
Struct Multidisc Optim (2015) 51:801–811
DOI 10.1007/s00158-014-1176-x

RESEARCH PAPER

On Chebyshev’s method for topology optimization
of Stokes flows

Anton Evgrafov

Received: 13 April 2014 / Revised: 31 July 2014 / Accepted: 16 September 2014 / Published online: 16 January 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract We present a locally cubically convergent algo-
rithm for topology optimization of Stokes flows based on
a Chebyshev’s iteration globalized with Armijo linesearch.
The characteristic features of the method include the low
computational complexity of the search direction calcula-
tion, evaluation of the objective function and constraints
needed in the linesearch procedure as well as their high
order derivatives utilized for obtaining higher order rate of
convergence. Both finite element and finite volumes dis-
cretizations of the algorithm are tested on the standard
two-dimensional benchmark problems, in the case of finite
elements both on structured and quasi-uniform unstructured
meshes of quadrilaterals. The algorithm outperforms New-
ton’s method in nearly all test cases. Finally, the finite
element discretization of the algorithm is tested within a
continuation/adaptive mesh refinement framework.

Keywords Topology optimization · Stokes flows ·
Chebyshev’s algorithm

1 Introduction

Given a bounded Lipschitz domain � ⊂ Rd, d ∈ {2, 3}, f ∈
[L6/5(�)]d , u0 ∈ [H 1/2(∂�)]d satisfying the compatibil-

Electronic supplementary material The online version of this
article (doi:10.1007/s00158-014-1176-x) contains supplementary
material, which is available to authorized users.

A. Evgrafov (�)
Department of Mathematical Sciences, Norwegian University
of Science and Technology, N–7491 Trondheim, Norway
e-mail: anton.evgrafov@math.ntnu.no

ity condition
∫
∂�

u0 · n = 0, and a number γ ∈ (0, 1) we
consider the minimization problem introduced by Borrvall
and Petersson (2003):

minimize
(u,ρ)

J (u, ρ),

subject to (u, ρ) ∈ Uad × Dad, (1)

where

J (u, ρ) = 1

2

∫

�

[|∇u|2 + α(ρ)|u|2 − 2f · u],
Uad = {u ∈ [H 1(�)]d |divu = 0, T u = u0 },
Dad = { ρ ∈ L∞(�)|0 ≤ ρ ≤ 1,

∫

�

ρ = γ |�| }, (2)

T : [H 1(�)]d → [H 1/2(∂�)]d is the trace operator, and
| · | is used to denote the Euclidian norm on R

d , Frobenius
norm on R

d×d , and Lebesgue measure on measurable sub-
sets of R

d . A non-negative coefficient α : [0, 1] → R+
featuring in (2) has a physical meaning of inverse per-
meability of porous material and is typically taken to
be α(ρ) = ᾱq[(q + 1)/(ρ + q) − 1], for some large
positive parameters ᾱ (inverse permeability of the ersatz
“solid” material) and q (design parametrization parameter
related to the sharpness of the solid/flow interface); see
(Borrvall and Petersson 2003).

Due to its simple structure and practical importance
the problem has attracted significant attention in the com-
munity, see for example (Aage et al. 2008; Othmer 2008;
Challis and Guest 2009) for various computational ap-
proaches to this and a related and even more practically
important problem for Navier–Stokes flows.

A typical computation then consists of solving a
sequence of problems (1) for increasing values of q, until
a solution (u∗, ρ∗) is obtained with ρ∗ being an approxi-

http://dx.doi.org/10.1007/s00158-014-1176-x
mailto:anton.evgrafov@math.ntnu.no

802 A. Evgrafov

mation to a characteristic function χω∗ of some subset
ω∗ ⊂ �. In this case, ω∗ can be viewed as an optimal
domain for a Stokes flow; see (Borrvall and Petersson 2003)
for more details. The whole procedure relies upon enforcing
the boundary conditions through penalties, the idea which
may be traced at least to Babuška (1973). As a result,
despite the common practice of keeping the penalty param-
eter ᾱ fixed (though some authors also recommend relating
it to the inverse of the Reynolds number in the case of
Navier–Stokes problems (Kondoh et al. 2012)), this param-
eter should be increased as one refines the discretization
of (1) in order to improve the accuracy of the computed
solutions. We refer to Evgrafov (2005) for the discussion of
the validity of the limiting process ᾱ → +∞ in the context
of topology optimization.

Recently Carlsson et al. (2009) and Evgrafov (2014)
proposed applying Newton’s iteration embedded into a gen-
eral globalized optimization framework, such as SQP, to a
smoothed problem obtained by eliminating the design vari-
ables from (1). If such an elimination can be carried out
computationally inexpensively and without ruining the spar-
sity of the problem, which is true for problems without
global design regularization, the resulting practical algo-
rithm attains fast local convergence due to the immediate
availability of the second order information and its spar-
sity. Unlike the “1-step” or simultaneous analysis and design
based approaches, the method operates in a smaller space,
see Evgrafov (2014) for a discussion of advantages and dis-
advantages of the method. In fact, the complexity of the
Newton’s direction finding subproblem in such a method
is virtually the same as the cost of computing a steep-
est descent direction in the traditional nested framework
(Borrvall and Petersson 2003) when direct linear solvers
are utilized; for iterative solvers drawing the compari-
son is a slightly more delicate issue owing to the differ-
ences in spectral properties of the matrices involved. The
method, which is briefly reviewed in Section 2, demon-
strates fast convergence, which is almost independent of
the utilized PDE discretization or the mesh refinement
level.

