1.0668 x36 0.002 0.006

x18 0.0 1.0668 x37 0.002 0.006

x19 0.0 1.0668
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analysis (FEA). PYTHON scripts provide interfaces be-
tween the external optimizer and FEA as shown in Fig. 4.
NSGA-II is used for multi-objective design optimization in
(VisualDOC 2010) using EBF3PanelOpt. For NSGA-II in
VisualDoc, the initial population size is chosen to be 48 and
the maximum number of iterations is set to 200.

4.6 Baseline grid stiffened panel design

A baseline grid stiffened panel is designed using
EBF3PanelOpt. The baseline design optimization prob-
lem is solved for minimum mass meeting buckling, von
Mises stress and crippling constraints for the loads given
in Table 2. The boundary conditions and the direction of
the applied loads are shown in Fig. 5. Figure 6 shows
the optimized baseline grid stiffened panel. The optimized
(minimum) mass for baseline grid stiffened panel is turned
out to be 12.1422 kg.

5 Results and discussion

The role of curvilinear stiffeners to reduce the vibro-
acoustic response of the stiffened panel is addressed by
designing stiffened panels using developed multi-objective
design optimization framework. The baseline panel is a

Table 2 Load case for design optimization of grid stiffened baseline
design

Load (kN/m)

Nxx 11.208

Nyy 136.774

Nxy 93.693

grid stiffened panel with six stiffeners and it is obtained
by performing structural (sizing) optimization for minimum
mass with constraints on buckling, von Mises stress, and
crippling stress. To explore the potential benefit of the curvi-
linear stiffeners, a multi-objective design optimization is
performed where stiffeners have the freedom to have the
curvilinear shape. During this multi-objective design opti-
mization study, the mass and the radiated sound power
are minimized with constraint on buckling eigenvalue, von
Mises stress, and crippling stress.

The minimization of the mass and the radiated acoustic
power are two objectives which conflict each other during
the course of the optimization. Therefore, two Pareto opti-
mal designs are obtained. These two Pareto optimal designs
are shown in Figs. 7 and 8. The two Pareto optimal designs
are chosen from a Pareto optimal front in such a way that
the mass of both Pareto designs is close to the mass of the

Fig. 4 Framework for multi-objective design optimization
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Fig. 5 Simply supported
boundary condition (left) and
loads (right) for baseline and
Pareto optimal panel design

Fig. 6 Optimal grid stiffened
baseline panel with six stiffeners

Fig. 7 First Pareto optimal
panel with curvilinear stiffeners

Fig. 8 Second Pareto optimal
panel with curvilinear stiffeners
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Table 3 Numerical values of design variables for baseline and Pareto optimal designs

Design Baseline Pareto optimal Pareto optimal Design Baseline Pareto optimal Pareto optimal

variables design (m) design-I (m) design-II (m) variables design (m) design-I (m) design-II (m)

x1 1.6000 1.6000 1.6000 x20 2.6670 2.5453 2.6667

x2 0.5000 0.5000 0.5000 x21 0.8001 0.7271 0.8419

x3 0.5000 0.5000 0.5000 x22 0.5000 0.6333 0.6595

x4 3.7338 3.7338 3.7338 x23 0.7500 0.8598 0.7240

x5 1.3335 1.1312 1.3618 x24 2.4003 2.3702 2.3387

x6 0.2500 0.1246 0.2235 x25 0.0450 0.060 0.0455

x7 0.5000 0.4323 0.5271 x26 0.0307 0.0264 0.0424

x8 4.0005 3.8271 4.1664 x27 0.0409 0.0547 0.0429

x9 1.8669 1.7575 2.0663 x28 0.0262 0.0275 0.0251

x10 0.7500 0.7275 0.8275 x29 0.0243 0.0318 0.0326

x11 0.5000 0.6470 0.6933 x30 0.0286 0.0353 0.0202

x12 3.4671 3.4568 3.3236 x31 0.0040 0.0020 0.0024

x13 0.2667 0.1840 0.2513 x32 0.0028 0.0043 0.0024

x14 0.5000 0.6428 0.5380 x33 0.0020 0.0034 0.0021

x15 0.2500 0.0828 0.1807 x34 0.0042 0.0024 0.0022

x16 2.9337 3.1120 2.8697 x35 0.0020 0.0024 0.0037

x17 0.5334 0.4090 0.5430 x36 0.0039 0.0046 0.0020

x18 0.5000 0.6666 0.4184 x37 0.0034 0.0032 0.0035

x19 0.5000 0.5085 0.5038

baseline design. Table 3 shows the numerical values of the
thirty seven design variables for baseline and Pareto opti-
mal designs. The placement design variables in Table 3 for
stiffeners are defined in anti-clockwise direction.