The main purpose of this note is to further improve the
rate of convergence of the method proposed in Evgrafov
(2014). Namely, the availability of the higher order deriva-
tives of the objective function/constraints for very little
computational effort allows us to apply Chebyshev’s instead
of Newton’s algorithm, see Nechepurenko (1954), to the
system of the first order necessary optimality conditions for
a slight modification of (1) formulated in the state space.
Thereby we obtain a method demonstrating third order local
convergence, as may be expected (Nechepurenko 2004).
One iteration of Chebyshev’s algorithm is computationally
relatively inexpensive since it requires solving two linear
algebraic systems with the same matrix. Thus if the direct

solvers are used, the additional computational effort when
compared to the Newton’s algorithm is negligible. Even
in the case of Krylov subspace solvers one may reuse the
computed preconditioner and utilize deflation techniques to
speed up the solution of the second system.

We end this brief introduction by mentioning that there
are locally cubically convergent methods, which only
require derivatives of the objective function/constraints up
to the second order, see for example (Kleinmichel 1968;
Bartish 1969). There is also some recent interest and pre-
liminary, but encouraging results on the use of the inexact
versions of the methods in Halley class (which includes
the Chebyshev’s method), see for example (Steihaug and
Suleiman 2013; Gundersen and Steihaug 2012; Deng and
Zhang 2004) and references therein.

2 State space Newton’s method for dissipated power
minimization of Stokes flows

Instead of (1), we consider a barrier-type problem

minimize
(u,ρ)

Jμ(u, ρ) = J (u, ρ) − μ

∫

�

log[(1 − ρ)ρ],
subject to (u, ρ) ∈ Uad × Dad, (3)

for a small barrier parameter μ > 0. The first order neces-
sary optimality conditions for (3) is a system of non-linear
equations in (u, p, ρ, λ) ∈ Uad × L2

0(�) × Dad × R:

− div ∇u + α(ρ)u + ∇p = f, (4)

div u = 0, (5)
1

2
α′(ρ)u · u − μ

ρ
+ μ

1 − ρ
︸ ︷︷ ︸

J ′
ρ

+λ = 0, (6)

∫

�

ρ = γ |�|. (7)

Note that at an arbitrary point (u, ρ) ∈ Uad × Dad satis-
fying the inequality Jμ(u, ρ) < ∞ the expression J ′

ρ , the
ρ-derivative of Jμ, does not define a bounded linear func-
tional on L∞(�). However, when ρ solves (6) for a given
(u, λ), which we will denote by writing ρu,λ, we have the
inclusion

μ

ρ
− μ

1 − ρ
= 1

2
α′(ρ)u · u + λ ∈ L3(�), (8)

owing to the Sobolev embedding H 1(�) ⊂ L6(�), which
is valid in dimensions 2 and 3. Since both quantities in the
left hand side cannot be large simultaneously, we deduce
that both μ/(1 − ρ) and μ/ρ are in L3(�), and therefore

On Chebyshev’s method for topology optimization of Stokes flows 803

the barrier part of Jμ is three times differentiable with
respect to ρ.1

The Newton’s system for (4)–(7) at a point (u, p, ρu,λ, λ)

may be formally stated as follows: find (du, dp, dρ, dλ) ∈
[H 1

0 (�)]d × L2
0(�) × L∞(�) × R such that

− div ∇du + α(ρu,λ)du + α′(ρu,λ)dρu + ∇dp = f (9)

+ div ∇u − α(ρu,λ)u − ∇p,

div du = −div u, (10)

α′(ρu,λ)u · du + J ′′
ρ,ρdρ + dλ = 0, (11)

∫

�

dρ = −
∫

�

[ρu,λ − γ], (12)

where

J ′′
ρ,ρ = 1

2
α′′(ρu,λ)u · u + μ

(ρu,λ)2
+ μ

(1 − ρu,λ)2
. (13)

Unfortunately, the linear operator in the left hand side
of (9)–(12) is not a locally Lipschitz function of the param-
eter ρ, when ρ is considered as an independent variable.
Since this may tamper with the local quadratic convergence
of the Newton’s algorithm, we eliminate dρ from this sys-
tem by taking a Schur complement with respect to J ′′

ρ,ρ ≥
8μ and obtain a Newton’s system in a smaller state space
[H 1

0 (�)]d × L2
0(�) × R:

− div ∇du + Adu + ∇dp + ρ′
udλ = f (14)

+ div ∇u − α(ρu,λ)u − ∇p,

div du = −div u, (15)
∫

�

ρ′
u · du + ρ′

λdλ = −
∫

�

[ρu,λ − γ], (16)

where

A = α(ρu,λ)I − [α′(ρu,λ)]2

J ′′
ρ,ρ

u ⊗ u,

ρ′
λ = − 1

J ′′
ρ,ρ

, ρ′
u = −α′(ρu,λ)

J ′′
ρ,ρ

u. (17)

It is easy to verify that in this space the non-constant
elements of the operator in the left hand side of (14)–(16),
namely A, ρ′

u, ρ′
λ are locally Lipschitz functions of

(u, p, λ), see (Evgrafov 2014) for details. Therefore one can
expect local quadratic convergence of the Newton’s algo-
rithm with unit steps towards points of local minimum,
which satisfy the second order sufficient conditions.

1In dimension 2, the inclusion in (8) can be further strengthened and
thus higher order derivatives may be obtained without assuming any
further regularity of u. Alternatively, since the zeroth order term α(ρ)u
in (4) is a priori in [L2(�)]d one may appeal to the standard regularity
results for the Stokes problem, see for example (Kellogg and Osborn
1976; Amrouche and Girault 1991), to assert that u ∈ [Hs(�)]d , 1 <

s ≤ 2, under the appropriate additional assumptions on f, u0, and �,
and in this way further strengthen the inclusion (8) using the Sobolev
inequality.