The radiated acoustic power versus frequency plots for
the baseline grid stiffened panel and two Pareto optimal
designs are compared in Fig. 9 and it is clear from this
figure that most of the radiant peaks for both the Pareto opti-
mal designs have been lowered significantly. To discuss and
visualize the sound radiation property of the baseline and
the two Pareto optimal designs clearly, the frequency band,
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Fig. 9 Comparison of radiated acoustic power of baseline and two
Pareto optimal designs for a band from 20 Hz to 1000 Hz

20 Hz - 1000 Hz in Fig. 9 is divided in three bands, 20 Hz -
334.9 Hz, 335 Hz - 669.9 Hz, and 670 Hz - 1000 Hz, respec-
tively. Radiated acoustic power of the baseline and Pareto
optimal designs for these three different bands is compared
in Figs. 10, 11 and 12, respectively. It is clear from Fig. 10
that both Pareto optimal designs perform better than the
baseline design in the band, 20 Hz - 334.9 Hz. In this band,
both Pareto optimal designs have reduced the height of the
most radiant peak (first) of the baseline design significantly.

In the whole frequency band of interest, 20 Hz - 1000
Hz, the most significant contribution is from the first band.
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Fig. 10 Comparison of radiated acoustic power of baseline and two
Pareto optimal designs for a band from 20 Hz to 334.9 Hz
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Fig. 11 Comparison of radiated acoustic power of baseline and two
Pareto optimal designs for a band from 335 Hz to 669.9 Hz

Therefore, the radiated acoustic power of the baseline and
the Pareto optimal designs at the natural frequencies corre-
sponding to first three mode shapes is presented in Table 4.
It is clear from this Table that the most radiant peak of first
Pareto optimal design (95.5 dB) is reduced by 4.7 dB when
compared to the most radiant peak of the baseline design.
Similarly, the most radiant peak of second Pareto optimal
design (87.3 dB) is reduced by 12.9 dB when compared
to the most radiant peak of the baseline design. The con-
tour plot of vibrational velocity (magnitude of velocity) due
to diffuse field excitation can be used to justify this huge
reduction in sound radiation at the natural frequencies corre-
sponding to first three modes of all three designs. Therefore,
Fig. 13 shows the contour plot of velocity response (magni-
tude) of the baseline and the Pareto optimal designs at the
natural frequencies corresponding to first three modes of
these designs to diffuse field excitation.

From Fig. 13, it can be seen that the scale (maximum)
for velocity contour of the first Pareto optimal design at the
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Fig. 12 Comparison of radiated acoustic power of baseline and two
Pareto optimal designs for a band from 670 Hz to 1000 Hz

Table 4 Radiated acoustic power at natural frequencies corresponding
to first three mode

Mode Radiated Radiated Radiated

number acoustic power acoustic power acoustic power

(dB) Baseline (dB) Pareto optimal (dB) Pareto optimal

design design-I design-II

1 100.2 95.5 82.9

2 82.2 84.8 87.3

3 90.0 83.5 80.0

Shapes of grid stiffened baseline design, Pareto optimal design-I and
Pareto optimal design-II

natural frequency corresponding to first mode has reduced
to 0.0186 m/s (35.6 % reduction when compared to the
baseline). For the second Pareto optimal design, the scale
(maximum) for velocity contour at the natural frequency
corresponding to first mode has reduced to 0.00422 m/s
(85.4 % reduction when compared to the baseline). In
Fig. 13 the velocity response of Pareto optimal designs at
natural frequencies corresponding to second and third mode
shapes have transformed one of the two lobes of the baseline
design with high velocity response into a lobe of Pareto opti-
mal design with lower velocity response thus making the
pareto optimal designs quieter with reduced sound radiation
capability.