To globalize the convergence of this method we uti-
lize two strategies. Firstly, we perform backtracking
linesearch with respect to the augmented Lagrangian
function

ψ(θ) = Jμ(u + θdu, ρu+θdu)

−
∫

�

(p + θdp)div[u + θdu] + νp

2
‖div[u + θdu]‖2

L2(�)

+[λ + θdλ]
∫

�

(ρu+θdu,λ+θdλ − γ)

+νλ

2

[∫

�

(ρu+θdu,λ+θdλ − γ)

]2

, (18)

where νλ > 0, νp > 0 are penalty parameters. Note that
the search goes along a curve in the full space, owing to
the non-linear dependence of ρu,λ on its arguments through
the equation (6). Secondly, when the Newton’s system is
unsolvable (we have not experienced this in our numerical
computations) or when the Newton’s direction is not a direc-
tion of descent for ψ , we compute a modified Newton’s
direction by replacing A in (14) with

Ã =
{
A, if α(ρu,λ) ≥ [α′(ρu,λ)]2

J ′′
ρ,ρ

u · u,

0, otherwise.
(19)

If the resulting direction still fails to be a descent direction
for ψ , we also increase some or all of the penalty parameters
νλ, νp.

3 Chebyshev’s method for (3)

Chebyshev’s method for solving a system of equations
F(x) = 0 is based on the iteration xk+1 = xk − {I +
0.5[F ′(xk)]−1F ′′(xk)[F ′(xk)]−1F(xk)}[F ′(xk)]−1F(xk).
Nechepurenko (2004) has shown that under certain assump-
tions, including that of local Lipschitz continuity of F ′′,
the method attains local third order convergence, which is
much faster than the second order local convergence rate
of Newton’s iteration. Unlike other methods based on the
the second order derivatives of F, such as Halley’s method
(method of tangent hyperbolas), see for example (Mertve-
cova 1953), Chebyshev’s iteration requires solving two
systems of equations with the same operator F ′(x) in the
left hand side.

In the present context we calculate the Chebyshev’s
correction (dC

u , dC
p , dC

λ) ∈ [H 1
0 (�)]d × L2

0(�) × R to
the Newton’s direction (du, dp, dλ) given by (14)–(16) by
solving the following boundary value problem:

− div ∇dC
u + AdC

u + ∇dC
p + ρ′

ud
C
λ = tCu , (20)

div dC
u = 0, (21)

∫

�

ρ′
u · dC

u + ρ′
λd

C
λ = tCλ , (22)

804 A. Evgrafov

where

tCu = − 1

2(J ′′
ρ,ρ)2

[

α′′(ρu,λ) − α′(ρu,λ)J
′′′
ρ,ρ,ρ

J ′′
ρ,ρ

]

d2
λu (23)

−α′(ρu,λ)

(J ′′
ρ,ρ)2

[

2α′′(ρu,λ) − α′(ρu,λ)J
′′′
ρ,ρ,ρ

J ′′
ρ,ρ

]

dλ(u · du)u

+α′(ρu,λ)

J ′′
ρ,ρ

dλdu + (α′(ρu,λ))
2

2J ′′
ρ,ρ

[
|du|2u + 2(u · du)du

]

− (α′(ρu,λ))
2

2(J ′′
ρ,ρ)2

[

3α′′(ρu,λ)−
α′(ρu,λ)J

′′′
ρ,ρ,ρ

J ′′
ρ,ρ

]

(u · du)2u,

tCλ =
∫

�

J ′′′
ρ,ρ,ρ

2(J ′′
ρ,ρ)3

d2
λ +

∫

�

α′(ρu,λ)

2J ′′
ρ,ρ

|du|2 (24)

−
∫

�

1

(J ′′
ρ,ρ)2

[

α′′(ρu,λ) − α′(ρu,λ)J
′′′
ρ,ρ,ρ

J ′′
ρ,ρ

]

dλ(u · du)

−
∫

�

α′(ρu,λ)

2(J ′′
ρ,ρ)2

[

2α′′(ρu,λ) − α′(ρu,λ)J
′′′
ρ,ρ,ρ

J ′′
ρ,ρ

]

(u · du)2,

and

J ′′′
ρ,ρ,ρ = 1

2
α′′′(ρu,λ)|u|2 − 2μ

ρ3
u,λ

+ 2μ

(1 − ρu,λ)3
. (25)

The resulting algorithm is formally summarized as
Algorithm 1.

4 Solving the linear systems

Utilizing the exact Chebyshev’s direction (or the exact New-
ton’s direction) is primarily feasible if a factorization of
the left hand side of the system (14)–(15) is available as a
result of an application of a direct solver. To keep the num-
ber of non-zero elements in the discretized operators to a
minimum, instead of enforcing the zero mean pressure con-
straint p, dp, dC

p ∈ L2
0(�) we simply prescribe the pressure

to be zero at some point in the computational domain. The
solution to (14)–(16) is obtained by computing a Schur com-
plement with respect to the first two equations as follows.
We first solve the systems

− div ∇d(1)
u +Ad(1)

u +∇d(1)
p = f+ div ∇u − α(ρu,λ)u − ∇p,

div d(1)
u = −div u, (26)

and

− div ∇d(2)
u + Ad(2)

u + ∇d(2)
p = ρ′

u,

div d(2)
u = 0, (27)

which requires only one matrix factorization. Using this
information we obtain the Newton’s direction

dλ = − ∫
�
[ρu,λ − γ] − ∫

�
ρ′
u · d(1)

u
∫
�

ρ′
λ − ∫

�
ρ′
u · d(2)

u

,

(du, dp) =
(
d(1)
u , d(1)

p

)
− dλ

(
d(2)
u , d(2)

p

)
. (28)

Furthermore, the Chebyshev’s direction is found by solving
the system

− div ∇d(3)
u + Ad(3)

u + ∇d(3)
p = tCu ,

div d(3)
u = 0, (29)

after which we similarly to (28) compute

dC
λ = tCλ − ∫

�
ρ′
u · d(3)

u
∫
�

ρ′
λ − ∫

�
ρ′
u · d(2)

u

,

(dC
u , dC

p) =
(
d(3)
u , d(3)

p

)
− dC

λ

(
d(2)
u , d(2)

p

)
. (30)

Thus, in the considered case no new matrix factorizations is
required and the additional computational work compared
to finding the Newton’s direction is truly negligible.

5 Benchmarking Chebyshev’s iteration

In this section we compare the performance of the Cheby-
shev’s and Newton’s algorithms on a set of two-dimensional
benchmarks described in detail in Borrvall and Petersson
(2003).

We discretize Algorithm 1 using the approach proposed
for the Newton’s method in Evgrafov (2014). Namely, we
select a stable discretization2 of the Stokes equations and
use it for representing the discrete versions of (u, p) and the
search directions (du, dp), (dC

u , dC
p). The quantity ρu,λ is

not stored, but rather recomputed on the fly by solving the
scalar (6) at points determined by the selected discretization
of the Newton’s direction finding subproblem (14), (15).

2In Evgrafov (2014) we have verified that the state space Newton’s
algorithm performs virtually independently of the selected discretiza-
tion/mesh refinement.

On Chebyshev’s method for topology optimization of Stokes flows 805

Finite element discretization In this note we use two
popular stable mixed finite element families on quadri-
laterals, namely [Q2]2/Q1 (Hood and Taylor 1973) and
[Q2-iso-Q1]2/Q1 (Bercovier and Pironneau 1979).3 We do
not store discretized ρu,λ but instead recompute it by solv-
ing (11) at Gaussian quadrature points whenever needed for
evaluating integrals.

Within the Newton’s method framework we typically
need to integrate non-polynomial functions (terms involv-
ing ρu,λ) times polynomials (terms involving u or du). For
the pure Newton’s direction, the polynomials are at most
piecewise bi-quadratic for [Q2-iso-Q1]2/Q1 elements or
piecewise bi-quartic for [Q2]2/Q1 elements, which require
tensor product Gaussian quadratures of at least degree 2 or 3
over every u-element (thus a reiterated Gaussian quadrature
of degree 2 over the macro-element) to compute the inte-
gral over the polynomial part exactly. In Evgrafov (2014)
we used a rule of thumb of adding another quadrature
point along each coordinate axis for evaluating all the
non-polynomial integrals, thus leading to tensor product
Gaussian quadratures of order 4 for Taylor–Hood elements.

In the case of Chebyshev discretization, integrating the
expression (23), which features in the right hand side
of (20), times a test function involves some non-polynomial
terms including ρu,λ times piecewise tensor-products of
polynomials of the order up to 12 in the case of Taylor–
Hood elements or of order 6 in the case of Bercovier–
Pironneau elements. To address this we raise the quadrature
power to 8 and 5, respectively; however, we report the
performance of the Taylor–Hood discretization with the
quadrature of order 4 as well. A general comment based
on our computational experience is that for coarse dis-
cretizations the accuracy of the quadrature plays a much
more important role for reducing the KKT residuals to near
machine accuracy than for the finer discretizations, which
is not surprizing as the volumetric Lebesgue measure of the
elements where ρu,λ deviates significantly from a constant
becomes smaller and smaller near optimal solutions for fine
discretizations.

We have implemented the FEM-discretized New-
ton’s and Chebyshev’s algorithms in C++ using deal.II
libraries (Bangerth et al. 2007). Umfpack (Davis 2004) is
utilized as a linear solver.

Finite volume discretization We utilize the standard stag-
gered grid approach, see for example Griebel et al. (1997).

3 This discretization has been used in the original paper of Borrvall
and Petersson (2003). Note that we count the number of elements dif-
ferently: in (Borrvall and Petersson 2003) the number of u-elements is
reported, whereas we list the number of macroelements. As a result the
number of degrees of freedom in [Q2]2/Q1 and [Q2-iso-Q1]2/Q1
elements is the same on the same discretization level. In other words
our 100 × 100 discretization [Q2-iso-Q1]2/Q1 corresponds to 200 ×
200 u-elements.

Since the divergence is exactly zero at the discrete level, we
remove the terms involving divergence from the augmented
Lagrangian function or the right hand side of the Newton’s
system. Additionally, we integrate |curlu|2 instead of |∇u|2
when evaluating J or its derivatives in our implementation.
All the terms involving ρu,λ are evaluated only at the vortic-
ity nodes, see Fig. 1, and then interpolated back to u1 and u2

nodes, where momentum conservation is formulated. The
algorithm is implemented in Matlab (we used an excellent
educational Navier–Stokes code (Seibold 2008) as a basis
for the Stokes solver) and utilizes the built-in LDL factor-
ization based on MA27 (Duff 2002) for solving all the linear
systems. The full code including setups for the benchmarks
is available as Online Resource 1.