From Fig. 11, it can be seen that the most radiant peak in
the second band, 335 Hz - 669.9 Hz, is of the baseline design
and the peaks of the Pareto optimal designs are significantly
lower than the most radiant peak of the baseline design.
Similarly, the most radiant peake in the third band is of the
baseline design and the most radiant peak of the Pareto opti-
mal designs are approximately 1 dB lower than the most
radiant peak of the baseline design in the third band. Over-
all, both the frequency-averaged radiated acoustic power in
the band, 20 Hz - 1000 Hz, and the mass for the first Pareto
optimal design is reduced when compared to the baseline
design. The Pareto optimal designs have significant reduc-
tion in frequency-averaged radiated acoustic power when
compared to the baseline design. The mass of the second
Pareto optimal design is 0.35 % (0.0422 kg) higher than the
mass of the baseline design. In summary, the second Pareto
optimal design is the best Pareto optimal design as it has
reduced the frequency-averaged radiated acoustic power by
2.3 dB without increasing the mass significantly (0.35 %
higher than the baseline design).

From Table 5, it is to be noticed that all three designs sat-
isfy the buckling, vonMises stress and crippling constraints.
It is to be noted that the tolerance for constraint violation
in optimizer (VisualDoc) is set to a default value of 0.003.
Due to this tolerance, the value of the buckling factor of the
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Fig. 13 Contour of velocity (magnitude) response at first three natural frequencies of grid stiffened baseline design (top row), Pareto optimal
design-I (middle row) and Pareto optimal design-II (bottom row)

baseline design (as shown in Table 5) is 1.003 and is con-
sidered not to be violated. The first nine mode shapes of
the baseline and the two Pareto optimal designs are shown
in Figs. 14, 15, and 16, respectively. It is clear from these
figures that curvilinear stiffeners are changing the radiant
mode of the baseline panel into a relatively quieter mode of
the Pareto optimal designs in the band of interest (20 Hz-

1000 Hz). This phenomena is occurring due to the freedom
for placement and curvature of the stiffeners in the Pareto
optimal design as opposed to the grid stiffened design where
the placement and curvature is fixed. From Figs 15–16 it
is seen that the curvilinear stiffener designs (Pareto optimal
designs) have less number of excited lobes than the base-
line design. At a particular frequency, the lesser number of

Table 5 Comparison of optimal designs

Panel Frequency averaged radiated Mass (kg) Buckling factor von Mises stress Crippling stress

acousticpower (dB) constraint constraint

Baseline 80.3 12.1422 1.003 0.1289 0.1932

Pareto 78.8 12.1297 0.995 0.1259 0.191

optimal-I

Pareto 78.0 12.1842 0.991 0.126 0.2127

optimal-II
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Fig. 14 First, second and third
mode shapes and corresponding
natural frequencies for grid
stiffened baseline design
(top ), Pareto optimal design-I
(middle ), and Pareto optimal
design-II (bottom )

distinct lobes will displace the smaller acoustic medium thus
radiating less in the medium adjacent to the structure.

The CPU time for all the optimization studies per-
formed in this manuscript is not quantified. However, it

is worth mentioning that the qualitative time for base-
line design is approximately one day and for the multi-
objective design optimization task, it is approximately five
days.

Fig. 15 Fourth, fifth and sixth
mode shapes and corresponding
natural frequencies for grid
stiffened baseline design
(top ), Pareto optimal design-I
(middle ), and Pareto optimal
design-II (bottom )
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Fig. 16 Seventh, eighth and
ninth mode shapes and
corresponding natural
frequencies for grid stiffened
baseline design (top ), Pareto
optimal design-I (middle ),
and Pareto optimal design-II
(bottom )

6 Conclusion and future work

A multi-objective design optimization study is performed
for a panel with six stiffeners. It is concluded from this study
that the panel with curvilinear stiffeners play an important
role in breaking the radiant mode of the stiffened panel as
the curvilinear stiffeners have freedom to move in the design
domain and perform better than a grid stiffened design of
almost equivalent mass. As far as the future work is con-
cerned, the constraint of having three stiffeners along the
length and the other three stiffeners along the width of
the panel will be relaxed and the whole design space will
be explored for the placement optimization of six stiffen-
ers. The present capability of the framework will also be
extended to perform multi-objective design optimization of
curved panel with straight and curvilinear stiffeners under
diffuse field excitation.
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