For both discretizations We normally initialize (u, p) to the
solution of the pure Stokes problem (ρ = 1) in the domain,
and put λ0 = 100.0. In the case of the “rugby ball” problem,
such a starting point satisfies the first order optimality con-
ditions. To escape this critical point we initialize (u, p) to be
the solution of Brinkmann’s equations corresponding to ρ =
1.0 − 0.25χB(0.1) instead, where χB(0.1) is the characteristic
function for the ball of radius 0.1 around the center of �.

We begin the iterations by using the modified Newton’s
search direction, see (19), and we do this until the linesearch
accepts unit steplength and ‖du‖[H 1(�)]d /‖u‖[H 1(�)]d <

10−1. This normally happens within the first few iter-
ations, after which we proceed as outlined in Algo-
rithm 1. We terminate the algorithm when either
‖du‖[H 1(�)]d /‖u‖[H 1(�)]d < 10−10 (success) or the limit of
iterations has been exceeded (failure). For the benchmark
problems presented in this study we have empirically found
out that typically 50 iterations are sufficient for algorithm’s

Fig. 1 Standard staggered FVM discretization utilized in this work.
Pressure nodes coincide with divu nodes. Non-linear terms invol-
ving ρu,λ are evaluated at curlu nodes. Bilinear ansatz is used for
interpolating all quantities between their staggered locations

806 A. Evgrafov

convergence, and therefore we use 50 as the iteration limit
throughout our computations. Occasionally the algorithm
stagnates–in the sense that a discrete Newton’s directions
becomes a direction of ascent for the discretized augmented
Lagrangian function with a very small positive directional
derivative on the order of the discretization error. This is
particularly true on coarse meshes and can often be rec-
tified by increasing the number of quadrature points. The
algorithm still makes progress utilizing the modified New-
ton’s directions, but the fast local rate of convergence is of
course lost in this case. Fortunately, this happens at near-
optimal points. To address this issue at least partly, we
modify the algorithm as follows. In the linesearch routine,
if |ψ ′(0)| < 10−8 and the search direction is based on non-
modified Hessian, we accept the unit step. On the other

hand, if a modified Newton’s step is taken but the relative
improvement in the merit function after linesearch is less
than 10−8 we stop the algorithm and declare that it has stag-
nated. Strictly speaking these criteria should be adjusted
with the discretization choice and mesh refinement level.
However, in our numerical simulations we observe that stag-
nation occurs only occasionally, provided that the mesh is
“fine enough.”

These stopping conditions are unnecessarily stringent
as the final error will be dominated by the errors in the
discretization (small parameter h), approximation of the
Dirichlet boundary conditions (small parameter ᾱ−1), relax-
ation of the “0–1” affine penalty to α(ρ) (small parameter
q−1), or the barrier function (small parameter μ). Neverthe-
less, owing to the fast local convergence of the algorithm the

Table 1 Numerical performance of the state space Newton’s/Chebyshev’s algorithm on the two-dimensional benchmark problems from Borrvall
and Petersson (2003)

All computations are done on uniformly refined structured grids. The algorithmic termination is shown as success, , or (number
of allowed iterations has been exceeded). All times are reported relative to solving one Stokes problem. See Section 5 for more details and
discussion

On Chebyshev’s method for topology optimization of Stokes flows 807

strictness of the stopping criteria has very little effect on the
number of algorithmic iterations.

For other algorithmic parameters we set ᾱ = 2.5 · 104,
q = 0.1, μ = 10−3. We use a non-monotone heuris-
tic strategy for updating the penalty parameters νλ, νp

of the augmented Lagrangian penalty function ψ . At the
beginning of every iteration we put (νλ, νp) = (|λ| +
δ, ‖p‖L2

0(�) + δ), where δ = 10.0 in our computations.

In backtracking/Armijo’s linesearch, we use c1 = 10−4

in the sufficient decrease condition, and we successively
halve the steplength until this condition is satisfied. The
results of the numerical benchmarks are summarized in
Table 1 and the first two block rows of Table 2; the snap-
shots of some of the optimal designs are shown in the top
row in Fig. 2. Whether the algorithm terminates success-
fully, , or , it converges towards
the optimal solutions with the same topology as the ones
reported in (Borrvall and Petersson 2003; Challis and Guest
2009). It is undoubtedly possible to fine-tune the algorith-
mic parameters to further reduce the number of iterations in
either Newton’s or Chebyshev’s cases. The purpose of this
work is rather to illustrate the effect of the “freely” available
high-order search direction on the algorithmic performance.
Before proceeding further, we would like to make a few
comments about Tables 1 and 2:

Mesh size:

– For the test case “double pipe (long)” the number of ele-
ments along the x axis should be multiplied by a factor
1.5;

– Quasi-uniform unstructured meshes of quadrilater-
als have been generated using Gmsh (Geuzaine and
Remacle 2009). Mesh #1, #2, and #3 have approx-
imately 10K, 40K, and 160K quadrilateral elements
(×1.5 in the case of “double pipe (long)” problem),
which corresponds to the number of elements used in
the structured grids;

– The mesh resolutions taken from Borrvall and
Petersson (2003) are measured in u-elements, and
therefore should be divided by 2 to get to the resolu-
tion in terms of [Q2-iso-Q1]2/Q1 macro-elements, see
footnote 3;

– The mesh resolutions taken from Challis and Guest
(2009) are rounded to the nearest hundred, see the cited
paper for details.

Timings:

– In order to get “architecture-independent” results we
report the total running time of the algorithm relative
to one solution of the Stokes problem, even exclud-
ing the finite element assembly time for the latter in
the case of FEM implementation. Note that this met-

ric is especially unfair to the FVM discretization as the
number of non-zeros in the discretized Jacobian of the
Newton’s system is much larger than that for the pure
Stokes or Brinkmann system due to the presence of
the terms in the momentum equations, which explic-
itly couple u1 and u2. Also note that we were not able
to obtain very reliable timings of our algorithm on the
multi-user server, on which we performed our compu-
tations, and some outliers could be easily spotted in
Table 1;

– For the results taken from Borrvall and Petersson
(2003), we simply “guess” the relative timing to be the
number of algorithmic iterations. This is a very opti-
mistic estimate as it is based on the assumption that all
calculations other than solving the Stokes/Brinkmann
system take zero time;

– For the results taken from (Challis and Guest 2009), we
estimate the time relative to the solution of the Stokes
problem on the full computational domain based on the
data reported in the cited paper. This is done because the
level set algorithm utilized in the cited paper needs to
solve the flow equations only on a smaller flow domain,
and explains the fact that the estimated timing is much
smaller than the number of algorithmic iterations. Note
that the timing is still proportional to the number of
algorithmic iterations.

Objective function values:

– It is extremely important to keep in mind that the cal-
culations are based on a numerical discretization of
Algorithm 1 and not on applying a mathematical pro-
gramming algorithm to a discretized version of (1).
That is, we utilize “optimize, then discretize” rather
than “discretize, then optimize” approach. Therefore,
the fact that the algorithm terminates successfully with
‖du‖[H 1(�)]d < ε does not imply that the resulting point
(u, ρu,λ) is an O(ε)-optimal for the discretized prob-
lem (1). The computed solutions are only as accurate,
as the utilized discretization scheme!

– One can directly compare the objective function values
reported in Borrvall and Petersson (2003) and the ones
found by the present algorithm, even though we report
the power dissipation J augmented with the positive
barrier function;

– One cannot directly compare the objective function
values reported in Challis and Guest (2009) and the
ones found by the present algorithm, as we underim-
pose the no-slip Dirichlet boundary conditions in the
present case. This is not unique to our algorithm for
solving the topology optimization problem but rather a
major weakness of the homogenization based topology
optimization approach to fluid mechanics inherent in
formulation (1).

808 A. Evgrafov

Table 2 Numerical performance of the state space Newton’s/Chebyshev’s algorithm on the two-dimensional benchmark problems from (Borrvall
and Petersson 2003)

Computations are done on quasi-uniform or adaptively refined unstructured grids of quadrilaterals. The algorithmic termination is shown as

success, , or (number of allowed iterations has been exceeded). All times are reported relative to solving one Stokes problem.
See Sections 5 and 6 for more details and discussion.

In most of the cases Chebyshev’s iteration outperforms
the Newton’s iteration with respect to both the number of
required iterations and the total running time. The effect
seems to be more prominent for the examples where the
optimal configurations contain long straight channels, such
as the “pipe bend” and “two pipes” test cases, see Fig. 3,
bottom. In these cases the linesearch accepts unit New-
ton’s steps long before the fast decrease of the residuals
occurs. On the other hand, for the “diffuser” and “rugby”
test cases the Newton’s algorithm behaves extremely well
with quadratic convergence occurring almost immedi-
ately after the algorithm switches from the initial mod-
ified Newton’s to pure Newton’s directions, see Fig. 3,
top. This makes it very difficult to outperform such a
process.

Another general statement is that the discretization errors
stemming from the interpolation of certain non-linear quan-
tities between the staggered grids in the FVM discretization
negatively affects the rate of convergence of Newton’s and

to an even larger degree the Chebyshev’s iteration. Never-
theless, benchmarks in Table 1 demonstrate that utilizing
Chebyshev’s correction is beneficial within this framework
as well.

Note that the level set method utilized in Challis and
Guest (2009) does not require continuation with respect
to the parameters (ᾱ, q, μ), which to a degree com-
pensates for the large number of algorithmic iterations
that it requires, which also seems to grow with mesh
refinement.

6 Continuation and adaptive mesh refinement

We now apply the fast locally convergent algorithm devel-
oped in the previous sections in the framework of adap-
tive mesh refinement and parameter continuation. For
simplicity, we use a residual-based error estimator for (4),
(5) (note that (6) is preserved at the discrete level), see for

On Chebyshev’s method for topology optimization of Stokes flows 809

example (Verfürth 1989). Thus for every element T in the
mesh we compute the a posteriori error indicator

η2
T = |T |‖ − div ∇u + α(ρ)u + ∇p − f‖2

[L2(T)]d

+‖div u‖2
L2(T)

+ 1

2

∑

e∈∂T \∂�

|e|‖[∇u · n]e‖2
L2(e)

, (31)

where [∇u · n]e is the jump of the normal derivative of
u across the edge e in the mesh. A conceptual continua-
tion/adaptive mesh refinement algorithm is thus stated as
Algorithm 2. Note that in step 5 of the algorithm we do not
need to project the design field ρ, as it is recomputed on the
new mesh using (6). Additionally, the interpolation does not
preserve the conservation of mass (in the weak sense) con-
straint divu = 0, which is another reason for adding it to the
right hand side of Newton’s system and the merit function.

We test Algorithm 2 in the following fashion. In all cases,
we start by computing the optimal solution on unstructured
grid #1 using Algorithm 1. We then make four adaptive
refinement steps (four iterations of the loop in Algorithm 2)
by refining 20 % of cells with the largest indicator, and
coarsening 3 % of cells with the smallest indicator. Deal II
also needs to refine some adjacent cells (we refer to the
library documentation for details), and this strategy leads to
roughly speaking doubling of the number of cells at every
iteration. For parameters (ᾱ, q, μ−1) we test the follow-
ing strategies: #1: (ᾱ, q, μ−1) are constant on all meshes;

#2: (q, μ−1) are doubled before each refinement, but ᾱ is
constant; #3: all parameters are doubled before each refine-
ment. We note that in the topology optimization literature
typically a strategy analogous to our strategy #2 is utilized,
however without adaptive mesh refinement or parameter
μ, which is not found in the original problem (1), see for
example (Borrvall and Petersson 2003; Aage et al. 2008).

The results of these benchmarks are summarized in
Table 2 and some of the optimal designs obtained are shown
in Fig. 2, middle and bottom rows. One can see that both
Newton’s and Chebyshev’s algorithms perform incredibly
well in the strategy #1, needing in most cases only two iter-
ations for reducing the residuals in Algorithm 1 to the level
described in the previous section.

For strategy #2, both algorithms also perform reasonably
well, although both Newton’s and Chebyshev’s algorithm
stagnated on most instances of “pipe bend” test case.
Interestingly enough, Chebyshev’s method in some bench-
marks required one or two more iterations when compared
to Newton’s algorithm. Even ignoring the advantages of
adaptive mesh refinement where most of the iterations are
performed on coarse meshes and therefore are very compu-
tationally inexpensive, 12 + 5 + 5 + 7 + 4 = 33 iterations
needed by Chebyshev’s algorithm to solve “rugby ball”
problem to a very high precision can be compared with 384
iterations reported in (Aage et al. 2008) for this benchmark
problem and a similar continuation procedure based on a

0.25

0.5

0.75

Design

8.21e-06

1

0.25

0.5

0.75

Design

4.4e-07

1

Fig. 2 Snapshots of the final designs computed using Chebyshev’s
iteration for some of the benchmark problems. Note: the field has been
projected onto the space of piecewise linear polynomials for visuali-
zation purposes. In the top two rows, from left to right: “diffuser”,
“pipe bend”, “rugby (γ = 0.8)”, “dbl. pipe (short)”, and “dbl. pipe

(long)”. Top row: designs computed on a quasi-uniform unstructured
mesh #3; middle row: designs computed as a result of the adaptive
mesh refinement/continuation strategy #2; bottom row: zoom into the
leading edge of the “rugby (γ = 0.8)” design including the mesh lines
for the quasi-uniform and adaptive meshes

810 A. Evgrafov

first order algorithm and much less strict stopping criteria,
resulting in a more than 10-fold speedup.

Strategy #3 is the most challenging one, with both
methods struggling to reduce the residual to the requested
tolerance on most problem instances. Additionally,
increasing ᾱ results in larger residuals in the “solid” regions
of the domain, which are then refined in accordance with
our refinement strategy. This results in meshes, which are
much more quasi-uniform when compared with strategies
#1 and #2.

When one takes into account the fact that most of the
computations are done on low resolution meshes, the sav-
ings are quite significant: for example on a multi-user Linux
machine with 4 × 6 core Intel Xeon 2.67 GHz CPUs and
256Gb of memory, one “pipe bend” problem run using New-
ton’s (Chebyshev’s) method on the unstructured meshes #1,

0 2 4 6 8 10 12
10

−12

10
−9

10
−6

10
−3

10
0

iteration

re
si
du

al
s

| dNewton
 u

|
[H

1
(Ω)]

d

| dChebyshev
 u

|
[H

1
(Ω)]

d

|dλ
Newton|

|dλ
Chebyshev|

0 5 10 15 20 25

10
−12

10
−9

10
−6

10
−3

10
0

iteration

re
si
du

al
s

| dNewton
 u

|
[H

1
(Ω)]

d

| dChebyshev
 u

|
[H

1
(Ω)]

d

|dλ
Newton|

|dλ
Chebyshev|

Fig. 3 Convergence of the residuals for the state space New-
ton/Chebyshev methods. Top: diffuser problem; bottom: pipe bend
problem. In both cases, FEM discretization with 8-point quadratures
on an unstructured Mesh #3 with approximately 160 K quadrilaterals
is used. In the second case, faster-than-Newton local convergence of
Chebyshev’s iteration is particularly prominent

#2, and #3 take respectively 566 (453), 3 330 (2 860), and
29 100 (25 200) seconds.4 On the same hardware, adaptive
strategies #1, #2, and #3 utilizing Newon’s (Chebyshev’s)
iteration take respectively 1 920 (1 740), 3 520 (3 360), and
11 500 (11 500) seconds.

We end this brief discussion by stating that in our
opinion a much more thorough analytical/numerical study,
providing recommendations for updating many parameters
involved in topology optimization problems such as (1)
within the adaptive mesh refinement context, would be ben-
eficial for further advancing the application of topology
optimization to real-life problems.

7 Conclusions

We have presented, to the best of our knowledge, the first
locally cubically convergent method for topology optimiza-
tion. On quasi-uniform meshes the method demonstrated
savings of 8 % to 17 % of iterations when compared with
already fast Newton’s algorithm, or 60 % to 90 % when
compared with approaches based on the first order algo-
rithms, even disregarding differences in stopping criteria.

The local cubic convergence is attained at the cost of
solving one additional linear system only differing in its
right hand side per algorithmic iteration when compared
with the Newton’s iteration. When direct solvers are used,
the increase in the computational cost is negligible. If itera-
tive solvers are utilized, one should use inexact versions of
Newton’s or higher order methods, but at least in the case
of Chebyshev’s iteration one can reuse the constructed pre-
conditioners and utilize deflation techniques to speed up the
solution of the second system.

Both Newton’s and Chebyshev’s iterations have been
tested within the framework of parameter continuation and
adaptive mesh refinement, where neither of the methods has
decisively outperformed the other. Nevertheless we hope
that the ideas utilized in deriving a higher order method for
this simple benchmark problem are useful in other contexts
pertinent to structural and multidisciplinary optimization
problems. Additionally, Tables 1 and 2 could be used for
benchmarking other optimization algorithms applied to (1).

4Note the lack of numerical scalability owing to the utilization of the
direct linear solver.

On Chebyshev’s method for topology optimization of Stokes flows 811

Acknowledgments The author is grateful to Martin Berggren for
pointing out the reference (Carlsson et al. 2009) to us.

References

Aage N, Poulsen TH, Gersborg-Hansen A, Sigmund O (2008) Topol-
ogy optimization of large scale Stokes flow problems. Struct
Multidiscip Optim 35(2):175–180

Amrouche C, Girault V (1991) On the existence and regularity of the
solution of Stokes problem in arbitrary dimension. Proc Jpn Acad,
Series A, Math Sci 67(5):171–175

Babuška I (1973) The finite element method with penalty. Math
Comput 27(122):221–228

Bangerth W, Hartmann R, Kanschat G (2007) deal.II - a general
purpose object oriented finite element library. ACM Trans Math
Softw 33(4):24/1–24/27

Bartish MJ (1969) On some iterative methods of solving functional
equations. Sibirskij matematiceskij zurnal 10(3):488–493

Bercovier M, Pironneau O (1979) Error estimates for finite element
method solution of the Stokes problem in the primitive variables.
Numer Math 33(2):211–224

Borrvall T, Petersson J (2003) Topology optimization of fluids
in Stokes flow. Internat J Numer Methods Fluids 41(1):77–
107

Carlsson J, Sandberg M, Szepessy A (2009) Symplectic Pontrya-
gin approximations for optimal design. ESAIM: Math Model and
Numer Anal 43(1):3–32

Challis VJ, Guest JK (2009) Level-set topology optimization of fluids
in Stokes flow. Int J Numer Methods Eng 79:1284–1308

Davis TA (2004) Algorithm 832: UMFPACK, an unsymmetric-pattern
multifrontal method. ACM Trans Math Softw 30(2):196–199

Deng N, Zhang H (2004) Theoretical efficiency of a new inexact
method of tangent hyperbolas. Optim Meth and Softw 19(3–
4):247–265

Duff IS (2002) MA57 a new code for the solution of sparse symmetric
definite and indefinite systems. Technical Report RAL-TR-2002-
024. Rutherford Appleton Laboratory

Evgrafov A (2005) The limits of porous materials in the topology
optimization of Stokes flows. Appl Math Optim 52(3):263–277

Evgrafov A (2014) State space Newtons method for topology opti-
mization. Comput Methods Appl Mech Eng 278:272–290

Geuzaine C, Remacle J-F (2009) Gmsh A 3-d finite element mesh gen-
erator with built-in pre-and post-processing facilities. Int J Numer
Methods Eng 79(11):1309–1331

Griebel M, Dornseifer T, Neunhoeffer T (1997) Numerical simulation
in fluid dynamics: a practical introduction. SIAM 3

Gundersen G, Steihaug T (2012) On diagonally structured problems in
unconstrained optimization using an inexact super Halley method.
J Comput Appl Math 236(15):3685–3695

Hood P, Taylor C (1973) Numerical solution of the Navier–Stokes
equations using the finite element technique. Comput Fluids 1:1–
28

Kellogg RB, Osborn JE (1976) A regularity result for the Stokes
problem in a convex polygon. J Funct Anal 21(4):397–431

Kleinmichel H (1968) Stetige Analoga und Iterationsverfahren
für nichtlineare Gleichungen in BANACHräumen. Math Nachr
37(5-6):313–343

Kondoh T, Matsumori T, Kawamoto A (2012) Drag minimization
and lift maximization in laminar flows via topology optimization
employing simple objective function expressions based on
body force integration. Struct Multidiscip Optim 45(5):693–
701

Mertvecova MA (1953) Analogue of the process of tangent hyperbolas
for general functional equations. Dokl Akad Nauk SSSR 88:611–
614

Nechepurenko MI (1954) On Chebyshev’s method for functional
equations. Uspekhi Mat Nauk 9(2):163–170

Nechepurenko MI (2004) Refinement of convergence conditions for
the Chebyshev method. Sib Zh Vychisl Mat 7(3):249–260

Othmer C (2008) A continuous adjoint formulation for the compu-
tation of topological and surface sensitivities of ducted flows.
Internat J Numer Methods Fluids 58(8)

Seibold B (2008) A compact and fast Matlab code solving the incom-
pressible Navier–Stokes equations on rectangular domains. http://
math.mit.edu/cse/codes/mit18086 navierstokes.pdf

Steihaug T, Suleiman S (2013) Rate of convergence of higher order
methods. Appl Numer Math 67:230–242

Verfürth R (1989) A posteriori error estimators for the Stokes equa-
tions. Numer Math 55(3):309–325

http://math.mit.edu/cse/codes/mit18086_navierstokes.pdf
http://math.mit.edu/cse/codes/mit18086_navierstokes.pdf

	On Chebyshev's method for topology optimization of Stokes flows
	Abstract
	Introduction
	State space Newton's method for dissipated power minimization of Stokes flows
	Chebyshev's method for (3)
	Solving the linear systems
	Benchmarking Chebyshev's iteration
	Finite element discretization
	Finite volume discretization
	For both discretizations

	Continuation and adaptive mesh refinement
	Conclusions
	Acknowledgments
	References

